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Characterization of Temperatures Associated to Schréodinger Operators with

Initial Data in Morrey Spaces

Qiang Huang and Chao Zhang*

Abstract. Let £ be a Schrodinger operator of the form £ = —A +V acting on L?(R")
where the nonnegative potential V' belongs to the reverse Holder class B, for some
q>n. Let va)‘(R”), 0 < X < n denote the Morrey space on R™. In this paper, we will
show that a function f € L?*(R") is the trace of the solution of Lu := u; + Lu = 0,
u(z,0) = f(x), where u satisfies a Carleson-type condition

5
sup rg)‘/ / |Vu(z, )| dedt < C < 0.
0 B(zp,rB)

TB,"B

Conversely, this Carleson-type condition characterizes all the L-carolic functions whose
traces belong to the Morrey space L2*(R") for all 0 < A\ < n. This result extends
the analogous characterization found by Fabes and Neri in [§] for the classical BMO
space of John and Nirenberg.

1. Introduction and statement of the main result

In Harmonic Analysis, to study a (suitable) function f(x) on R" is to consider a harmonic
function on R’™! which has the boundary value as f(z). A standard choice for such a
harmonic function is the Poisson integral e V=2 f(z) and one recovers f(z) when letting
t — 07, where A = Y1, 6%1. is the Laplace operator. In other words, one obtains
u(z,t) = e VA f(z) as the solution of the equation

Opu+Au=0 ifxeR"™ t>0,
u(x,0) = f(z) if x € R™.

This approach is intimately related to the study of singular integrals. In [22], the authors
studied the classical case f € LP(R"), 1 < p < c0.
It is well known that the BMO space, i.e., the space of functions of bounded mean os-

cillation, is natural substitution to study singular integral at the end-point space L>°(R").
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A celebrated theorem of Fefferman and Stein |10] states that a BMO function is the trace
of the solution of dyu + Au = 0, u(x,0) = f(z), whenever u satisfies

"B
sup TB”/ / ) [tVu(z, t)[? @ <C < o0,
TB,T"B

rB,"B

where V = (V4,0;) = (01,...,0,,0:). Conversely, Fabes, Johnson and Neri [7] showed
that condition above characterizes all the harmonic functions whose traces are in BMO(R")
in 1976. The study of this topic has been widely extended to more general operators such
as elliptic operators and Schrodinger operators (instead of the Laplacian), for more general
initial data spaces and for domains other than R™ such as Lipschitz domains. For these
generalizations, see [1},5}8,9,(14417}20].

In [8], Fabes and Neri further generalized the above characterization to caloric functions
(temperature), that is the authors proved that a BMO function f is the trace of the solution
of

Ou—Au=0 ifxeR" t>0,
u(z,0) = f(z) ifzeR",

(1.1)
whenever u satisfies

7,.2
(1.2) sup an/ B/ |Vu(z,t)|? dedt < C < oo,
0 TB,"B

TB,"'B
and, conversely, the condition characterizes all the carolic functions whose traces
are in BMO(R™). The authors in |15] explored more information, related to harmonic
functions and carolic functions, about this subject.

In this paper, we consider a similar characterization in Moerry space LP*(R™). It is
known that LPO(R"?) = LP(R") and LP*(R") = CPA(R™)/C for 0 < A < n, where CP*(R")
denote the Campanato space. When A = n, CP"(R"™) = BMO(R"). So, Morrey spaces
were proposed to be intermediate function spaces between LP space and BMO space. For
more information about Morrey spaces, see [26]. The main aim of this article is to study
a similar characterization to for the Schrodinger operator with some conditions on
its potentials and boundary values in Morrey spaces. To be precise, let us consider the

Schrédinger operator
(1.3) L=—-A+V(z) on L*R"),n>3.

We assume that V' is a nonnegative potential, not identically zero and that V' € B, for
some ¢ > n/2, which by definition means that V € L{ (R"), V > 0, and there exists a
constant C' > 0 such that the reverse Holder inequality

0 (o)™ < i v
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holds for all balls B in R".
The operator £ is a self-adjoint operator on L?(R™). Hence £ generates the L-heat

semigroup

Tf(@) =i @) = | Hiwy)f(y)dy, [e LR, t>0.

From the Feynman-Kac formula, it is well-known that the semigroup kernels H;(z,y) of

the operators e *£ satisfies

0 < Hi(z,y) < h(z —y)

for all x,y € R™ and ¢ > 0, where
hy(z) = (dmt)~"/2e~1el*/(4)

is the kernel of the classical heat semigroup {T;}¢>0 = {€/®}s~0 on R”. For the classi-
cal heat semigroup associated with Laplacian, see [21]. In this article, we consider the

parabolic Schrodinger differential operators
L=+L, t>0 zeR",

see, for instance, [11123,25] and references therein. For f € LP(R™), 1 < p < oo, it is well
known that u(x,t) = e * f(x), t > 0, z € R™, is a solution to the heat equation

Lu=0u+Lu=0 in RT‘I

with the boundary data f € LP(R™), 1 < p < oco. The equation Lu = 0 is interpreted
in the weak sense via a sesquilinear form, that is, u € I/Vlf)f(RﬁH) is a weak solution of
Lu = 0 if it satisfies

Vau(z,t) - Va(x,t) dedt — / u(z,t)0pp(x, t) dedt

n+1 n+1
R+ R+

+/ L Vb dudt =0, Vi€ Cy (R,
R}

In the sequel, we call such a function » an L-carolic function associated to the operator
L.

In [25], the authors proved that the conclusion gotten by E. Fabes and U. Neri in [8]
can be proved in the Schrodinger case. In [20], the authors considered the results in 7] in
the case of Poisson integrals of Schrodinger operators with Morrey traces. As mentioned
above, we are interested in deriving the characterization of the solution to the heat equation

Lu=0in ]RZLFH with boundary values in Morrey spaces. Recall that Morrey spaces were
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introduced in 1938 by C. Morrey [18] to consider the regularity problems of solutions to
PDEs. For every 1 < p < oo and X € [0,n), the Morrey spaces LP(R") are defined as

LPA(R™) = {f € Ljge(R") :  sup T_A/ [F(@)IPdy < OO}-
B(z,r)

z€R™ r>0

This is a Banach space with respect to the norm

1/p
1Al or reny = ( sup ?“_A/ |f(y)|pdy> < 00.
z€R™,r>0 B(x,r)

Moreover, for every 1 < p < co and A > 0, the Campanato spaces C*(R") are defined as

CPAR) = {f € L (R™) | fllenagan) < o0}
with the Campanato seminorm being given by
1/p
[ fllcprmny = < sup T_A/ |f(W) = fB@m I dy) < 00,
zeR™,r>0 B(z,t)

where fp(, ) denotes the average value of f on the ball B(x,r). And when X\ € [0,n),

CPA(R™)/C = LPA(R™). Specially, when A = 0, CPO(R")/C = LPO(R™) = LP(R™).

Next, we introduce a new function class on the upper half plane RT’I.

Definition 1.1. Suppose V' € B, for some ¢ > n and 0 < A < n. We say that, a Cl-
functions u(z,t) defined on R”"* belongs to the class TL(R"1), if u(z,t) is the solution
of Lu = 0 in R*! such that

TLA (®+1) = SUD T / / |Vu(z, )| dedt < oo,
QB,T'B

Tp,TB
where V = (V,, 0y).
The following theorem is the main result of this article.
Theorem 1.2. Suppose V € By for some ¢ > n and 0 < X < n, then we have

(1) if f € L*MR), then the function u = e~** f € TLR(RE) and
||u||TL2(Ri+1) < C||f||L2A(Rn);
(2) if u € TLR(RTY), then there exists some f € L* R") such that u = e ** f, and

£l 2 mny < CH”HTLE(R?_“)

with some constant C' > 0 independent of u and f.
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We should mention that for the Schrodinger operator £ in , an important property
of the By class, proved in [12, Lemma 3], assures that the condition V' € B, also implies
V € By4e for some € > 0 and that the B,y constant of V' is controlled in terms of the
one of B, membership. This in particular implies V' € Liloc (R™) for some g strictly greater
than n/2. However, in general the potential V' can be unbounded and does not belong to
LP(R™) for any 1 < p < co. As a model example, we could take V (x) = |x|2. Moreover, as
noted in [19], if V' is any nonnegative polynomial, then V satisfies the stronger condition

C
< -
gleagV(ﬂf)_ B,/BV(y)dy,

which implies V' € B, for every ¢ € (1,00) with a uniform constant.

This article is organized as follows. In Section [2] we recall some preliminary results
including the kernel estimates of the heat semigroup related with £, and prove some
lemmas and certain properties of L-carolic functions. In Section (3], we will prove our main
result, Theorem

Throughout the article, the letters “c” and “C” will denote (possibly different) con-

stants which are independent of the essential variables.

2. Basic properties of the heat semigroups of Schrodinger operators

In this section, we begin by recalling some basic properties of the nonnegative potential
V under the assumption (|1.4) and the kernel estimates of the heat semigroup related with
L.

It follows from Lemmas 1.2 and 1.8 in [19] that there is a constant Cj such that for a

nonnegative Schwartz class function ¢ there exists a constant C' such that

Ct'(Vt/p(x))’  fort < p(x)?,

bl VOB i e ot

where () =t~ ?p(x /1), § = 2—n/q > 0, and the critical radii function p(z; V) = p(z)

above are determined by the function

1
p(x):sup{r>0: o /B( )V(y)dygl}.

tL

For the heat kernel H;(z,y) of the semigroup e~ **, we have the following estimates.

Lemma 2.1. (see [6]) Suppose V' € B, for some q¢ > n/2. For every N > 0, there exists
a constant Cy such that for every x,y € R™, ¢t > 0,

-N
t t
1+\[+\[> , and

D0 < H(z,y)<C tn/zexy|2/(ct><
0 () < O p@) " py)
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(i) |0yHe(x, y)| < Oyt~ (+2/2e Izl /ct)< Vi f)

p(x) " ply)
In fact, with the same computation as in the proof of |6, Proposition 4], we have
vt Vi
(2.1) O Hy (2, y)| < Ot/ 2 le—vI/ () ( LVt
p(x) " ply)

Lemma 2.2. [5, Lemma 3.8] Suppose V € By for some ¢ > n. Let § =1—n/q. For
every N > 0, there exist constants C = Cy > 0 and ¢ > 0 such that for all x,y € R"
and t > 0, the L-Heat semigroup kernels Hy(x,7), associated to e '~ satisfy the following

estimates:

ﬂﬂi)”ﬁ.

D VS H (2, 0)| + V20 e (2, y)| < Ct= (D 2= la=yl?/(ct) (1 N
W Vel ottt ) p(z) ~ p(y)

(i) for [h] <z —yl/4,

Vo He(x + hyy) — Vo Ha(z,y)| < C ('\2) )2 oyl e,

(ili) there is some 6 > 1 such that

ViVee (1) (z)| < C min { (ff;)d : <p(‘/j)> _N} :

We now recall a local behavior of solutions to dyu + Lu = 0, which was proved in [24,
Lemma 3.3], see it also in |11, Lemma 3.2]. We define parabolic cubes of center (z,t) and
radius 7 by By(x,t) := {(y,s) ER" xRy : |[y—z| <r,t—r% < s <t} = B(x,r)x (t—r2 1.
And for every (z,t), (y,s) € R" x (0,00), we define the parabolic metric: |(z,t) — (y, s)| =
max{|z — yl, |s — t['/*}.

Lemma 2.3. (24, Lemma 3.3] Suppose 0 <V e LL (R") for some ¢ > n/2. Let u be
a weak solution of Lu = 0 in the parabolic cube By, (xo,t9). Then there exists a constant
C =), > 0 such that

1/2
1
sup  |u(z,t)| < C ( — / |u(:1:,t)|2dxdt> .
Br0/4(107t0) rO Br0/2(x07t0)

3. Proof of the main theorem

In this section, we will give the proof of Theorem First, we need make some prepara-

tions.
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Lemma 3.1. For every u € TL%(RZL_H) and for every k € N, there exists a constant
Crn > 0 such that

fua, 1/
—— L - dr<C n
/Rn @+ e @ < Chnllull

TLA(RTH) < 00,

hence u(x,1/k) € L*>((1 + |z|)~2"dx). Therefore for all k € N, e % (u(-,1/k))(x) exists

everywhere in Rfrl )

Proof. Since u € C1(R't™1), it reduces to show that for every k € N,

ju, 1/k) — u(z/|z], 1K)
3.1) /|| (1 a2

dx < Ck:””uHQTLQ(RTl) < 0.

To do this, we write

u(@, 1/k) = u(x/|z|,1/k) = [u(z, 1/k) — u(@, )] + [u(z, [2]) = u(z/|2], [z])]
+ [ulz/]zl, [z]) — u(z /]|, 1/F)].

Let

[ R uleDP [ ) el )P
I‘/W T+ ”‘/xm TERT I

and

[ lula/lal ) — u(e/lel, /R
= (0 ] o

For |z| > 1 and t > 0, let r? = t/4. We use Lemmafor Oyu and Schwarz’s inequality

to obtain

1/2
1 t )
< I
|Oyu(x,t)| < C (r"+2 /tr2 /B(x’r) |0su(y, s)] dyds)
1 ¢ , 1/2
=C / / Osu(y, s)|* dyds
(3.2) {22 B(xw/g)! (y,s)° dy

1/2
<otz T < NORE // |<9 u(y, s )|2dyd8>

_1_n=A
<Ct 2 a Hu”TL}(R’}jl)?

which gives

||

1_n—-X _1l,n=A
|u<x,1/k>—u<x,|x|>|=‘ | Q)] < € (Jel 3 k577 by ey
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It follows that

I+ 111 < Clul2. \ . 7( —k;‘l>d
+ < Hu”TL?:(Rfl)/IPl EEER |z|2~ "3 T 72 ) da

< Clkym) [l s

For the term 11, we have that for any = € R"”,

|z
u(w,la) ~ uaflel o) = [ Dutrofol)dr. o= fafo
1

Let B = B(0,1) and 2™B = B(0,2™). Note that for every m € N, we have

2 om )
/ dx = / / / D,u(rw, p) dr
2mB\2m-1B 2m=1 Jjw|=1 [J1
2m 2m
< 2’”"_’”/ / / |Dyu(rw, p)|? drdwdp
2m-1 Jjw|=1J1

2m
<o [ Yl Pl dyde
om-1 JompB\B

2m
< gmn—m /2m1 /2mB |Vyu(y, t)|2 dydt,

2

||
/ |Dyu(rw, |z|)| dr "L dwdp
1

which gives

/ e, la) — u(a/lo],o]) P ds
oamB\2m-1B

B 1 922m
< ggmn—mtmA <|2mB|)‘/n/0 5 IVyu(y,t)\Qdydt>

< 02(n+>\ m— mHuH

TLY (R}
Therefore,
1 2
H<OY g /2m3\2m13| u(a, 2]) = u(e/Jel, [o])? dz < Cllullyy s e

Combining estimates of I, I1 and I1I, we have obtained .

Note that by Lemma if Ve B, for some ¢ > n/2, then the semigroup kernels
Hi(z,y), associated to e 4, decay faster than any power of 1/|z —y|. Hence, for all k € N,
e (u(-,1/k))(z) exists everywhere in R’"!. This completes the proof. O

Lemma 3.2. For every u € TL%(R?FH), we have that for every k € N,

w(z, t+1/k) = e ¥ (u(-,1/k))(x), zeR"™ t>0.
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Proof. The lemma can be proved by the same discussion as the proof of Lemma 3.2 in [5]
and the proof of Lemma 3.3 in [25]. O

We recall that the classical Carleson measure is closely related to the space BMO(R™).
In [25], the authors considered another similar Carleson measure which was called 2-
Carleson measure. Here, we need to consider a similar Carleson measure. We say that a
measure p defined on Riﬂ is a (2, A)-Carleson measure if there is a positive constant c
such that for each ball B, with radius rg, in R",
(3.3) u(B) < ¢|BM™,

where B = {(2,t) 2 € B,0 <t < r%} is the 2-tent over B. The smallest bound ¢ in
(3.3) is defined to be the norm of p, and is denoted by |[[|u][|(2,3) car- When A = n, it is
coincided with the 2-Carleson measure in [25]. By using this measure, we will estimate
the term 0y £ f(x) in Morrey space. Precisely, for any k € N, we set

ug(z,t) = u(z, t + 1/k).
Following a similar argument as in |7, Lemma 1.4], we have the following lemma.

Lemma 3.3. For every u € TLE(RIH), there exists a constant C > 0 (depending only
on n) such that for all k € N,

(3.4) sup rpg / / |Oyug (2, t)|? dedt < CHUHTU R+ < 0.
B(varB

TB,TB

Proof. Let B = B(zp,rp). If r% > 1/k, then letting s = ¢ + 1/k, it follows that

')"2 (27"3)2
\B‘””/ / (Gyule,t + 1/K)|? dadt < C|B[" / / (e " dads
0 B 2B
< Clul?

TLA(RTH) < 00.

If 7% < 1/k, then it follows from Lemma m for Oyu(x,t+1/k) and a similar argument as

in (3.2) that

Butlir, b+ 1/R)| < Cl+ K73 ull gy e

Therefore,

T’2
|B|_’\/”/ B/ Oz, ¢ + 1/k) 2 dodt
0 B
7”2
N/, 12 B —1\—(14+(n—\)/2
< CIBI Ml ey [ [ (OO dad

3
< cuunTLA(Rnﬂ) (kH("_AWr%A / 1dt>
0

< Cllull3

TLA(RTH) < 00
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since 1% < 1/k.
By taking the supremum over all balls B C R", we complete the proof of (3.4]). O

Letting fr(x) = u(z,1/k), k € N, it follows from Lemma [3.2| that
up(x,t) = e £ fr(z), = eR", t>0.

And it follows from Lemma [3.3] that

7,.2
Y B —tL 2 < 2
sup g /0 /B(xB,TB) |0 fr(z)]” dedt < C||uHTL2(R1+1).

TB,TB

Lemma 3.4. For every u € TL%(R’};H), there exists a constant C > 0 independent of k
such that
[ fllp 2 gny < CH“”TL%(RTI) < oo foranykeN.

Hence for all k € N, fy, is uniformly bounded in L>*(R™).

To prove Lemma we need to establish the following Lemmas and
Given a function f € L*((1 + |z|)~?"dx) and an L? c L*/("*2) function g supported
on a ball B = B(zpg,rR), for any (z,t) € R’ffl, set

(3.5) F(x,t) =tde “f(z) and G(x,t) = tde £ (I - efTZBL)g(x).

Lemma 3.5. Suppose f, g, F', G are as in (3.5)). If f satisfies

TZB
501 orycr = SUP 75" / / Ot f (@) dadt < oo,
0 B(zp,rB)

TB,TB

then there exists a constant C' > 0 such that
dzdt n
66) [ P0Gl S < COBY O g, gl allall s )
+
Proof. To prove (3.6)), let us consider the square functions S(f) and G(f) given by

st = ([ e o dt)m C o = ([ o P ar) "

By the standard spectral theory as in [6], we have the following identities:

(37) ()2 = £
and
(3.8) 9 = L21E12 ..

2
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In fact, let us denote by dE()) the spectral resolution of the operator £. Since e ** =

[ e ™ dE(X), we have
tore tt = / the M dE(N).
0

Then, for all f € L?(R"), we have
[tOe ™" f(x )HL2 R dadt) / / |tope ™" f ()| dwdt = / ((toee™"4)? f, f>L2(Rn) dt
=[] e b ) = {1 g,

which gives the proof of (3.7). And the proof of (3.8) is similar.
Given a ball B = B(zp,rg) C R™ with radius rp, we put

T(B) = {(z,t) e R™ .z € B,0 < t <13}

We then write

dxdt
[ 1G]
Rn+1 t
+
dxdt dxdt
= [ RG] S Z / ()G, )] 20
T(2B) T(2kB)\T(2*—1B) t
=A+ Z Ag.
k=2
Using the Holder inequality, (3.7) and the L? — L™/ ("*+2) boundedness of fractional integral
operator £71/2, we obtain
(2rp)?2 1/2
_ —T‘2
A < {/0 |Ore wf(ﬂf)let} IS(I = e7"55)g]| 2 (@

L2(2B)
—r2
< Oy sl @) carl£ 72T = €755 gl 2 amy

< CrYl1iws sl carllgll v ).

Let us estimate Ay for k = 2,3,.... Observe that

(2]67,.3)2 1/2
A < / e f ()2 dt
0

(@*r5)? —tL —r3L 2
X /0 [tore™ (I — e "5%)g(x) xr2r By\1(26—1 B) (T, )|

L2(2%B)
1/2

L2(2%B)
<(C(2 A2 7 B
= ( TB) |H Vt,f|”(2,)\)car X by,
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where
1/2

(2Frp)?
B = {/O |t0e ™ (I - e_TQBE)g(x)XT(%B)\T(Zk1B)(xat)|2dt}

L2(2kB)
To estimate By, we set
5 d26—r[,
r r=t+s
Note that )
"B
(- G_TZBL)Q = / Le Eqds.
0
By (2.1), we have
1/2
(2k7'3)2 ry 1 2 /
By <C / t/ 3 Ves(L)g(x) X728 B)\T (21 B) (@, t) ds| di
0 0 (t =+ S)
L2(2FB)
(2*rp)? i
o T T A m—
0 0 JBprs) (E+8)"
2 1/2
X |g(y)|XT(2kB)\T(2k—1B) (z,t) dyds dt} .
L2(2FB)

Note that for (x,t) € T(2¥B) \ T(2¥"!B) and y € B, we have that |z — y| > 2¥rg. So

(2rp)? 9 1/2
B < { [ dt}

/ / el )er ey e .f) dyds
wB77‘B

L2(28B)
(2Frp)? r2, 1 2 12
< Cllgllzr (s {/0 t/o WXT(%B)\T(zk—lB)(%t) ds dt}
L2(28B)
r2 (2Frp)? 1/2
SCHQHLI(B)W /0 X1 (2t B)\T (251 B) (T, £)E7 di
L1(2*B)

< 022 DR gy < O2MEDH g s ).
Consequently,
—2k A/2
Ak < C2 20 1w, 11l 2 car |9 2 sns ),

which implies

/ﬂlF(azt) (z, >|@<0”2
RY

w1l 2y carllgl zon o

o0
_ A/2
+C 27202 g 2,0y car 9l o/ ns )

A/2
< Oy v, sl carlgl 2ns s )
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as desired. O

Lemma 3.6. Suppose B, f, g, F, G are defined as in Lemma . If llpws f 20 car <

oo, then we have the equality

1 dzdt
F@)(Z =B g(@)de = 7 [ Fla,)Gla,t) =~
Rn 4 R
+
Proof. The technique of this lemma’s proof has been used in lots of papers, for example
[2,{4L6,/16], but it is notable to state it here for completeness.
By Lemma we know that fRTl |F(z,t)G(z,t)] %9 < co. By dominated conver-
gence theorem, the following integral converges absolutely and satisfies
dedt [V dxdt
I= F(z,t)G(z,t) — = lim F(z,t)G(x,t) —.
€ n

Ri+1 t e—0t

By Fubini’s theorem, together with the commutative property of the semigroup {e 7%},

we have
/ Pla)Glot)do = [ )t €T — " B)g(y) dy,
Whence,
.Y e 2 dzdt
[= lim F(@) (e (T — e ) g o) P
E—>0+ € Rn t
1/e
—tim [ 1) [ w0 T - e hE ) B
6*}0+ Rn € t

By [6, Lemma 7], we can pass the limit inside the integral above. And, by a similar

computation of [16, Lemma 3.7] with 5 = 1, we have

1= [ s [ o ez - b B = 1 [ f@@ - (o) do.

This completes the proof. O
Now, we are in a position to prove Lemma [3.4]

Proof of Lemma [3.4] First, we note an equivalent characterization of L%*(R™) that f €
L2A(R™) if and only if f € L2((1 + |z|)~"*+9)dzx) and

1/2
sup (\B]_)‘/”/ |f(x) — e‘rl%cf(:c)]de> <C < 0.
B B

This has been proved in |4, Proposition 6.11] (see also [3,|13}20]).
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Now if HUHTLE(RTH < 00, then it follows from Lemma [3.1| that

| fiu(@)]?

Given an L? function g supported on a ball B = B(zpg,rp), it follows from Lemma

that we have

1

Jel@)(I = e 55)g(x) do = / . t0ye L fi(2)tde (T — e "B ) g(x) dzdt
Rn R:ﬁ 1

4 t

By Lemmas [3.3 and

fu(@)(T — e7"E5) g(x) dx
Rn

< C|B‘)\/(2n)H|:U’Vt,fk‘”(2,)\) cangHL2"/("+2)(B)

< C|B‘>\/(2n)Hu||TL2(R1+1)||g||L2n/<n+2)(B)'

Then the duality argument for L? shows that

) 1/2

— BV s | [ (@ e fua)glo) do

||9||L2(B)§1
<|BPVEM - sup fu(@)(T — e75E)g(w) da
g1l 2n/ (nt2) (5 <1 I/R™
< Cllullppy @
for some C' > 0 independent of k.
It then follows that for all k € N, {f;} is uniformly bounded in TL}(R*1). O

Proof of Theorem [1.2(1). Recall that the condition V € B, implies V € By, for some
go > n/2. From Lemmas and we see that u(z,t) = e * f(z) € CYRT). Tt will

be enough to finish the proof if we have proved
(3.9) lullog gty < Ol

To prove (3.9)), by a similar argument in [6], we can easily prove that for every f € L?*(R™),
the term |[Oe~*“(f)(x)|? has the following estimate (see [6, Theorem 2]):

%
sup 1 / / BretE () drdt < | ] ooy
0 JB(zp,rB)

TB,TB
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So, we only need to estimate the term |V e **(f)(z)|?. In fact

[e.9]

1 3 1/2 . )2 1/2
B B

— Ve f(2)|? dedt < E —_ / / Ve - fi(z)]? dudt

<7"j§/o /B f)l ) B A2 < 0 B‘ fil@)|

k=0"TRB
o0

=: E Ji,
k=0

where fo = fxop and fiy = fxor+1p\orp for k € NT. For Jp, since the Riesz transform
VL2 is bounded on L*(R"), by ([3.8) and the commutative property of e~ and £~1/2,

we have

2
1 T
Jg:x/ B/ Vae ™ fo(2)|? dadt
s Jo JB

2

1 T

< — / ’ / (Vo £7Y2 L1267 fo ()| dadt
B /0 "

r

gciA / / |0re (LY fo) () | dacdt
TB 0 n

1 1
< O— £1/2£—1/2 2 = C/ 2d
= 7“1\9“ fOHL2(R ) s Jon |f(2)]” da

< Ol 22 -

When k > 1, for any z € B and k € NT, we apply Lemma, (1) to obtain

Vae ™ fi(x)] < © = (D2l £ () dy
2k+1B/2kB

<C |z —y[~V | f(y)| dy
2k+1B/2k B
1

< CW /2k+13 |f(y)| dy

1
S C(2kTB)1+(n,)\)/2 ||f”L27>‘(R"))

which yields
] < Q2RO F

Hence 3272 [Jk] < CHf”LM(Rn): and then HUHTLg(RnH) < CHfHL2v>\(R”)- O

Proof of Theorem (2) To prove it, we will use the argument as in [5,7,15] and apply
the key Lemma Suppose u € TL%(RTA), our aim is to find a function f € L>*(R™)
such that

u(z,t) = e ¥ f(x) for each (x,t) € R



1148 Qiang Huang and Chao Zhang

To do this, for every k € N, we write fi = u(x,1/k). By Lemma we obtain
2 I
dx < C2 ety -
/B(0’2j) |fk‘(I)| L= c ||u||TL2(R++1)

This means that the sequence {f;}?°, is bounded in L?(B(0,27)). So by passing to a
subsequence, the sequence {f;} converges weakly to a function g; € L?(B(0,27)). Then,
for i > j, we can get g;(z) = g;(z), for almost everywhere x € B(0,27). Next, we define a
function f(z) by
f(x) =gj(z) ifreB(0,27),j=12,3,...

It is easy to see that f is well defined on R" = (J}Z, B(0,27) and (after passing to a
subsequence) f — f in L? on every ball of R™. It is also easy to check that for any open
ball B C R", we have

2 Al 112
5@ o < Crlulfyy g
which implies
11l 2@ < Cllullggy s
Finally, we will show that u(z,t) = e7** f(x). Since u(x,-) is continuous on R, we have
u(z,t) = limg_, 1 oo u(w,t + 1/k). Then we have u(x,t) = limy_s oo e ¥ (u( -, 1/k))(x). It

reduces to show
lim e~ (u(-, 1/k))(2) = e f(a).

k—4o00
Indeed, we recall that H;(x,t) is the kernel of e7**. Then for any [ € N, we write
1)@ = [ MW+ [ el fuly) dy
B(x,2') B(x,2't)c

By Lemma [2.1] and the Holder inequality, we have

ey e D i) dy
i—1 7 B(®,2iT1)/B(x,2't)

<C 2it) ™"
<oy /B(

<CY )2 fill oy

1=l

< 27 N2 | Loy

/ How,y) fi(y) dy
(B(x,2't))e

: [ fe(y)] dy

,20t1¢

By Lemma we have that || fil|p2a@n) < CH“”TLE(RTH) for some constant C' > 0
independent of k. Since A € (0,n), we have

lim sup lim sup
=400 k—+o0

< lim (€27 ONROR ) ) ) =0

/ o, y) fi(y) dy
B(z,2!t)c



Temperature of Schrédinger Operators with Initial Data in Morrey Spaces 1149

Therefore,
lim e #(u(-,k7Y))(z) = lim lim He(z,y) fu(y) dy = e £ f(x).
k—+o00 k—+o0 l—+00 B(w,2!t)
We have showed that u(z,t) = e ** f(z). The proof of Theorem is completed. O
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