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Parametrized Multilinear Littlewood-Paley Operators on Hardy Spaces
Sha He* and Qingying Xue

Abstract. In this paper, we study the parametrized multilinear Marcinkiewicz integral
1 and the multilinear Littlewood-Paley g}-function. We proved that if the kernel 2
associated to parametrized multilinear Marcinkiewicz integral p” is homogeneous of
degree zero and satisfies the Lipschitz continuous condition, or the kernel K associated
to the multilinear Littlewood-Paley g3-function satisfies the Hérmander condition,
then they are bounded from HP! X ---x HP™ to LP with mn/(mn+7) < p1,...,pm < 1
and 1/p=1/p1 + -+ 1/pm.

1. Introduction and main results

In 1960, Hormander |10] first studied the parametrized Marcinkiewicz integral p” which
is connected closely with the Marcinkiewicz integral defined and studied by Stein |17] in
1958. He proved that p” is LP bounded if the kernel (2 satisfies some Dini type conditions.
Later, Sakamoto and Yabuta [15] showed that the parametrized Lusin area integral S* and
the parametrized Littlewood-Paley gy-function are bounded on LP provided the kernel 2
satisfies the Lipschitz conditions.

It was well known that the multilinear operator was first studied by Coifman and
Meyer [4,5]. After that, the multilinear theory has been paid great attention, and it
develops rapidly in recent years. Especially, Christ and Journé [2], Kenig and Stein [11],
Grafakos and Torres [9] and Lerner et al. [13] have made great contributions to this
field. On the other hand, in 1972, Fefferman and Stein [6] studied the classical Calderén-
Zygmund operators on the real Hardy space HP(R™) (0 < p < 1). Later, Grafakos
and Kalton [7] investigated the boundedness of the nonconvolution multilinear Calderén-
Zygmund operators on Hardy spaces. Recently, Li et al. |[14] extended the results of [7] to
the weighted case. Shi et al. [16] introduced the multilinear Littlewood-Paley g function
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with the kernel K satisfies the Hormander condition and proved the strong weighted
estimates and the weak type boundedness of g3.

There is a natural question about multilinear Littlewood-Paley operators, that is, are
these operators bounded on Hardy spaces? The aim of this paper is to investigate the
boundedness of the multilinear Littlewood-Paley operators on Hardy spaces.

Throughout this paper, for any set F, xg will be used to denote the characteristic
function of the set E. The letter C will always denote a positive constant that may vary
at each occurrence but is independent of the essential variable.

In order to state our results, we first introduce some definitions and notations.
Definition 1.1. Let € be a function defined on (R™)™ with the following properties:

(i) € is homogeneous of degree 0, i.e.,

(L.1) Q(Ay) = Q(y),
where y = (y1,...,ym) € (R™)™.

(ii) € is Lipschitz continuous on (S™~1)™ i.e., there are 0 < v < 1 and C' > 0 such that
for any § = (§17 R afm)an - (7717 e 777m) S (Rn)m’

(1.2) Q&) — Q)| < ClE" =",
where ¢ = (y1, -, ¥m)" = (W1, ym) /(2] + - + |yml)-
For any f = (f1,..., fm) € S(R") X --- x S(R™), t > 0, we define

Q(yla s 7ym)X(B(O,1))m (y17 s 7ym)
(fyal -+ yml)m=2)

1 Y Y
Kf(yl,,ym):WKp (7,,%)

KP(yi,...,ym) =

)

and

—

Gy (f)ly) = K{ * (i@ @ fn)(y)

1 Qy—21,--,Y — 2m) 5
_ tmp/ oy Hfi(zi) dz;,
By ([y— 21|+ + |y — 2ml) i=1

where B(z,t) = {y e R" : |y — z| < t}.

Then the parametrized multilinear Marcinkiewicz integral p” is defined by

w(iie) = ([ Ieter? Cf)/



Parametrized Multilinear Littlewood-Paley Operators 89

In this paper, we assume that for 1 < q, ..., gy, < cosatisfying 1/g = 1/q1+---+1/qm,

there exists a constant C > 0 such that
m

(1.3) I (F)llze < CTL N fill pos
i=1

In fact, considering the bilinear case, the parametrized bilinear Marcinkiewicz integral

uP-function can be rewritten as a 4-linear Fourier multiplier with symbol

m’(§1,&2,C1,(2) _/o DP(te1, 4E2) PP (81, 1Co) %

If assume the kernel is sufficiently smooth, then by the results of Grafakos-Miyachi-Tomita
[8], we know that the parametrized bilinear Marcinkiewicz integral p”-function does satisfy
the boundedness in ([1.3]), which shows our assumption (1.3)) is reasonable.

The first result in this paper is as follows.

Theorem 1.2. Let v > 0, p € (0,(n + v)/m). Suppose Q satisfies (1.1) and (1.2,
if fi € HPi(R™), where p; € (mn/(mn + ~),1] for i = 1,...,m, then for any p with
1/p=1/p1+ -+ 1/pm, there exists a constant C > 0 such that

112 (Pl oy < C TN ill s -

i=1
To obtain the boundedness of multilinear Littlewood-Paley g} function, we also intro-
duce another kind of multilinear standard kernel, we say a function K defined on (R™)™

is a multilinear standard kernel, if K satisfies the following two conditions:
C
19
(1 227 fwa)™™

for some § > 0, and all (y1,...,ym) € (R™)™,

(1.4) (K (Y1, ym)| <

C|z|”
L+ g0t

for some v > 0,i=1,2,...,m, 2|z] <max;—1,__m{|lyi|} and all (y1,...,ym) € (R™)™.
For any f = (f1,..., fm) € S(R") x --- x S(R"), t > 0 and z ¢ it supp fi, we will
denote by Gy as

- 1 zZ— Y1 Z— Um - . '
e I G 9 | L

The multilinear Littlewood-Paley gy function is defined by

ﬁ@@%MWQJ%waWﬁﬂW,DL

(15) ’K(y17"'ayi+z""7ym)_K(yla--'ayia"'aym)| S
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We point out that this kind of Littlewood-Paley g function was introduced by Shi et
al. [16], in which they obtain the strong weighted estimates and the weak type boundedness

of gy for p; > 1. Our second result is as follows:

Theorem 1.3. Let A > 2m and v € (0,n(\ — 2m)/2). If f; € HPI(R"™), where p; €
(mn/(mn +7),1] fori = 1,...,m, then for any p with 1/p = 1/p1 + -+ + 1/ppm, there

exists a constant C > 0 such that
m
193 ()|l r )y < CH | fill £res (-
i=1
Remark 1.4. If we define the parametrized multilinear Littlewood-Paley g;’p -function by

Q, our method doesn’t work. It leaves open that whether the parametrized multilinear

Littlewood-Paley gf\’p -function is bounded on Hardy spaces.

The article is organized as follows. The proofs of Theorems [1.2] and [T.3] will be shown
in Section [2l Throughout this paper, if f < Cg, we denote by f < g for short.

2. Proofs of Theorems and

Proof of Theorem [1.2 'We will prove Theorem [I.2] by using the atomic decomposition of
HP. See Coifman [3] and Latter [12] for detail. At first, we give the definition of atoms in
R™.

Definition 2.1. Let 0 <p < 1,1 < ¢ < co. A function a is called an Li-atom for HP(R")
if there exists a cube @ such that

(i) suppa C @,
(i) llalze < |Q[a=1/e,
(iii) J,a(z)dz =0.
Latter [12] proved the following atomic decomposition in R™.

Theorem 2.2. [12] Let 0 < p <1, 1 < g < oo. A distribution f is in HP(R") if and
only if there exists a sequence of L1 atoms a; for HP(R™) and a sequence of non-negative

real numbers \; such that
f = Z )\iaia
i=0

in the sense of distributions and

o7} 1/1’
Allf e @ny < (Z /\f> < Bl fllgr®n)
=0

where A, B are constants which depend only on n and p.
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Since finite sums of atoms are dense in HP, we will work with such sums and we will
obtain estimates independent of the number of terms in each sum. The general case will
follow by a simple density argument. By the atomic decomposition of HP, we split each
fi,i=1,...,m, as a finite sum of L°°-atoms a;, for HP?. This means there exist cubes
Qi k;, such that

SUpp @i k; C Qik,s
2 @ikl < Qi |71/,

/ a;, (x)dr = 0.
Qi k;

For a cube Q, let @ be the cube with the same center as @ and 84/n its side length.

Using multilinearity, we write

'up(fl""’fm Z >‘1k1 mkm/‘l’ (al,kU'--vam,km)(m)'
k:l, Skm
Set
|lu’p(f17 veey fm)(x)’ S -[1 + -[27
where
h= Z AL (A |17 (@1 ey - ’am,km)(l')|X@1,k1m._.m©m,km’
K1k
12 = Z |)\1’k1’ e ‘)\mvka/’LP(aLkl’ cee 7am7km)( )|XQ<‘ oy [ UQm km
E1yeeokim
Now, let us begin to discuss I;. For fixed ki, ..., &k, assume that

Qi NN Qun,, # 0,

since otherwise there is nothing needs to be proved.
Suppose that (1, has the smallest size among all these cubes. We take a cube
Gr,... kn, Such that

m

Qi N N Qb C Gyl € Gy € Qupy N N Qe

and
|Gk17~~~:km’ > C’Ql,kl ‘

By Hélder’s inequality and [1, Theorem 1.2], we have

1
Gkk)/G 1P (a1 kys - Qg ) ()] da
1se5fm kq k
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g ’le,..-,km ‘71/2HMP(0’1J€17 s am,km)HL2

m
S G edon | ™ P llar Il z2 T ik, o
1=2

m
S Gk ol 1 Qu 2P TT Q|7

i=2
m
N (H ‘Qi,ki‘l/pi> .
i=1
Then we need the following lemma.

Lemma 2.3. [7] Let 0 < p < 1. Then there is a constant C = C(p,n) such that for
all finite collection {Qr}, of cubes in R™ and all nonnegative functions g, € LP with
supp gr C Qi we have

m m 1
gl <> <|Q| gk(x) dfv> Xa,
k=1 o k=1 k1l JQxk p
By Lemma [2.3] and Holder’s inequality, we have
l/pz v~
s £ | 3 Pl Pl [T Qx5 ooxs.

ki,....km 1=1

LP
< H Z\MHQM Vris
=1 . b l P
m
<11 Z\AzkHsz! 1/“)(52
i=1 k; ik ;
(2.2) s

n ~
<TTS Pan Qi \@i,ki

1/pi

m

S H Z |)‘i,ki|pi
. o

m

< Tl

i=1

Then, we estimate Iz(x). Let A be a nonempty subset of {1,...,m}, and we denote the
cardinality of A by |A|. Then 1 < |A| <m. Set A°={1,...,m}\ A. For A={1,...,m},

we define
€A i€AC icA
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Then we have

G v~ ((m@ah)m(m @>)
AcC{1,...m} i€A 1€ A°

For fixed 1 < r < m, without loss of generality, we consider the particular case, that is,

by permuting the indices, we assume x € F,, where

E”’ = (Qikl M---n Q$7k7') N (QT+17kT+1 n---nN Qm7k7n)'

Denoting the center of Q; , by ¢;r, and the sidelength of Q; 1, by l; 1, let us estimate
I>. For fixed E,, v € By, y; € Qi1;, 1 < i <r, we have

|z = yil ~ |z — cigl-
There exists ig € {1,...,r} such that

|z — cip g, | = max{|x —cip,| i€ {1,...,r}}

iol

Then, if t < |z —¢jg k| —lig ky, » then B(z,t)NQjg ,, = 0. Thus, using the vanish condition

of atom, we have

|:up(a1,k17 s 7am,km)(x)|
_[/OO/ Qz—y1,.. T — Ym)
o sy (S, |z —p))" "

X a1 gy (Y1) Qo (Ym) dy1 - - - dym

[/OO
|=’E*Ci0,kio |*li0,ki0

2 dt 1/2
t1+2mp:|

Qr =y, T — Ym)

(B(,t))m= /”" (Y |z = cig |+ >, o — yi|)m(n7p)

2 g 112
X @k (Y1) - G (Ym) Ay - - dym t1+zmp]
|:/|z Cig,ky, 10k ‘/ B(z,t))™—" RT"
XQ(x_ylv"'a _ym)_Q(m_cl,klu"'vx_ym>
(i 2 = il + X gy o = )™
2 g 712
X @k (Y1) - Gk (Ym) Ay - - dym t1+2mp]
m
fa [ (L
|z —=cig ks | =Lig ki (B(@£))™ ™" J Q1,11 XX Qr k.
X|Q(:U—y1,...,aj—ym)—Q(az—cuﬁ,..., )|dy1 ) )2 dt ]1/2
m 1+2
(Eims 2 = il + 7 2= 9) ™" trsme
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From (1.2) and the fact that Qqx, is the smallest cube among all the cubes, we see
that

Uz =y, —ym) — Uz — gy T — Ym)|

< (a:—yl,...,x—ym)_ (=g, —Ym) |7
~ X =l |z — cip | + 2y |2 — wil
U

S m Yy
(Ei:1 |z — y¢|)
Thus,

’Np(al kis---5Qm km)(‘r)’

sHieur | [© (/ y
H |z— Cig, ki, l; Ky nym-— Q1,51 X XQr ke

0>

l1 o 2 1/2
x i) ]
(S0 | = cip] + 30, oy o — i) "0 tiame

T

SH‘Qlk‘l 1/pi H ‘sz‘ 1/pi

i=r+1

-
U gy

<
—p)+
COUSN DA Py B o g ) L e

X J—
1+2
“r_cio k' I_ZLO k:- t rame

derrl .. dym

d 0
S (T | ARG —
i=r+1 (ZiZI ’.’13 czakiD
r lﬁ_”/PH"Y/T m
<11 - IT ltiw I
~Y + vy
i=1 (‘x - Ci:ki’ + li,ki)n o i=r+1

jr=npit/r

m
sIl—=

i1 (Jo — e, | + li,ki)n+7/r

1
/R" b+ 1y —chM

if M > n, b is any positive number and ¢ € R” in the third inequality.

where we use

Summing over all possible 1 < r < m and all possible combinations of subset of

{1,...,m} of size r we obtain the pointwise estimate

lﬁfn/pﬁv/m

m
k.
P (a1 gy s Qmke ) (T)] S H Rl
bl m +
7,:1 - C’i,k‘i| + li,k‘i)n ’Y/m
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for all @ € Q5 U+~ UQS, 1
Hence, by the fact p; > mn/(mn + 7), we see that

ln;n/pﬂr“//m
alle S| Y2 Paml Amk !H -
~ m +
Keioikm i1 (|7 = cig + ligs)" a7
lﬂ-ﬂ/pﬂrv/m
m nfn/piJr’Y/m Di 1/p7;
A )
n+y/m

=1 (|x - Ci,k},‘| + ll,kz)

A
o ER

1/p;i
{Z ‘)\ i z ’lez n+’7pz/m/ 1 _ / dx}
R (|$ —Cik| + l@ki)"l’z vpi/m
1/pi
{ Z |)‘z k; |pz}

1

-
Il

A
jamE

=1
m
< T fillaws,
i=1
which combined with (2.2), completes the proof of Theorem O

Proof of Theorems [I.3] Use the same notations as in the proof of Theorems[I.2] Similar
to the proof of Theorems it suffices to show that, for all x € Q1 g YU Qm e

™ lﬁ};"/m—&-v/m
(2‘3) |gf\(a1 kis--->Omk )(;L«)| < H i,k; .
) yKm ~ -
i=1 (’33 — Cik;| + li,ki)n v/m

Assume = € FE,., where

E"’ = ( i,kl n---N Qf",kr) N (QT+1ykr+1 M---nN Qm:km)7

and assume the side length of the cube Q1 j, is the smallest among the side length of the
cube Q;p,, 1 <@ <r.

Denoting the center of Q; », by ¢; r, and the sidelength of @Q; 1. by [; r,, let us estimate
I>. For fixed E,, x € E;, y; € Qir;, 1 <t <7, we have

[z — il ~ & — cig,l-
There exists ig € {1,...,7} such that

|z — Cig s, | = max{|z —cip,| i €{1,...,r}}
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For x € E,. and z € R", let
Az, z) := {(yl,...,ym) e (R™")™:2ly1 —c1 | < max |z+ 2 — yl|} .
1<i<m
Thus, using the vanish condition of atom, we have

|g>\ A1,kys- -+ amkm)( )|

- LG
n t+ ‘Z| ( n)rn

X[K<x+z—y1 x+z—ym>_K(:v+z—cl,k1 x+z—ym)}

t AR t t g ey t

2 dzdt }1/2

X a1k (Y1) G (Y) Ay - - - dym 2mntntl

<{ LG

X[K<x+z—y1 x+z—ym>_K(fc+z—ch1 x+z—ym)}

. ey . . ey ;

2 dzdt P
t2mn+n+l

X a1 gy (Y1) G o, (Ym) dy1 - - - dym

LG

A e e B e |

2 dzdt V2
t2mn+n+1

X a1, (Y1) - Qo (Ym) AY1 -+ - dYm
— T+1IL

From (|1.5), we see that

15{/000/n ()"

X a1k, (Y1) - Wk, (Yrm) Ay - - - dym,

{/ /n t+!2\ M

/ ly1 — e |7/
(Rn)m (1 +3m, lz+2— yll)mn+5+v
) dzdt '?
t2mn+n+l

/ ly1 — c1, |7
5
(Rn)m (t+2Z 1 |z + z — 1|)mn+ +

2 1/2
dzdt
X 01,k (y1) - am,km, (Ym) dy1 - - - dym, tn_i_l_ztg} )
which, together with, (2.1) and the fact
1
- dy S bn_M,
/]R" b+ ly —chM
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further implies that

I<l'1yk,1

X

m
S l’ly,kl H

=1

X

Jrllkl

X

1
dyy - - dyy
/Ql,kl XX Qo oy (t +3 0 e+ z— yi])m+5+7
l‘n/Pi{ /lx “i0:kig / ( t )”)‘
ki 0 rr N+ 2]

1
dy -
1)
/621 oy XX Qi (t+zz 1 |x+z_yi’)m+ +v

/Qlk1>< “XQr oy (t+zz 1‘l’+z—y’)nT+5+7

n/pz //
n t+|Z

- dyy

n/pz{/ / ”A
lz—ciq n t+|Z‘

dyy - - - dyr

1 ™ Hl n/pl Il + 12)

To show

(2.4)

by the fact that Q1 j, is the smallest cube among {Q;,}, 1 < i < r, it suffices to show

that

(2.5)

Let

and

When ¢ € (0, |z —

pr—npitr/m

I< H 1,k; )nJrﬂ//m’

=1 ‘x_czk‘+l1k

[Tizi G,

(Jz = cioe )"

L+ S

1
@1 = {Z [ Rn . |Z‘ S 5“’13 - CiOuki0|}’

1
@2::{ZGR":

512 = Cinty | <121 < 12 = G, |}

={z e R" : [z > 4|z — cip 1, | }-

Cig ki |) and z € ©1 U O3, we have

T T
D et z—ul 2D e+ z—ul 2 |z — cigmy |-
=1 i—1

dz dt

tn—|—1—26

dz dt

tn+1—26

dz dt

tn+1-28

}1/2
}1/2
}1/2
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Thus,

{/|xcio,ki0|/ ( t )n)\
0 ©1UB3 t+’2‘

X

2 dzdt V2
tn+1—26

1
dys - dy,
5
/Ql,kl o X Qo (t +> e+ z— yi|)nr+ +v

Hz:l lgki {/'x_cio’kio / ( t >n>\ dz dt }1/2
(2.6) (|$ ~ Cig g |)nr+7+5 0 6,064 P ‘Z| TIRS Y

g b el }1/2
~ (|$_Ci0’ki0|)nr+'y+§ 0 $1-26

[Tizi G,

(Jz = cig, )™

A

On the other hand, since v < 5 (A — 2m), there exists some € > 0 such that n(\ —
2m) — 2y — 2¢e > 0, thus

{/|xcio,ki0|/ < t )n>\
0 0, \t+[2]

X

2 dzdt V2
tn+l—26

1
dys - dy,
5
/Ql,kl o X Qo (t +> e+ z— yi|)nr+ +7

r |ZC—Ci ,k’il A
s 11 m{/ 0 / ()
™ LJo 0, T — Cig ks |

i=1,i#4g io

2 dzdt V2
tn+1—25

1 1
/Q n(r=1/2)+0+7+e |3 4 2 — y; [0/2¢ Yio

. t
i0:kig

< szl l?,ki { /|cc—ci0,ki0 2 dt}1/2
~ nA/2 $2nr+27+2e+1
(|w — Cig, ki, D 0
2 1/2
dz}

T
i
021/ Qug i, 17+ 2 = Yio|"/27¢ "

i,k;

[T s,
(Il =ik, )

(2.7) x

i0

When t € [|x — ¢y, |, 00), we have

ol

T
t+) lz+z—yl 2t
=1
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Thus,

U LGRS
\x—cio,kio| " t+’z‘

X

2 dzdt V2
tn+1726

/() r d d
Q’r + E -+ +,)/ y e y?
Lk XX Sk (t =1 ’27 + z yl‘)nr 0

<ﬁln {/OO / ( t )nA dz dt }1/2

~ '7ki

=1 Z |x*%7ki0\ n \t+ |z $2nr+2v+n+1
Hz:l l:'fki

™l = i )"

i0

where we use

t n
[ () s
n \t+ |2
as A > 1.

Combining (2.6)), (2.7) and ({2.8]), we show that (2.5 holds and hence ([2.4)).

Now we estimate II. From (1.4), and 21 5, > 2|y1 — ¢15,| > MaxXi<i<m |T + 2 — y;, we

see that

o0 t n l’lyk
v { [ )l .
0 Jro ML Wy (14 L B (D o 42— i)
2 1/2
dz dt
X a1k (Y1) -+ G (Ym) Ay - - - dym t2mn+n+1}
Then, by the same method as in the proof of I, we have
m [n/pity/m
<l Lk ,
o1 (|z — cop, | + li,ki)nﬂ/m

which, together with (2.4]), further completes the proof of ([2.3)) and hence Theorem O
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