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A Characterization of Weighted Carleson Measure Spaces

Hsun-Wu Liu* and Kunchuan Wang

Abstract. Using Frazier and Jawerth’s ϕ-transform, we characterize weighted gener-

alized Carleson measure spaces ĊMOα,qp,w for a weight w and show that the definition

of this space is well-defined by a Plancherel-Pôlya inequality. Note that ĊMO0,2
1,w is

the weighted BMO space.

1. Introduction

The general Triebel-Lizorkin spaces Ḟα,qp (homogeneous) and Fα,qp (inhomogeneous), α ∈
R, 0 < p, q ≤ ∞, include many well-known classical function spaces. For example, Lp ≈
Ḟ 0,2
p ≈ F 0,2

p when 1 < p <∞, Ḟα,2p ≈ L̇αp and Fα,2p ≈ Lαp (Sobolev spaces) when 1 < p <∞
and α > 0, Hp ≈ Ḟ 0,2

p when 0 < p ≤ 1, and BMO ≈ Ḟ 0,2
∞ . Here the notation “≈” means

in a (quasi-)normed vector space V with different norms ‖·‖a and ‖·‖b, there exist positive

constants c1 and c2 such that

c1‖x‖a ≤ ‖x‖b ≤ c2‖x‖a

for all x in V .

We say that a cube Q ⊆ Rn is dyadic if Q = Qjk = {x = (x1, x2, . . . , xn) ∈ Rn :

2−jki ≤ xi < 2−j(ki + 1), i = 1, 2, . . . , n} for some j ∈ Z and k = (k1, k2, . . . , kn) ∈ Zn.

For any pair of dyadic cubes P and Q, either P and Q are nonoverlapping or one contains

the other. Denote by `(Q) = 2−j the side length of Q and xQ = 2−jk the “left lower

corner” of Q. In fact Q = xQ + [0, 2−j)n. For j ∈ Z let Qj be the collection of dyadic

cubes with side length 2−j and let Q be the collection of all dyadic cubes in Rn. Thus

Q =
⋃
j∈Z Qj . For a fixed dyadic cube P let QP be the collection of all dyadic cubes in

Rn which are contained in P .
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For any function f defined on Rn, j ∈ Z and dyadic cube Q = Qjk, set

fQ(x) = |Q|−1/2f((x− xQ)/`(Q)) = 2jn/2f(2jx− k),

fj(x) = 2jnf(2jx),

f̃(x) = f(−x).

It is clear that g̃j ∗ f(xQ) = |Q|−1/2〈f, gQ〉, where 〈f, g〉 denotes the pairing in the usual

sense for g in a Fréchet space X and f in the dual of X.

Next, let us consider more general function spaces. For this purpose, let us recall

the ϕ-transform identity introduced by Frazier and Jawerth [6]. Choose a fixed Schwartz

function ϕ satisfying

(1.1) supp(ϕ̂) ⊆ {ξ : 1/2 ≤ |ξ| ≤ 2} and |ϕ̂(ξ)| ≥ c > 0 if 3/5 ≤ |ξ| ≤ 5/3,

where f̂ is the Fourier transform of f , i.e.,

f̂(ξ) =

∫
Rn
f(x)e−ix·ξ dx.

The existence of such a function was provided by Frazier and Jawerth in [6]. Then

there exists a function ψ ∈ S satisfying the same conditions as ϕ such that

(1.2)
∑
j∈Z

ϕ̂(2−jξ)ψ̂(2−jξ) = 1 for ξ 6= 0.

Thus the ϕ-transform identity is given by

(1.3) f =
∑
Q∈Q

〈f, ϕQ〉ψQ,

where the identity holds in the sense of S ′/P (the spaces of all tempered distributions

modulo polynomials), S0 (the subspace of S that each element has all vanishing mo-

ments), Ḃα,q
p -norm, and Ḟα,qp -norm.

Now due to the Littlewood-Paley characterization, define the homogeneous Triebel-

Lizorkin spaces as follows. Select a function ϕ ∈ S satisfying the conditions above in

(1.1). For α ∈ R, 0 < p, q ≤ ∞, and f ∈ S ′/P, define the homogeneous Triebel-Lizorkin

space to be the collection of every distribution f ∈ S ′/P so that the norm ‖f‖Ḟα,qp
is

finite, where

‖f‖Ḟα,qp
:=

∥∥∥∥∥∥
[∑
ν∈Z

(2να|ϕν ∗ f |)q
]1/q∥∥∥∥∥∥

Lp

if 0 < p <∞ and

‖f‖Ḟα,q∞ := sup
P∈Q

 1

|P |

∫
P

∑
k≥− log2 `(P )

(2kα|ϕk ∗ f(x)|)q dx


1/q

.
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By an inequality of Plancherel-Plôlya type, the definition of Ḟα,qp is independent of the

choice of ϕ satisfying conditions (1.1).

In 2009 M.-Y. Lee, C.-C. Lin, and Y.-C. Lin [9] characterized the weighted Carleson

measure space CMOpw for a weight w belonging to the Muckenhoupt class by wavelets.

They lifted sequence spaces to prove that CMOpw is the dual space of Hp
w. The weighted

Carleson measure space CMOwp is the set of all g ∈ L1
loc satisfying

‖g‖CMOpw
:= sup

J∈D

w(J)1−2/p
∑
I∈DJ

|I|
w(I)

|〈g, ψI〉|2


1/2

<∞, 0 < p ≤ 1,

where w ∈ A∞ (see Definition 2.2 for the Ap weights), ψ is a certain smooth function so

that it is an orthonormal wavelet in L2(w), D is the set of all dyadic intervals Ij,k with

j, k ∈ Z, and DJ is the collection of all dyadic intervals contained in J .

In 2012, C.-C. Lin and K. Wang [10] gave another characterization for the dual of Ḟα,qp

in terms of Carleson measures for α ∈ R and 0 < p ≤ 1 ≤ q ≤ ∞. The generalized Carleson

measure space CMOα,qp is the collection of all f ∈ S ′/P satisfying ‖f‖CMOα,qp
<∞, where

|f‖CMOα,qp
:= sup

P∈Q

|P |−q(1/p−1/q′)
∫
P

∑
Q∈QP

(|Q|−α/n−1/2|〈f, ϕ〉|χQ(x))q dx


1/q

for 1 ≤ q <∞, and

‖f‖CMOα,∞p := sup
Q∈Q
|Q|−α/n−1/p+1/2|〈f, ϕQ〉|.

Here χQ denotes the characteristic function of Q and q′ is the conjugate index of q, i.e.,

1/q + 1/q′ = 1. Throughout the article, q′ is defined as q′ =∞ whenever 0 < q ≤ 1.

They introduced a new kind of sequence space cα,qp , and then characterized the duals

of ḟα,qp by means of cα,qp . Let us recall the definitions of the sequence spaces ḟα,qp defined

in [6].

For α ∈ R and 0 < p, q ≤ ∞, the space ḟα,qp consists of all such sequences s = {sQ}Q∈Q

satisfying ‖s‖ḟα,qp
<∞, where

‖s‖ḟα,qp
:=

∥∥∥∥∥∥∥
∑
Q∈Q

(|Q|−α/n−1/2|sQ|χQ)q


1/q
∥∥∥∥∥∥∥
Lp

if 0 < p <∞ and

‖s‖ḟα,q∞ := sup
P∈Q

|P |−1
∫
P

∑
Q∈QP

(
|Q|−α/n−1/2|sQ|χQ(x)

)q
dx


1/q

.
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As before, the above `q-norm is modified to the supremum norm for 0 < p < ∞ and

q =∞. For p = q =∞, we adopt the norm

‖s‖ḟα,∞∞ := sup
Q∈Q
|Q|−α/n−1/2|sQ|.

To study the dual of ḟα,qp , they introduced a discrete version of Carleson measure

spaces cα,qp . For α ∈ R and 0 < p ≤ 1 ≤ q ≤ ∞, the space cα,qp is the collection of all

sequences t = {tQ}Q∈Q satisfying ‖t‖cα,qp <∞, where

‖t‖cα,qp := sup
P∈Q

|P |−q(1/p−1/q′)
∫
P

∑
Q∈QP

[
|Q|−α/n−1/2|tQ|χQ(x)

]q
dx


1/q

for 1 ≤ q <∞, and

‖t‖cα,∞p := sup
Q∈Q
|Q|−α/n−1/p+1/2|tQ|.

For 1 ≤ q < ∞ and f ∈ CMOα,qp , let Sϕ(f) := {〈f, ϕQ〉}Q = {sQ}Q = s. Then the

ϕ-tranform identity shows f =
∑

Q sQψQ and ‖f‖CMOα,qp
= ‖Sϕ(f)‖cα,qp = ‖s‖cα,qp . In

particular, ‖f‖CMOα,q1
= ‖Sϕ(f)‖cα,q1

= ‖Sϕ(f)‖ḟα,q∞ ≈ ‖f‖Ḟα,q∞ . Furthermore, for s ∈ cα,qp ,

‖Tψ(s)‖CMOα,qp
=

∥∥∥∥∥∑
P

sPψP

∥∥∥∥∥
CMOα,qp

=

∥∥∥∥∥∥
{〈∑

P

sPψP , ϕQ

〉}
Q

∥∥∥∥∥∥
cα,qp

= ‖As‖cα,qp ,

where Tψ(s) :=
∑

Q sQψQ and A := {〈ψP , ϕQ〉}Q,P is (α + nq(1/p − 1/q′), p, q)-almost

diagonal (cf. [6, Lemma 3.6]). They summarized that Tψ ◦ Sϕ|CMOα,qp
is also the identity

on CMOα,qp .

In [3–5], Bui and Taibleson defined another weighted version of Triebel-Linzorkin

spaces. There are some other papers concerning this topic, see [2, 7, 8] for more details.

Given a weight w, let Q(w) denote the collection of all dyadic cubes Q ⊆ Rn such that

w(Q) :=
∫
Qw(Q) dx 6= 0 and for k ∈ Z, Qk(w) denote the subcollections of Q(w) with

side length 2−k. Also, for P ∈ Q(w), QP (w) denotes the collection of all dyadic cubes Q ∈
Q(w) with Q ⊆ P and QP,k(w) denotes the collection of all dyadic cubes satisfying Q ⊆ P
and `(Q) = 2−k. Note that Q(w) =

⋃
k∈Z Qk(w), and QP (w) =

⋃
k≥− log2 `(P ) QP,k(w).

In weighted cases, we adopt similar definitions for Sϕ and Tψ as follows. Define a linear

map Sϕ from S ′/P into the family of complex sequences by

(1.4) Sϕ(f) = {〈f, ϕQ〉}Q∈Q(w),

and another linear map Tψ from the family of complex sequences into S ′/P by

(1.5) Tψ({sQ}Q∈Q(w)) =
∑

Q∈Q(w)

sQψQ.
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In this article, we study the weighted generalized Carleson measure spaces via the

ϕ-transform identity. To do so, we first need the following definitions.

Definition 1.1. For α ∈ R, 0 < p, q ≤ +∞, and a weight w, we say that f belongs to the

homogeneous weighted Triebel-Lizorkin space Ḟα,qp,w if f ∈ S ′/P satisfies ‖f‖Ḟα,qp,w
< ∞,

where

‖f‖Ḟα,qp,w
:=


∥∥∥{∑k∈Z(2kα|ϕk ∗ f |)q

}1/q∥∥∥
Lp(w)

for p <∞,

supP∈Q(w)

{
|P |−1

∫
P

∑∞
k=− log2 `(P )(2

kα|ϕk ∗ f(x)|)qw(x) dx
}1/q

for p =∞.

Definition 1.2. Let ϕ ∈ S satisfy the conditions in (1.1). For α ∈ R, 0 < p ≤ 1,

0 < q ≤ ∞ and a weight w, the weighted generalized Carleson measure space ĊMOα,qp,w is

the collection of all f ∈ S ′/P satisfying ‖f‖ĊMOα,qp,w
<∞, where

‖f‖ĊMOα,qp,w

:= sup
P∈Q(w)

|P |−q(1/p−1/q′)
∫
P

∑
Q∈QP (w)

(|Q|−α/n−1/2|〈f, ϕQ〉|χQ(x))qw(x) dx


1/q

for 0 < q <∞, and

‖f‖ĊMOα,∞p,w
:= sup

P∈Q(w)
|P |1−1/p sup

Q∈QP (w)
|Q|−α/n−1/2|〈f, ϕQ〉|.

In order to prove that the definition of ĊMOα,qp,w is independent of the choice of ϕ ∈ S

satisfying certain conditions, we need the following Plancherel-Pôlya inequality (for q =∞
and the other case we will give descriptions and prove them in Section 3).

Theorem 1.3 (Plancherel-Pôlya inequality). Let ϕ, φ ∈ S satisfy (1.1). For α ∈ R,

0 < p ≤ 1 < q <∞ and a weight w with doubling exponent β, if f ∈ S ′/P satisfies

sup
P∈Q(w)

|P |−q(1/p−1/q′)
∞∑

k=− log2 `(P )

∑
Q∈QP,k(w)

(2kα sup
u∈Q
|ϕ̃k ∗ f(u)|)qw(Q)


1/q

<∞,

then

sup
P∈Q(w)

|P |−q(1/p−1/q′)
∞∑

k=− log2 `(P )

∑
Q∈QP,k(w)

(2kα sup
u∈Q
|φ̃k ∗ f(u)|)qw(Q)


1/q

≈ sup
P∈Q(w)

|P |−q(1/p−1/q′)
∞∑

k=− log2 `(P )

∑
Q∈QP,k(w)

(2kα inf
u∈Q
|ϕ̃k ∗ f(u)|)qw(Q)


1/q

.
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By the theorem above we can make the following remark.

Remark 1.4. Let ϕ, φ ∈ S satisfy (1.1). For α ∈ R, 0 < p ≤ 1 < q < ∞ and a weight w

with doubling exponent β. Denote ĊMOα,qp,w(ϕ) as the collection of all f ∈ S ′/P satisfying

‖f‖ĊMOα,qp,w(ϕ)
<∞ defined in Definition 1.2 with respect to ϕ. Then, by Theorem 1.3,

‖f‖ĊMOα,qp,w(φ)

≤ sup
P∈Q(w)

|P |−q(1/p−1/q′)
∞∑

k=− log2 `(P )

∑
Q∈QP,k(w)

(2kα sup
u∈Q
|φ̃k ∗ f(u)|)qw(Q)


1/q

≤ C sup
P∈Q(w)

|P |−q(1/p−1/q′)
∞∑

k=− log2 `(P )

∑
Q∈QP,k(w)

(2kα inf
u∈Q
|ϕ̃k ∗ f(u)|)qw(Q)


1/q

≤ C‖f‖ĊMOα,qp,w(ϕ)
.

Similarly, ‖f‖ĊMOα,qp,w(ϕ)
≤ C‖f‖ĊMOα,qp,w(φ)

by interchanging the roles of ϕ and φ. Hence

the definition of ĊMOα,qp,w(ϕ) is independent of the choice of ϕ and, in short form, is

denoted by ĊMOα,qp,w.

In order to obtain a norm equivalence, we need to define a discrete version of weighted

Carleson measure spaces ċα,qp,w. Before giving the definition of these spaces, let us recall

the weighted homogeneous Triebel-Lizorkin sequence spaces.

Definition 1.5. For α ∈ R, 0 < p, q ≤ ∞ and a weight w, the space ḟα,qp,w consists of all

such sequences s = {sQ}Q∈Q(w) satisfying ‖s‖ḟα,qp,w
<∞, where

‖s‖ḟα,qp,w
:=

∥∥∥∥∥∥∥
∑
Q∈Q

(|Q|−α/n−1/2|sQ|χQ)q


1/q
∥∥∥∥∥∥∥
Lp(w)

if 0 < p <∞ and

‖s‖ḟα,q∞,w := sup
P∈Q(w)

|P |−1
∫
P

∑
Q∈QP (w)

(
|Q|−α/n−1/2|sQ|χQ(x)

)q
w(x) dx


1/q

.

As before, the above `q-norm is modified to the supremum norm for 0 < p < ∞ and

q =∞. For p = q =∞, we adopt the norm

‖s‖ḟα,∞∞,w := sup
Q∈Q(w)

|Q|−α/n−1/2|sQ|.

Next, let us define the weighted generalized Carleson measure sequence spaces.
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Definition 1.6. Let w be a weight. For α ∈ R, 0 < p ≤ 1 and 0 < q ≤ ∞, the space ċα,qp,w

is the collection of all sequences t = {tQ}Q∈Q(w) satisfying ‖t‖ċα,qp,w <∞, where

‖t‖ċα,qp,w := sup
P∈Q(w)

|P |−q(1/p−1/q′)
∫
P

∑
Q∈QP (w)

[
|Q|−α/n−1/2|tQ|χQ(x)

]q
w(x) dx


1/q

for 0 < q <∞, and

‖t‖ċα,∞p,w := sup
P∈Q(w)

|P |1−1/p sup
Q∈QP (w)

|Q|−α/n−1/2|tQ|.

As a consequence of Plancherel-Pôlya inequalities, we have a result concerning the

norm equivalence between generalized function spaces and corresponding sequence spaces.

Theorem 1.7. Suppose α ∈ R, 0 < p ≤ 1, 0 < q ≤ ∞, w ∈ A∞ and ϕ, ψ in S satisfy

(1.1) and (1.2). The linear operators Sϕ : ĊMOα,qp,w 7→ ċα,qp,w and Tψ : ċα,qp,w 7→ ĊMOα,qp,w

defined by (1.4) and (1.5), respectively, are bounded. Furthermore Tψ ◦ Sϕ is the identity

on ĊMOα,qp,w. In particular, ‖f‖ĊMOα,q1,w
= ‖Sϕ(f)‖ċα,q1,w

= ‖Sϕ(f)‖ḟα,q∞,w ≈ ‖f‖Ḟα,q∞,w .

The organization of this article is as follows. We recall weights and some preliminary

results in Section 2. In Section 3, we show the Plancherel-Pôlya inequalities that give us

the independence of the choice of ϕ for the definition of weighted generalized Carleson

measure spaces. In Section 4, we show a norm equivalence between ĊMOα,qp,w and ċα,qp,w.

Through the article, we use j ∧ k to denote the minimum of j and k, use j ∨ k to denote

the maximum of j and k, and use C to denote a positive constant independent of the main

variables, which may vary from line to line.

2. Weights

We say that w is a weight if w is a non-negative measurable function on Rn. At the

beginning of this section, let us recall the definition of “doubling condition”.

Definition 2.1. A weight w is called a doubling measure, if there exists a constant C = Cn

such that for any δ > 0 and any z ∈ Rn,

(2.1)

∫
B2δ(z)

w(t) dt ≤ C
∫
Bδ(z)

w(t) dt,

where Bδ(z) is an open ball in Rn centered at z with radius δ. If C = 2β is the smallest

constant such that the inequality (2.1) holds, then β is called the doubling exponent of w.

Here, we recall the definition of Ap weights. For s > 0 and a weight w, define w−s by

w−s(x) =

[w(x)]−s if w(x) 6= 0,

0 otherwise.
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Definition 2.2 (Ap weights). Let w be a non-negative and locally integrable function on

Rn. We say that w ∈ Ap if ‖w‖Ap is finite, where ‖w‖Ap is defined by

‖w‖Ap =

supQ ess supy∈Qw
−1(y) 1

|Q|
∫
Qw(t) dt if p = 1,

supQ

(
1
|Q|
∫
Qw(x) dx

)(
1
|Q|
∫
Qw

1−p′(x) dx
)p−1

if 1 < p <∞,

where the suprema are taken over all cubes (with sides parallel to the coordinate axes) in

Rn. We also set A∞ =
⋃

1≤p<∞Ap.

Note that we can replace any cubes by any balls in Rn in the last definition. Also note

that when w ∈ Ap for 1 ≤ p ≤ ∞, w(x) dx is a doubling measure (see [13, Theorem 2.1,

p. 226]).

The following is a characterization of Muckenhoupt Ap weights.

Lemma 2.3. Let 1 < q <∞ and w ∈ Aq. Then, for every cube Q ⊆ Rn

|Q| ≤ [w(Q)]1/q[w1−q′(Q)](q−1)/q ≤ C|Q|,

where C is dependent only on the constant of Aq condition. Moreover,(
|Q|
w(Q)

)q′
w(Q) ≈ w1−q′(Q).

Proof. By Hölder’s inequality and Aq condition, we have, for a cube Q in Rn

|Q| ≤
(∫

Q
w(x) dx

)1/q (∫
Q
w−q

′/q(x) dx

)−1/q′
=

{
[w(Q)]

[
w−(q

′−1)(Q)
]q−1}1/q

≤ C|Q|.

That implies

|Q|q ≤ w(Q)[w1−q′(Q)]q−1 ≤ C|Q|q,

then

1 ≤ w(Q)

|Q|

(
w1−q′(Q)

|Q|

)q−1
≤ C.

Therefore, we have(
|Q|
w(Q)

)q′
w(Q) =

(
|Q|
w(Q)

)q′−1
|Q|

≈

(
w1−q′(Q)

|Q|

)(q−1)(q′−1)

|Q| = w1−q′(Q),

and the proof is finished.
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Also there is a weighted version of Fefferman-Stein vector-valued maximal inequality

for Hardy-Littlewood maximal function M , which is given below.

Proposition 2.4. [1] Let 1 < p, q < ∞ and w ∈ Ap. There is a constant C = Cp

independent of {fi}i such that∥∥∥∥∥∥
(∑

i

|Mfi|q
)1/q

∥∥∥∥∥∥
Lp(w)

≤ C

∥∥∥∥∥∥
(∑

i

|fi|q
)1/q

∥∥∥∥∥∥
Lp(w)

for any {fi}i ∈ Lp(w)(`q).

3. Plancherel-Pôlya inequalities

In this section, we show Plancherel-Pôlya inequalities that give us the independence of the

choice of ϕ for the definition of weighted Carleson measure spaces. Before proving those,

let us recall a basic estimate of Roudenko [12].

Lemma 3.1. [12] Let w be a weight with doubling exponent β. If L > β, then for

r ≥ `(Q), ∫
Rn
w(x)

(
1 +
|x− xQ|

r

)−L
dx ≤ cβ

[
r

`(Q)

]β ∫
Q
w(x) dx.

Now we can prove the following Plancherel-Pôlya inequalities.

Proof of Theorem 1.3. Without loss of generality, we may assume α = 0. By the ϕ-

transform identity, (1.3), we rewrite φ̃j ∗ f(u) as

φ̃j ∗ f(u) =
∑
Q∈Q

〈f, ϕQ〉
∫
φ̃j(u− x)ψQ(x) dx

=
∑
k∈Z

∑
Q∈Qk

|Q|〈f, ϕk( · − xQ)〉
∫
φ̃j(u− x)ψk(x− xQ) dx.

Using the inequality (B.5) in [6, p. 151],∣∣∣∣∫ φ̃j(u− x)ψk(x− xQ) dx

∣∣∣∣ ≤ C2−K|j−k|
2−(j∧k)(J−n)

(2−(j∧k) + |u− xQ|)J
,

where j ∧ k = min{j, k}, J > β + n and K > (β − n) ∨ (J − β − n), we obtain

|φ̃j ∗ f(u)| ≤ C
∑
k∈Z

∑
Q∈Qk

2−K|j−k||Q| 2−(j∧k)(J−n)

(2−(j∧k) + |u− xQ|)J
|ϕ̃j ∗ f(xQ)|.
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Thus, for `(Q′) = 2−j ,(
sup
u∈Q′
|φ̃j ∗ f(u)|

)q
≤ C

∑
k∈Z

∑
Q∈Qk

2−K|j−k||Q| 2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|ϕ̃k ∗ f(xQ)|

q

≤ C
∑
k∈Z

∑
Q∈Qk

2−K|j−k||Q| 2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|ϕ̃k ∗ f(xQ)|q,

where the last inequality is followed by Hölder’s inequality and∑
Q∈Qk

|Q| 2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
≤ C.

Denote TQ by

(3.1) TQ := inf
u∈Q
|ϕ̃k ∗ f(u)|q.

Since xQ can be replaced by any point in Q in the last inequality,(
sup
u∈Q′
|φ̃j ∗ f(u)|

)q
≤ C

∑
k∈Z

∑
Q∈Qk

2−K|j−k||Q| 2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
TQ.

Given a dyadic cube P with `(P ) = 2−k0 , the above estimates yield

∞∑
j=k0

∑
Q′∈QP,j

(
sup
u∈Q′
|φ̃j ∗ f(u)|

)q
w(Q′)

≤ C
∞∑
j=k0

∑
Q′∈QP,j

∑
k∈Z

∑
Q∈Qk

2−K|j−k|
2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|Q|w(Q′)

w(Q)
TQw(Q)

:= CE1 + CE2,

where

E1 =
∞∑
j=k0

∑
Q′∈QP,j

∑
k≥j

∑
Q∈Qk

2−K|j−k|
2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|Q|w(Q′)

w(Q)
TQw(Q)

and

E2 =
∞∑
j=k0

∑
Q′∈QP,j

∑
k<j

∑
Q∈Qk

2−K|j−k|
2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|Q|w(Q′)

w(Q)
TQw(Q).

Then E1 can be further decomposed as

E1 =
∞∑
j=k0

∑
Q′∈QP,j

∑
k≥j

∑
Q∈Q3P,k

2−K|j−k|
2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|Q|w(Q′)

w(Q)
TQw(Q)

+

∞∑
j=k0

∑
Q′∈QP,j

∑
k≥j

∑
Q∩3P=∅
Q∈Qk

2−K|j−k|
2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|Q|w(Q′)

w(Q)
TQw(Q)

:= E11 + E12.
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There are 3n dyadic cubes in 3P with the same side length as P , so if P ′ ⊆ 3P then

|P ′| = |P | and ∑
Q∈Q3P,k

TQw(Q) ≤ 3n sup
P ′⊆3P

`(P ′)=`(P )

∑
Q∈QP ′,k

TQw(Q).

Let J > β, k ≥ j and w be a weight with doubling exponent β. By Lemma 3.1, we have∫
Rn

(
1 +
|x− xQ|

2−j

)−J
w(x) dx ≤ cβ2(k−j)βw(Q),

and so

∞∑
j=k0

∑
Q′∈QP,j

2−K|j−k|
2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|Q|w(Q′)

≤ C
∞∑
j=k0

2−K(k−j)2jn2−kn
∫
Rn

(
1 +
|x− xQ|

2−j

)−J
w(x) dx

≤ Cw(Q).

Hence

|P |−q(1/p−1/q′)E11 ≤ C|P |−q(1/p−1/q
′)
∞∑
j=k0

∑
Q′∈QP,j

∑
k≥j

∑
Q∈Q3P,k

2−K|j−k|

×

(
2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xP |)J
|Q|w(Q′)

w(Q)
TQw(Q)

)

≤ C sup
P ′∈Q(w)

|P ′|−q(1/p−1/q′)
∞∑

k=− log2 `(P
′)

∑
Q∈QP ′,k

inf
u∈Q
|ϕ̃k ∗ f(u)|qw(Q).

Next, we decompose the set of dyadic cubes {Q : Q ∩ 3P = ∅, `(Q) = `(P )} into

{Bi}i∈N according to the distance between each Q and P . Namely, for each i ∈ N,

(3.2) Bi := {P ′ ∈ Q : P ′ ∩ 3P = ∅, `(P ) = `(P ′), 2i−k0 ≤ ‖yP ′ − yP ‖ < 2i−k0+1},

where yQ denotes the center of Q. Then we obtain

|P |−q(1/p−1/q′)E12 ≤ C
∞∑
i=1

∑
P ′∈Bi

|P ′|−q(1/p−1/q′)
∞∑
j=k0

∑
Q′∈QP,j

∑
k≥j

∑
Q∈QP ′,k
P ′∈Bi

2−K|j−k|

×

(
2−j(J−n)

(2−j + |xQ′ − xP |)J
|Q|w(Q′)

w(Q)
TQw(Q)

)
.
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Since w(Q′)/w(Q) ≤ C2β(k−k0+i) and ‖xP ′ −xP ‖ ≈ 2i−k0 for P ′ ∈ Bi, the right-hand side

of the inequality above is dominated by

C
∞∑
i=1

∑
P ′∈Bi

∞∑
j=k0

∑
Q′∈QP,j

∑
k≥j

∑
Q∈QP ′,k
P ′∈Bi

2β(k−k0+i)2−K(k−j)2−(i−k0)J2−j(J−n)|Q|

×

 sup
P ′∈Q(w)

|P ′|−q(1/p−1/q′)
∑
k≥k0

∑
Q∈QP ′,k

TQw(Q)

 .

Because there are at most 2(i+2)n dyadic cubes in Bi, J > β + n, K + n > β and

|Q| = |Q′| |Q||Q′| ,

|P |−q(1/p−1/q′)E12

≤ C

 sup
P ′∈Q(w)

|P ′|−q(1/p−1/q′)
∑
k≥k0

∑
Q∈QP ′,k

TQw(Q)


×

 ∞∑
i=1

∞∑
j=k0

∑
k≥j

2β(k−k0+i)2−K(k−j)2−(i−k0)J2−(J−n)j2−k0n2(j−k)n2in


≤ C sup

P ′∈Q(w)
|P ′|−q(1/p−1/q′)

∞∑
k=− log2 `(P

′)

∑
Q∈QP ′,k

inf
u∈Q
|ϕ̃k ∗ f(u)|qw(Q).

To estimate E2, for i ∈ N and k < k0, set

(3.3) Gi,k := {Q : `(Q) = 2−k and xQ ∈ 2i+1P \ 2iP}.

Then |xQ − xP | ≈ 2i−k0 for Q ∈ Gi,k and

E2 =

∞∑
j=k0

∑
Q′∈QP,j

∑
k<j

∞∑
i=1

∑
Q∈Gi,k

2−K|j−k|

|Q|−q(1/p−1/q′)
2−k(J−n)

(2−k + |xQ′ − xQ|)J
w(Q′)

w(Q)
|Q|

× |Q|−q(1/p−1/q′)TQw(Q).

Since J > β + n and K > J − n− β, there are at most 2(i+k−k0)n dyadic cubes contained

in Gi,k and

|Q|−q(1/p−1/q′)TQw(Q) ≤ sup
P ′∈Q(w)

|P ′|−q(1/p−1/q′)
∑

m≥− log2 `(P
′)

∑
R∈QP ′,m

TRw(R),
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|Q|−q(1/p−1/q′)E2 ≤ C

 sup
P ′∈Q(w)

|P ′|−q(1/p−1/q′)
∑

m≥− log2 `(P
′)

∑
Q∈QP ′,m

TQw(Q)


×

 ∞∑
j=k0

∑
k<j

∞∑
i=1

2−K(j−k)2−(i−k0)J2−k(J−n)2β(k−k0+i)2−kn2(i+k−k0)n


≤ C sup

P ′∈Q(w)
|P ′|−q(1/p−1/q′)

∑
m≥− log2 `(P

′)

∑
Q∈QP ′,m

inf
u∈Q
|ϕ̃m ∗ f(u)|qw(Q).

According to the estimates of E1 and E2, we complete the proof.

For q =∞ and q ≤ 1 we have following results.

Theorem 3.2 (Plancherel-Pôlya inequality for q = ∞). Let ϕ, φ ∈ S satisfy (1.1). For

α ∈ R, 0 < p ≤ 1, q =∞ and a weight w with doubling exponent β, if f ∈ S ′/P satisfies

sup
P∈Q(w)

|P |1−1/p sup
Q∈QP,j

j≥− log2 `(P )

2jα sup
u∈Q
|ϕ̃j ∗ f(u)| <∞,

then

sup
P∈Q(w)

|P |1−1/p sup
Q∈QP,j

j≥− log2 `(P )

2jα sup
u∈Q
|ϕ̃j ∗ f(u)|

≈ sup
P∈Q(w)

|P |1−1/p sup
Q∈QP,j

j≥− log2 `(P )

2jα inf
u∈Q
|φ̃j ∗ f(u)|.

Proof. Without loss of generality, we may assume α = 0. By a similar argument as the

proof of Theorem 1.3, we have

sup
u∈Q′
|φ̃j ∗ f(u)| ≤ C

∑
k∈Z

∑
Q∈Qk

2−K|j−k||Q| 2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
TQ,

where J > n, K > J − n and

TQ := inf
u∈Q
|ϕ̃k ∗ f(u)|.

Given a dyadic cube P with `(P ) = 2−k0 , the above estimates yield

sup
Q′∈QP,j

j≥− log2 `(P )

sup
u∈Q′
|φ̃j ∗ f(u)|

≤ C sup
Q′∈QP,j

j≥− log2 `(P )

∑
k∈Z

∑
Q∈Qk

2−K|j−k||Q| 2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
TQ

:= CE1 + CE2,
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where

E1 = sup
Q′∈QP,j

j≥− log2 `(P )

∑
k≥j

∑
Q∈Qk

2−K|j−k||Q| 2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
TQ

and

E2 = sup
Q′∈QP,j

j≥− log2 `(P )

∑
k<j

∑
Q∈Qk

2−K|j−k||Q| 2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
TQ.

Then E1 can be further decomposed as

E1 = sup
Q′∈QP,j

j≥− log2 `(P )

∑
k≥j

∑
Q∈Q3P,k

2−K|j−k||Q| 2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
TQ

+ sup
Q′∈QP,j

j≥− log2 `(P )

∑
k≥j

∑
Q∩3P=∅
Q∈Qk

2−K|j−k||Q| 2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
TQ

:= E11 + E12.

There are 3n dyadic cubes in 3P with the same side length as P , so if P ′ ⊆ 3P then

|P ′| = |P |. Thus

|P |1−1/pE11 ≤ C|P |1−1/p sup
Q′∈QP,j

j≥− log2 `(P )

∑
k≥j

∑
P ′∈Q3P
`(P ′)=`(P )

2−K|j−k|

×

 ∑
Q∈QP ′,k

|Q| 2−j(J−n)

(2−j + |xQ′ − xP |)J
sup

Q∈QP ′,k
k≥− log2 `(P

′)

TQ


≤ C|P |1−1/p

∑
k≥j

2−K(k−j) sup
Q∈QP ′,k

k≥− log2 `(P
′)

TQ

≤ C sup
P ′∈Q(w)

|P ′|1−1/p sup
Q∈QP ′,k

k≥− log2 `(P
′)

inf
u∈Q
|ϕ̃k ∗ f(u)|,

since
∑

Q∈Qk
|Q| 2−j(J−n)

(2−j+|xQ′−xP |)J
is independent of k ∈ N.

Next, we decompose the set of dyadic cubes {Q : Q ∩ 3P = ∅, `(Q) = `(P )} into

{Bi}i∈N as (3.2). Then we obtain

|P |1−1/pE12

≤ C
∞∑
i=1

∑
P ′∈Bi

|P ′|1−1/p sup
Q′∈QP,j

j≥− log2 `(P )

∑
k≥j

∑
Q∈QP ′,k
P ′∈Bi

2−K|j−k||Q| 2−j(J−n)

(2−j + |xQ′ − xP |)J
TQ.
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There are at most 2(i+2)n dyadic cubes in Bi with length `(P ). Since |xP ′ − xP | ≈ 2i−k0

for P ′ ∈ Bi, the right-hand side of the inequality is dominated by

C
∞∑
i=1

∑
P ′∈Bi

∑
k≥j

2−K(k−j)2−kn2−(i−k0)J2−j(J−n) ×

|P ′|1−1/p sup
Q∈QP ′,k

k≥− log2 `(P
′)

TQ

 .

Applying this with K + n > J , J > n, and |Q| = |Q′| |Q||Q′| to the last inequality, it

follows that

|P |1−1/pE12

≤ C

 sup
P ′∈Q(w)

|P ′|1−1/p sup
Q∈QP ′,k

k≥− log2 `(P
′)

TQ

 ∞∑
i=1

∑
k≥j

2−K(k−j)2−(i−k0)J2−j(J−n)2−jn2−(k−j)n2in




≤ C sup
P ′∈Q(w)

|P ′|1−1/p sup
Q∈QP ′,k

k≥− log2 `(P
′)

inf
u∈Q
|ϕ̃k ∗ f(u)|.

To estimate E2, for i ∈ N and k < j, set Gi,k as (3.3). Then |xQ−xP | ≈ 2i−k0 for Q ∈ Gi,k
and

E2 = sup
Q′∈QP,j

j≥− log2 `(P )

∑
k<j

∞∑
i=1

∑
Q∈Gi,k

2−K|j−k|

|Q|1−1/p
2−k(J−n)

(2−k + |xQ′ − xQ|)J
|Q||Q|1−1/pTQ.

Since J > n and K + n > J , there are at most 2(i+k−k0)n dyadic cubes contained in Gi,k
and

|Q|1−1/pTQ ≤ sup
P ′∈Q(w)

|P ′|1−1/p sup
R∈QP ′,m

m≥− log2 `(P
′)

TR,

|Q|1−1/pE2

≤ C

 sup
P ′∈Q(w)

|P ′|1−1/p sup
Q∈QP ′,m

m≥− log2 `(P
′)

TQ

∑
k<j

∞∑
i=1

2−K(j−k)2−(i−k0)J2−k(J−n)2−kn2(i+k−k0)n




≤ C sup
P ′∈Q(w)

|P ′|1−1/p sup
Q∈QP ′,m

m≥− log2 `(P
′)

inf
u∈Q
|ϕ̃m ∗ f(u)|.

Combining the estimates of E1 and E2, we prove the theorem.

Theorem 3.3 (Plancherel-Pôlya inequality for q ≤ 1). Let ϕ, φ ∈ S satisfy (1.1). For

α ∈ R, 0 < p ≤ 1, q ≤ 1 and a weight w with doubling exponent β, if f ∈ S ′/P satisfies

sup
P∈Q(w)

|P |−q(1/p−1/q′)
∞∑

k=− log2 `(P )

∑
Q∈QP,k

(
2kα sup

u∈Q
|ϕ̃k ∗ f(u)|

)q
w(Q)


1/q

<∞,
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then

sup
P∈Q(w)

|P |−q(1/p−1/q′)
∞∑

k=− log2 `(P )

∑
Q∈QP,k

(
2kα sup

u∈Q
|φ̃k ∗ f(u)|

)q
w(Q)


1/q

≈ sup
P∈Q(w)

|P |−q(1/p−1/q′)
∞∑

k=− log2 `(P )

∑
Q∈QP,k

(
2kα inf

u∈Q
|ϕ̃k ∗ f(u)|

)q
w(Q)


1/q

.

Proof. Without loss of generality, we may assume α = 0. By a similar argument as the

proofs of Theorems 1.3 and 3.2 we have

sup
u∈Q′
|φ̃j ∗ f(u)| ≤ C

∑
k∈Z

∑
Q∈Qk

(
2−K|j−k||Q| 2−(j∧k)(J−n)

(2−(j∧k)(J−n) + |xQ′ − xQ|)J

)q
TQ,

where J > β/q + n/q, K > (β/q − n) ∨ (J − n/q − β/q) and TQ is as set out in (3.1).

Given a dyadic cube P with `(P ) = 2−k0 , the above estimates yield

∞∑
j=k0

∑
Q′∈QP,j

(
sup
u∈Q′
|φ̃j ∗ f(u)|

)q
w(Q′)

≤ C
∞∑
j=k0

∑
Q′∈QP,j

∑
k∈Z

∑
Q∈Qk

(
2−K|j−k|

2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|Q|

)q
w(Q′)

w(Q)
TQw(Q)

:= CE1 + CE2,

where

E1 =

∞∑
j=k0

∑
Q′∈QP,j

∑
k≥j

∑
Q∈Qk

(
2−K|j−k|

2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|Q|

)q
w(Q′)

w(Q)
TQw(Q)

and

E2 =
∞∑
j=k0

∑
Q′∈QP,j

∑
k<j

∑
Q∈Qk

(
2−K|j−k|

2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|Q|

)q
w(Q′)

w(Q)
TQw(Q).

Then E1 can be further decomposed as

E1 =
∞∑
j=k0

∑
Q′∈QP,j

∑
k≥j

∑
Q∈Q3P,k

(
2−K|j−k|

2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|Q|

)q
w(Q′)

w(Q)
TQw(Q)

+

∞∑
j=k0

∑
Q′∈QP,j

∑
k≥j

∑
Q∩3P=∅
Q∈Qk

(
2−K|j−k|

2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|Q|

)q
w(Q′)

w(Q)
TQw(Q)

:= E11 + E12.
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There are 3n dyadic cubes in 3P with the same side length as P , so if P ′ ⊆ 3P then

|P ′| = |P | and ∑
Q∈Q3P,k

TQw(Q) ≤ 3n sup
P ′⊆3P

`(P ′)=`(P )

∑
Q∈QP ′,k

TQw(Q).

Let J > β/q, k ≥ j and w be a weight with doubling exponent β. By Lemma 3.1 we have∫
Rn

(
1 +
|x− xQ|

2−j

)−J
w(x) dx ≤ cβ2(k−j)βw(Q),

and so

∞∑
j=k0

∑
Q′∈QP,j

(
2−K|j−k|

2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xQ|)J
|Q|

)q
w(Q′)

≤ C
∞∑
j=k0

2−Kq(k−j)2jnq2−knq
∫
Rn

(
1 +
|x− xQ|

2−j

)−Jq
w(x) dx

≤ Cw(Q).

Hence

|P |−q(1/p−1/q′)E11

≤ C|P |−q(1/p−1/q′)
∞∑
j=k0

∑
Q′∈QP,j

∑
k≥j

∑
Q∈Q3P,k

(
2−K|j−k|

2−(j∧k)(J−n)

(2−(j∧k) + |xQ′ − xP |)J
|Q|

)q

× w(Q′)

w(Q)
TQw(Q)

≤ C sup
P ′∈Q(w)

|P ′|−q(1/p−1/q′)
∞∑

k=− log2 `(P
′)

∑
Q∈QP ′,k

inf
u∈Q
|ϕ̃k ∗ f(u)|qw(Q).

Next, we decompose the set of dyadic cubes {Q : Q ∩ 3P = ∅, `(Q) = `(P )} into

{Bi}i∈N as (3.2). Then we obtain

|P |−q(1/p−1/q′)E12

≤ C
∞∑
i=1

∑
P ′∈Bi

|P ′|−q(1/p−1/q′)

×
∞∑
j=k0

∑
Q′∈QP,j

∑
k≥j

∑
Q∈QP ′,k
P ′∈Bi

(
2−K|j−k|

2−j(J−n)

(2−j + |xQ′ − xP |)J
|Q|

)q
w(Q′)

w(Q)
TQw(Q).

Since w(Q′)/w(Q) ≤ C2β(k−k0+i) and ‖xP ′ −xP ‖ ≈ 2i−k0 for P ′ ∈ Bi, the right-hand side
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of the inequality is dominated by

C

∞∑
i=1

∑
P ′∈Bi

∞∑
j=k0

∑
Q′∈QP,j

∑
k≥j

∑
Q∈QP ′,k
P ′∈Bi

2β(k−k0+i)2−Kq(k−j)2−q(i−k0)J2−j(J−n)q|Q|q

×

 sup
P ′∈Q(w)

|P ′|−q(1/p−1/q′)
∑
k≥k0

∑
Q∈QP ′,k

TQw(Q)

 .

Because there are at most 2(i+2)n dyadic cubes in Bi, J > β/q + n, K + n > βq and

|Q|q = |Q′|q |Q|
q

|Q′|q ,

|P |−q(1/p−1/q′)E12

≤ C

 sup
P ′∈Q

|P ′|−q(1/p−1/q′)
∑
k≥k0

∑
Q∈QP ′,k

TQw(Q)


×

 ∞∑
i=1

∞∑
j=k0

∑
k≥j

2β(k−k0+i)2−Kq(k−j)2−q(i−k0)J2−q(J−n)j2−k0nq2(j−k)nq2in


≤ C sup

P ′∈Q(w)
|P ′|−q(1/p−1/q′)

∞∑
k=− log2 `(P

′)

∑
Q∈QP ′,k

inf
u∈Q
|ϕ̃k ∗ f(u)|qw(Q).

To estimate E2, for i ∈ N and k < k0, set Gi,k as (3.3). Then |xQ − xP | ≈ 2i−k0 for

Q ∈ Gi,k and

E2 =
∞∑
j=k0

∑
Q′∈QP,j

∑
k<j

∞∑
i=1

∑
Q∈Gi,k

2−K|j−k|q

|Q|−q(1/p−1/q′)

(
2−k(J−n)

(2−k + |xQ′ − xQ|)J

)q
w(Q′)

w(Q)
|Q|q

× |Q|−q(1/p−1/q′)TQw(Q).

Since J > β/q + n/q and K > J − n/q − β/q, there are at most 2(i+k−k0)n dyadic cubes

contained in Gi,k and

|Q|−q(1/p−1/q′)TQw(Q) ≤ sup
P ′∈Q(w)

|P ′|−q(1/p−1/q′)
∑

m≥− log2 `(P
′)

∑
R∈QP ′,m

TRw(R),

|Q|−q(1/p−1/q′)E2

≤ C

 sup
P ′∈Q(w)

|P ′|−q(1/p−1/q′)
∑

m≥− log2 `(P
′)

∑
Q∈QP ′,m

TQw(Q)


×

 ∞∑
j=k0

∑
k<j

∞∑
i=1

2−Kq(j−k)2−q(i−k0)J2−kq(J−n)2β(k−k0+i)2−knq2(i+k−k0)n


≤ C sup

P ′∈Q(w)
|P ′|−q(1/p−1/q′)

∑
m≥− log2 `(P

′)

∑
Q∈QP ′,m

inf
u∈Q
|ϕ̃m ∗ f(u)|qw(Q).
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By those estimates above, we have the desired result.

Remark 3.4. The classical Plancherel-Pôlya inequality [14] concludes that if {xk} is an

appropriate set of points in Rn, e.g., lattice points, where the length of the mesh is

sufficiently small, then ( ∞∑
k=1

|f(xk)|p
)1/p

≈ ‖f‖p

for all 0 < p ≤ ∞, with a modification if p =∞.

4. Norm equivalence

In this section, we study the norm equivalence between ĊMOα,qp,w and ċα,qp,w. Suppose that

w ∈ A∞ and let r0 = inf{r : w ∈ Ar}. For α ∈ R and 0 < p, q ≤ ∞, let H =

max{n, nr0/p, n/q}. We say that a matrix A = {aQP }Q,P is (α, p, q)-almost diagonal,

denoted by A ∈ adα,qp (w) if there exists ε > 0 such that

(4.1) sup
Q,P

|aQP |
ωQP (ε)

<∞,

where

ωQP (ε) =

(
`(Q)

`(P )

)α(
1 +

|xQ − xP |
max(`(P ), `(Q))

)−H−ε
×min

{(
`(Q)

`(P )

)(n+ε)/2

,

(
`(P )

`(Q)

)(n+ε)/2+H−n
}
.

(4.2)

Lemma 4.1. Let α ∈ R, 0 < p < ∞, 0 < q ≤ ∞ and w ∈ A∞. If A is (α, p, q)-almost

diagonal, then A is bounded on ḟα,qp,w.

Proof. We may assume α = 0, since the case implies the general case, and set r =

min(p/r0, q). We shall consider the case r > 1 first. Let A be an (0, p, q) almost diagonal

operator on ḟ0,qp,w with matrix {aQ,P }Q,P . We decompose the matrix operator A as the

sum of A = Au +Al, namely for Q ∈ Q(w)

(Aus)Q =
∑

P∈Q(w)
`(P )≥`(Q)

aQP sP and (Als)Q =
∑

P∈Q(w)
`(P )<`(Q)

aQP sP

for s = {sP } ∈ ḟ0,qp,w. According to Lemma A.2 in [6], with λ = H + ε and a = r = 1,

|(Aus)Q| ≤ C
∑

P∈Q(w)
`(P )≥`(Q)

(
1 +
|xQ − xP |
`(P )

)−H−ε(`(Q)

`(P )

)(n+ε)/2

|sP |

≤ C
∑
j≤k

2(j−k)(n+ε)/2M

 ∑
P∈Qj(w)

|sP |χP

 (x) for x ∈ Q,
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when `(Q) = 2−k.

Hence, since |Q|−1/2 = 2(k−j)n/2|P |−1/2 if `(P ) = 2−j ,

‖Aus‖ḟ0,qp,w ≤ C

∥∥∥∥∥∥∥
∑
k∈Z

∑
j≤k

2(j−k)(n+ε)/2M

 ∑
P∈Qj(w)

|P |−1/2|sP |χP

 (x)

q1/q
∥∥∥∥∥∥∥
Lp(w)

≤ C

∥∥∥∥∥∥∥
∑
j∈Z

M
 ∑
P∈Qj(w)

|P |−1/2|sP |χP

 (x)

q1/q
∥∥∥∥∥∥∥
Lp(w)

by Minkowski’s inequality. Applying the weighted version of Fefferman-Stein vector-valued

maximal inequality which was characterized by Andersen and John [1], we find that

‖Aus‖ḟ0,qp,w ≤ C‖s‖ḟ0,qp,w

since q > 1, p > r0 and w ∈ Ap.
Next, consider the case for the matrix operator Al. Observe that if `(P ) ≤ `(Q), then

`(P )

`(Q)

(
1 +
|xQ − xP |
`(Q)

)
≤ 1 +

|xQ − xP |
`(Q)

.

Thus

(
1 +
|xQ − xP |
`(Q)

)−H−ε
≤
(

1 +
|xQ − xP |
`(Q)

)−H−ε/4
≤
(

1 +
|xQ − xP |
`(Q)

)−H−ε/4(`(P )

`(Q)

)−H−ε/4
,

and, for Q ∈ Qk(w),

|(Als)Q| ≤ C
∑

P∈Q(w)
`(P )<`(Q)

(
1 +
|xQ − xP |
`(Q)

)−H−ε(`(P )

`(Q)

)(n+ε)/2+H−n
|sP |

≤ C
∑

P∈Q(w)
`(P )<`(Q)

(
1 +
|xQ − xP |
`(Q)

)−H−ε/4(`(P )

`(Q)

)ε/4−n/2
|sP |

≤ C
∑
j>k

2(k−j)(−n/2+ε/4)M

 ∑
P∈Qj(w)

|sP |χP

 (x) for x ∈ Q.
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Hence, since |Q|−1/2 = 2(k−j)n/2|P |−1/2 if `(P ) = 2−j ,

‖Als‖ ≤ C

∥∥∥∥∥∥∥
∑
k∈Z

∑
j>k

2(k−j)ε/4M

 ∑
P∈Qj(w)

|P |−1/2|sP |χP

 (x)

q1/q
∥∥∥∥∥∥∥
Lp(w)

≤ C

∥∥∥∥∥∥∥
∑
j∈Z

M
 ∑
P∈Qj(w)

|P |−1/2|sP |χP

 (x)

q1/q
∥∥∥∥∥∥∥
Lp(w)

by Minkowski’s inequality. Applying Proposition 2.4, we find that

‖Als‖ḟ0,qp,w ≤ C‖s‖ḟ0,qp,w

since p, q > 1, p > r0 and w ∈ Ap.
The case r ≤ 1 and q <∞ is in fact a consequence of the case r > 1. We pick an r̃ < r

so close to r that (4.1) is still satisfied with r = min(p/r0, q) replaced by r̃. This means

that p/r̃ > 1 and q/r̃ > 1, and that the matrix Ã = {ãQP } := {|aQP |r̃(|Q|/|P |)1/2−r̃/2}
satisfies (4.2) for a different value of ε. Define t = {tQ}Q by tQ = |Q|1/2−r̃/2|sQ|r̃. Then

‖t‖1/r̃
ḟ
0,q/r̃
p/r̃,w

= ‖s‖
ḟ0,qp,w

. By the r̃-triangle inequality, we have

|(As)Q| ≤

 ∑
P∈Q(w)

|aQP |r̃|sP |r̃
1/r̃

.

Hence, ‖As‖
ḟ0,qp,w
≤ ‖Ãt‖1/r̃

ḟ
0,q/r̃
p/r̃,w

. Therefore the boundedness of A on ḟ0,qp,w follows from the

boundedness of Ã on ḟ
0,q/r̃
p/r̃,w. By duality, the case q =∞ and p > 1 follows from the result

of q = 1 which we have just obtained. Finally, for p ≤ 1 and q =∞, we reduce to the case

p > 1 as before.

Next let us consider the boundedness of almost diagonal operators acting on weighted

Carleson measure sequence spaces ċα,qp,w. In particular, consider the boundedness of al-

most diagonal operators acting on ḟα,q∞,w. Under this situation, we always assume H =

max{n, nr0/p} in the definition of almost diagonality.

Lemma 4.2. For α ∈ R, 0 < p ≤ 1, 0 < q ≤ ∞ and w ∈ A∞, an (α+nq(1/p−1/q′), p, q)-

almost diagonal matrix is bounded on ċα,qp,w.

Proof. We may assume α = 0, since the case implies the general case. Let A = {aQP }Q,P
be an (nq(1/p− 1/q′), p, q)-almost diagonal matrix. Write A = Au +Al with

(Aus)Q =
∑

P∈Q(w)
`(P )≥`(Q)

aQP sP and (Als)Q =
∑

P∈Q(w)
`(P )<`(Q)

aQP sP
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for s = {sP } ∈ ċ0,qp,w. Set r = nq(1/p− 1/q′). If `(Q) = 2−k, then

|(Aus)Q| ≤ C
∑

P∈Q(w)
`(P )≥`(Q)

(
`(Q)

`(P )

)r (
1 +

|xQ − xP |
max(`(P ), `(Q))

)−H−ε(`(Q)

`(P )

)(n+ε)/2

|sP |

≤ C
k∑

j=−∞
2(j−k)[r+(n+ε)/2]M

 ∑
P∈Qj(w)

|sP |χP

 (x) for x ∈ Q.

Hence, since |Q|−1/2 = 2(k−j)n/2|P |−1/2 if `(P ) = 2−j ,

|Q|−1/2|(Aus)Q|χQ(x) ≤ C
k∑

j=−∞
2(j−k)(r+ε/2)M

 ∑
P∈Qj(w)

|P |−1/2|sP |χP

 (x)χQ(x)

and, by Hölder’s inequality,

‖Aus‖ċ0,qp,w ≤ C sup
R∈Q(w)

{
|R|−r/n

∫
R

∑
k≥− log2 `(R)

∑
Q∈QR,k(w)

k∑
j=−∞

2(j−k)(r+ε/2)

×
[
M

( ∑
P∈Qj(w)

|P |−1/2|sP |χP
)

(x)

]q
χQ(x)w(x) dx

}1/q

≤ C sup
R∈Q(w)

{
|R|−r/n

∫
Rn

∑
k≥− log2 `(R)

k∑
j=−∞

2(j−k)(r+ε/2)

×
[
M

( ∑
P∈Qj(w)

|P |−1/2|sP |χP
)

(x)

]q
w(x) dx

}1/q

.

Note that for given R with `(R) = 2−δ,

∑
k≥− log2 `(R)

k∑
j=−∞

2(j−k)(r+ε/2)

M
 ∑
P∈Qj(w)

|P |−1/2|sP |χP

 (x)

q

=
δ−1∑
j=−∞

∞∑
k=δ

2(j−δ)(r+ε/2)2(δ−k)(r+ε/2)

M
 ∑
P∈Qj(w)

|P |−1/2|sP |χP

 (x)

q

+
∞∑
j=δ

∞∑
k=j

2(j−k)(r+ε/2)

M
 ∑
P∈Qj(w)

|P |−1/2|sP |χP

 (x)

q

≤ C
δ−1∑
j=−∞

2(j−δ)(r+ε/2)

M
 ∑
P∈Qj(w)

|P |−1/2|sP |χP

 (x)

q

+ C

∞∑
j=δ

M
 ∑
P∈Qj(w)

|P |−1/2|sP |χP

 (x)

q .
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Applying Proposition 2.4, if P0 is the cube containing R with `(P0) = 2−j , then we get

|R|−r/n
∫
R

∑
k≥− log2 `(R)

k∑
j=−∞

2(j−k)(r+ε/2)

M
 ∑
P∈Qj(w)

|P |−1/2|sP |χP

 (x)

q w(x) dx

≤ C
δ−1∑
j=−∞

2(j−δ)(r+ε/2)
(
|R|
|P0|

)−r/n
|P0|−r/n

∫
P0

(
|P0|−1/2|sP0 |χP0(x)

)q
w(x) dx

+ C|R|−r/n
∫
R

∑
j≥− log2 `(R)

 ∑
P∈Qj(w)

|P |−1/2|sP |χP (x)

q

w(x) dx

≤ C
δ−1∑
j=−∞

2(j−δ)(r+ε/2)2(j−δ)n(−r/n)|P0|−r/n
∫
P0

(
|P0|−1/2|sP0 |χP0(x)

)q
w(x) dx

+ C|R|−r/n
∫
R

∑
j≥− log2 `(R)

 ∑
P∈Qj(w)

|P |−1/2|sP |χP (x)

q

w(x) dx,

because |R|/|P0| = 2(j−δ)n. Hence

‖Aus‖ċ0,qp,w ≤ C‖s‖ċ0,qp,w .

A similar argument for Al yields ‖Als‖ċ0,qp,w ≤ C‖s‖ċ0,qp,w .

Finally, we can give a proof for Theorem 1.7.

Proof of Theorem 1.7. For 0 < q < ∞ and f ∈ ĊMOα,qp,w, let s := {sQ}Q = Sϕ(f). Then

the ϕ-transform identity shows f =
∑

Q sQψQ and ‖f‖ĊMOα,qp,w
= ‖Sϕ(f)‖ċα,qp,w = ‖s‖ċα,qp,w .

In particular, ‖f‖ĊMOα,q1,w
= ‖Sϕ(f)‖ċα,q1,w

= ‖Sϕ(f)‖ḟα,q∞,w ≈ ‖f‖Ḟα,q∞,w . Furthermore, for

s ∈ ċα,qp,w

‖Tψ(s)‖ĊMOα,qp,w
=

∥∥∥∥∥∑
P

sPψP

∥∥∥∥∥
ĊMOα,qp,w

=

∥∥∥∥∥∥
{〈∑

P

sPψP , ϕQ

〉}
Q

∥∥∥∥∥∥
ċα,qp,w

= ‖As‖ċα,qp,w ,

where A := {〈ψP , ϕQ〉}Q,P is (α + nq(1/p − 1/q′), p, q)-almost diagonal (cf. Lemma 3.6

in [6]) and hence A is bounded on ċα,qp,w by Lemma 4.2. Therefore, Sϕ is bounded from

ĊMOα,qp,w to ċα,qp,w and Tϕ is bounded from ċα,qp,w to ĊMOα,qp,w. We summarize that Tψ ◦
Sϕ|ĊMOα,qp,w

is also the identity on ĊMOα,qp,w.
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