Maximal Averages over Certain Non-smooth and Non-convex Hypersurfaces

Yaryong Heo, Sunggeum Hong* and Chan Woo Yang

Abstract. We consider the maximal operators whose averages are taken over some nonsmooth and non-convex hypersurfaces. For each $1 \leq i \leq d-1$, let $\phi_i : [-1,1] \to \mathbb{R}$ be a continuous function satisfying some derivative conditions, and let $\phi(y) = \sum_{i=1}^{d-1} \phi_i(y_i)$. We prove the L^p boundedness of the maximal operators associated with the graph of ϕ which is a non-smooth and non-convex hypersurface in \mathbb{R}^d , $d \geq 3$.

1. Introduction and statement of results

Let Σ be a hypersurface in \mathbb{R}^d , $d \geq 3$. Let η be a compactly supported $C^{\infty}(\mathbb{R}^d)$ function. For t > 0 we define averages T_t by

$$T_t f(x) = \int_{\Sigma} f(x - ty) \, d\mu(y)$$

where $d\mu$ is a Borel measure supported in a compact subset $\Sigma_0 = \text{supp}(\eta) \cap \Sigma$. The maximal operator of T_t is defined by

$$\mathbf{T}^* f(x) = \sup_{t>0} |\mathbf{T}_t f(x)|.$$

When Σ is the sphere and $d\mu$ is the spherical measure, E. M. Stein [11, 13] proved that the maximal operator T^{*} is bounded on $L^p(\mathbb{R}^d)$, $d \geq 3$ if and only if p > d/(d-1). J. Bourgain [1] proved later the analogous result in two dimensions. In addition, various classes of maximal operators associated with sub-varieties have been studied for forty years (see Stein's monograph [12]). It is well known that the estimates of the maximal operators T^{*} are intimately connected with the decay of the Fourier transform $d\mu$ to estimate an oscillatory integral. These in turn are closely related to geometric properties of the surface Σ . A. Greenleaf [4] proved that T^{*} is bounded on $L^p(\mathbb{R}^d)$, $d \geq 3$ and p > d/(d-1), provided that Σ is a smooth hypersurface having everywhere non-vanishing

Received July 4, 2017; Accepted February 13, 2018.

Communicated by Duy-Minh Nhieu.

*Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary: 42B20; Secondary: 42B25.

Key words and phrases. maximal averages, non-smooth and non-convex hypersurfaces.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology NRF-2015R1A1A1A05001304, NRF-2014R1A1A3049983, and NRF-2016R1D1A1B01014575.

Gaussian curvature and $d\mu$ is the surface measure. In contrast, the results for the case where the Gaussian curvature vanishes at some points are still open with the exception of the two dimensional case (see [7–10]). For a smooth convex hypersurface of finite type, A. Nagel, A. Seeger, and S. Wainger [9] expressed the decay of the Fourier transform $\widehat{d\mu}$ by using the caps

$$B(x,\delta) := \{ y \in \Sigma : \operatorname{dist}(y, H_x(\Sigma)) < \delta \},\$$

where $H_x(\Sigma)$ denotes the tangent plane at $x \in \Sigma$. The estimate is

$$|\widehat{d\mu}(\xi)| \le C \left(|B(x_+, |\xi|^{-1})| + |B(x_-, |\xi|^{-1})| \right),$$

where x_{\pm} are the points on Σ for which ξ is a normal vector (see also [2]). They obtained sharp results for the maximal operator T^{*} in higher dimensions $d \geq 3$ by using an L^q -norm of a family of nonisotropic balls on Σ . For example, the maximal operators T^{*} associated with the surface $\Sigma \subset \mathbb{R}^d$ given as a graph

(1.1)
$$x_d = c + \sum_{i=1}^{d-1} |x_i|^{a_i} \quad (2 \le a_1 \le \dots \le a_{d-1} \le d)$$

where the a_i are even integers, is bounded on $L^p(\mathbb{R}^d)$, $d \ge 3$ for p > d/(d-1). Based on calculations in [9] on examples of the form (1.1), A. Isoveich, E. Sawyer and A. Seeger in [8] conjectured the below and obtained partial results and drew a fairly complete pictures where d = 3.

Conjecture 1.1. Let Σ be a convex surface in \mathbb{R}^{d-1} , and let $P \in \Sigma$ and $\mathfrak{a} = (a_1, \ldots, a_{d-1})$ be the multitype at P. Define ν_k by

$$\nu_k = \sum_{j=k}^{d-1} \frac{1}{a_j}, \quad k = 1, \dots, d-1; \quad \nu_d = 0.$$

The maximal operator T^* is bounded on $L^p(\mathbb{R}^d)$ if the support η is contained in a sufficiently small neighborhood of P and if

(1.2)
$$p > \max_{k=1,\dots,d} \left(\frac{k}{k-1+\nu_k}\right).$$

As for non-convex hypersurfaces Σ , A. Ikromov, M. Kempe and D. Müller [5,6] proved the sharp L^p boundedness of the maximal operator T^{*}, provided that Σ is a smooth hypersurface of finite type on \mathbb{R}^3 . This study was done under a transversality assumption on the underlying hypersurface Σ , saying that for every point $x_0 \in \Sigma$, the affine tangent plane $x_0 + T_{x_0}\Sigma$ does not pass through the origin (see also [15] for the related results of maximal averages over hypersurfaces not satisfying the transversality condition). In this case the decay estimates of the Fourier transform of surface-carried measure on a smooth convex hypersurface Σ of finite type in [9] fail to be true. Thus they estimated it in terms of Newton polyhedron associated to the given hypersurface (see [6, 14]). In light of the above, one is naturally led to the following question:

Is T^{*} bounded on $L^p(\mathbb{R}^d)$ for non-smooth and non-convex hypersurfaces?

In this paper we provide estimates which not only give an affirmative answer for certain non-smooth and non-convex hypersurface Σ in \mathbb{R}^d , $d \geq 3$, but also reveal how the main theorem is related to the range of p in (1.2) of Conjecture 1.1.

We would also like to emphasize that in the process of proving L^p boundedness of T^* , we do not use any information of the Fourier decay estimates for smooth hypersurfaces in [6,8,9]. We rely on microlocal decomposition of the measure in both the space and the frequency variables, and we divide the range of p into finite pieces bases on the singularities of Σ to obtain the desired estimates.

We begin with a definition and some examples to state the main results.

Definition 1.2. Let $I = [\alpha, \beta]$ be a closed interval in \mathbb{R} . For each positive integer m, let t_1, \ldots, t_m be arbitrary m distinct points in (α, β) . For each positive integer $N \ge 2$, let $\phi \in C^1(I) \cap C^N(I \setminus \{t_1, \ldots, t_m\})$ be a real valued function, then we say that ϕ has type $(b_1, \ldots, b_m; N)$ at (t_1, \ldots, t_m) if there are real numbers $b_i > 1$ $(1 \le i \le m)$ and positive constants $C'_2, C_2, C_3, \ldots, C_N$ such that

(1)
$$C'_2\left(\prod_{i=1}^m |t - t_i|^{b_i - 2}\right) \le |\phi''(t)|,$$

(2)
$$|\phi^{(\ell)}(t)| < C_{\ell} \left(\prod_{i=1}^{m} |t - t_i|^{-\ell+1} \right), \ \ell = 2, \dots, N$$

for all $t \in I \setminus \{t_1, \ldots, t_m\}$. Define $\mathfrak{C}^N(I; t_1, \ldots, t_m; b_1, \ldots, b_m)$ to be the collection of all real valued functions that have type $(b_1, \ldots, b_m; N)$ at (t_1, \ldots, t_m) .

1.1. Examples for Definition 1.2

(1) Let $\phi(t) = |t|^a$ for some real number a > 1, then for each $\ell \ge 2$ we have

(1.3)
$$|\phi^{(\ell)}(t)| = |a(a-1)\cdots(a-\ell+1)||t|^{-\ell+a} \quad \text{if } t \neq 0.$$

Thus $\phi \in \mathfrak{C}^N([-1,1];0;a)$ for any $N \ge 2$. This example shows that Definition 1.2(2) is not optimized. That is to say, the range of p in Theorem 1.3 is not improved even though (1.3) is used in proving Theorem 1.3.

(2) Let ϕ be a polynomial with $\phi''(t) = (t+1)t^2(t-1)^3(t-3)^4$, then for any $N \ge 2$

$$\phi \in \mathfrak{C}^N([-2,2];-1,0,1;3,4,5) \quad \text{and} \quad \phi \in \mathfrak{C}^N([-2,4];-1,0,1,3;3,4,5,6)$$

(3) Let a > 1 and b > 1 be real numbers. Let $\phi \in C^1([-1,1])$ be a real valued function such that

$$C_{2}'\left|t+\frac{1}{2}\right|^{a-2}\left|t-\frac{1}{2}\right|^{b-2} \le |\phi''(t)| \le C_{2}\left|t+\frac{1}{2}\right|^{-1}\left|t-\frac{1}{2}\right|^{-1} \quad \text{if } t \ne \pm \frac{1}{2}$$

for some positive constants C'_2 and C_2 , then $\phi \in \mathfrak{C}^2([-1,1]; -\frac{1}{2}, \frac{1}{2}; a, b)$.

We now proceed to introduce our maximal operators. For each $1 \leq i \leq d-1$, let $\phi_i: [-1,1] \to \mathbb{R}$ be a continuous function, and define $\phi(y) := \sum_{i=1}^{d-1} \phi_i(y_i)$ if $y = (y_1, \ldots, y_{d-1}) \in [-1, 1]^{d-1}$. Then the hypersurface Σ is given by the graph

$$\Sigma = \left\{ (x, \phi(x)) : x \in [-1, 1]^{d-1} \right\}.$$

Suppose that μ is the Borel measure on \mathbb{R}^d given by

$$\mu(F) = \int_{\mathbb{R}^{d-1}} \chi_F(x,\phi(x))\eta(x) \, dx,$$

where η is a positive smooth function supported on $[-1,1]^{d-1}$. Then for each t > 0, we define the average T_t associated with the measure μ by

$$T_t f(x) = \int_{\Sigma} f(x - tz) \, d\mu(z) = \int_{[-1,1]^{d-1}} f(x - t(y, \phi(y))) \eta(y) \, dy$$

and its maximal operator \mathbf{T}^* by

$$\mathbf{T}^* f(x) = \sup_{t>0} |\mathbf{T}_t f(x)|.$$

We are interested in the L^p -boundedness properties of T^* , i.e.,

(1.4)
$$\|\mathbf{T}^*f\|_p \le C\|f\|_p.$$

We shall prove the following.

Theorem 1.3. Let $d \ge 3$ and $N \ge 2$. For each $1 \le i \le d-1$, suppose that $\phi_i \in \mathfrak{C}^N([-1,1];t_i;a_i)$ for some real number a_i with $1 < a_1 \le \cdots \le a_{d-1}$. Define ν_k by

(1.5)
$$\nu_k = \sum_{j=k}^{d-1} \frac{1}{a_j}, \quad k = 1, \dots, d-1; \quad \nu_d = 0.$$

Let $0 \le n \le d-1$ be the largest integer so that $1 = a_0 < a_1 \le \cdots \le a_n < 2$. Define

$$p_0 := \max_{k=n+1}^d \left(\frac{k}{k-1+\nu_k}\right)$$

If $N \ge 3$ and $\nu_1 > 1/2$, then T^* is bounded on $L^p(\mathbb{R}^d)$ for $p > \max\left(\frac{2N-2}{2N-3}, p_0\right)$. Moreover, if $N \ge 2$ and $\nu_1 \le 1/2$, then T^* is bounded on $L^p(\mathbb{R}^d)$ for $p > 1/\nu_1$.

- Remark 1.4. (1) It is well known (see [5,6]) that the behavior of the maximal operator essentially depends on so-called the transversality condition. It means that the affine tangent plane $x + T_x \Sigma$ to Σ through x does not pass through the origin \mathbb{R}^d for every $x \in \Sigma$. In particular, without this condition our result of Theorem 1.3 can not be sharp. See E. Zimmermann [15] for details.
 - (2) The results of Theorem 1.3 are sharp if we take $\phi(y) = \sum_{j=1}^{d-1} y_j^{a_j} + c \ (c \neq 0)$ where $2 \leq a_1 \leq \cdots \leq a_{d-1}$ (a_i positive even integer) as in [9].
 - (3) Let $N \geq 3$. For each $1 \leq i \leq d-1$ if $\phi_i \in \mathfrak{C}^N([-1,1];t_i;a_i)$ and $1 < a_1 \leq \cdots \leq a_{d-1} \leq d$, then T^* is bounded on $L^p(\mathbb{R}^d)$, $d \geq 3$ for $p > \max\left(\frac{2N-2}{2N-3}, \frac{d}{d-1}\right)$.
 - (4) When N is sufficiently large in the condition of above (3), we see that the maximal operator T^{*} is bounded on $L^p(\mathbb{R}^d)$ for $p > \max\left(\frac{2N-2}{2N-3}, \frac{d}{d-1}\right) = \frac{d}{d-1}$. In particular if $\phi(x_0) = \nabla \phi(x_0) = 0$ and det $\left[\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right](x_0) \neq 0$, then by Morse's lemma there exists a diffeomorphism from a small neighborhood of x_0 in the x-space, to a neighborhood of the origin in the y-space, under which ϕ is transformed into

$$\sum_{j=1}^{m} y_j^2 - \sum_{j=m+1}^{d-1} y_j^2$$

for some $0 \le m \le d - 1$. Thus this recovers a result of A. Greenleaf [4] if Σ is a smooth hypersurface in \mathbb{R}^d , $d \ge 3$ and Σ has everywhere non-vanishing Gaussian curvature.

Corollary 1.5. Let $d \ge 3$ and $N \ge 2$. For each $1 \le i \le d-1$, suppose that

$$\phi_i \in \mathfrak{C}^N([-1,1]; t_{i,1}, \dots, t_{i,m_i}; b_{i,1}, \dots, b_{i,m_i}) \quad and \quad a_i := \max(b_{i,1}, \dots, b_{i,m_i}).$$

Without loss of generality we assume $1 < a_1 \leq \cdots \leq a_{d-1}$. Let ν_k be as in (1.5) and let $0 \leq n \leq d-1$ be the largest integer so that $1 = a_0 < a_1 \leq \cdots \leq a_n < 2$. If $N \geq 3$ and $\nu_1 > 1/2$ then T^{*} is bounded on $L^p(\mathbb{R}^d)$ for

$$p > \max\left(rac{2N-2}{2N-3}, \max_{k=n+1}^{d}\left(rac{k}{k-1+
u_k}
ight)
ight).$$

In addition, if $N \ge 2$ and $\nu_1 \le 1/2$, then T^* is bounded on $L^p(\mathbb{R}^d)$ for $p > 1/\nu_1$.

Proof. By using partitions of unity we dominate $T^*f(x)$ as a finite sum of maximal operators $T^*_{j_1,\ldots,j_{d-1}}(|f|)(x)$ associated with measures

$$\mu_{j_1,\dots,j_{d-1}}(F) = \int_{\mathbb{R}^{d-1}} \chi_F(x,\phi(x))\eta_{j_1,\dots,j_{d-1}}(x) \, dx,$$

where $\eta_{j_1,\ldots,j_{d-1}}$ is a positive smooth function supported in $I_{j_1} \times \cdots \times I_{j_{d-1}} \subset [-1,1]^{d-1}$ for some closed intervals $I_{j_i} \subset [-1,1]$, and $\varphi_i \in \mathfrak{C}^N(I_{j_i}; t_{i,j_i}; b_{i,j_i})$. Next let $b_{1,j_1},\ldots,b_{d-1,j_{d-1}}$ be one of the (d-1)-tuples appearing in the definition of the maximal operators $T^*_{j_1,\ldots,j_{d-1}}$, then we have $b_{i,j_i} \leq a_i$. Let a'_1,\ldots,a'_{d-1} be the increasing rearrangement of $b_{1,j_1},\ldots,b_{d-1,j_{d-1}}$ such that $1 < a'_1 \leq \cdots \leq a'_l < 2 \leq a'_{l+1} \leq \cdots \leq a'_{d-1}$, then $a'_i \leq a_i$ and $n \leq l$. Define

$$\nu'_k = \sum_{j=k}^{d-1} \frac{1}{a_j}, \quad k = 1, \dots, d-1; \quad \nu'_d = 0,$$

then $\nu_k \leq \nu'_k$ and so we have

$$\frac{1}{\nu_1} \ge \frac{1}{\nu_1'} \quad \text{and} \quad \max_{k=n+1}^d \left(\frac{k}{k-1+\nu_k}\right) \ge \max_{k=n+1}^d \left(\frac{k}{k-1+\nu_k'}\right).$$

Hence by applying Theorem 1.3 for the maximal operators $T^*_{j_1,\dots,j_{d-1}}$, we obtain the desired result.

Notation. The Fourier transform of f is denoted by \hat{f} . For each positive real numbers A and B, we will use $A \leq B$ to denote the estimate $A \leq CB$, where C is a constant depending only on the dimension d. We will denote $A \sim B$ if $A \leq B$ and $B \leq A$.

2. Proof of Theorem 1.3: maximal averages over the interval E = [1, 2]

In order to prove (1.4), we dominate $|\eta(x)|$ by $\eta_1(x_1) \cdots \eta_{d-1}(x_{d-1})$ for some positive smooth functions η_i $(1 \le i \le d-1)$ supported in [-1, 1]. We also note that

$$|\mathbf{T}_t f(x)| \le \int_{[-1,1]^{d-1}} |f(x - t(y,\phi(y)))| \,\eta_1(y_1) \cdots \eta_{d-1}(y_{d-1}) \, dy.$$

From now on we may assume that $\eta(x) = \eta_1(x_1) \cdots \eta_{d-1}(x_{d-1})$ for further discussions. For each subset $E \subset \mathbb{R}^+$, we define the maximal operator by

$$T_E f(x) := \sup_{t \in E} |T_t f(x)|$$

and then this implies $T^*f = T_{(0,\infty)}f$. First we will prove the L^p boundedness of the maximal operator T_E with E = [1,2], and the general case T_E with $E = (0,\infty)$ will follow by the argument of M. Christ as in [3] (see Section 3).

2.1. The case E = [1, 2] and $\nu_1 > 1/2$

Choose $\psi_0 \in C^{\infty}(\mathbb{R})$ such that

$$\widehat{\psi}_0(\xi) = \begin{cases} 1 & \text{if } |\xi| \le 1, \\ 0 & \text{if } |\xi| \ge 2. \end{cases}$$

Let
$$\widehat{\psi}(\xi) = \widehat{\psi}_0(\xi) - \widehat{\psi}_0(2\xi)$$
 then $\widehat{\psi}$ is supported in $\{1/2 < |\xi| < 2\}$ and

$$1 = \widehat{\psi}_0(\xi) + \sum_{j=1}^{\infty} \widehat{\psi}(2^{-j}\xi) \quad \text{for all } \xi.$$

Now we have

$$(\mathbf{T}_t f)^{\wedge}(\xi) = \widehat{f}(\xi)\widehat{\mu}(t\xi) \left(\widehat{\psi}_0(\xi) + \sum_{j=1}^{\infty} \widehat{\psi}(2^{-j}\xi)\right) =: (\mathbf{T}_t^0 f)^{\wedge}(\xi) + \sum_{j=1}^{\infty} (\mathbf{T}_t^j f)^{\wedge}(\xi)$$

It is easy to see that

$$\sup_{t \in E} |\mathbf{T}_t^0 f(x)| \le C \mathbf{M} f(x)$$

where M denotes the Hardy-Littlewood maximal operator. Hence for each 1 we have

$$\|\mathbf{T}_E f\|_p \le C \|f\|_p + \sum_{j=1}^{\infty} \left\| \sup_{t \in E} |\mathbf{T}_t^j f| \right\|_p.$$

Let φ be a $C^\infty(\mathbb{R})$ function that is supported in $\{1/2 < |s| < 2\}$ and

$$\sum_{k=1}^{\infty} \varphi(2^k s) = 1 \quad \text{for all } s \in [-1, 1] \setminus \{0\}.$$

Then we have

$$\begin{aligned} \mathbf{T}_{t}^{j}f(x,x_{d}) &= \sum_{\vec{k}} \int_{\mathbb{R}^{d-1}} f * \psi_{j}(x-ty,x_{d}-t\phi(y)) \prod_{i=1}^{d-1} \left(\varphi(2^{k_{i}}(y_{i}-t_{i}))\eta_{i}(y_{i}) \right) \, dy \\ &:= \sum_{\vec{k}} \int_{\mathbb{R}^{d}} f * \psi_{j}(x-ty,x_{d}-ty_{d}) \, d\mu_{\vec{k}}(y,y_{d}) \\ &:= \sum_{\vec{k}} \mathbf{T}_{t}^{j,\vec{k}} f(x,x_{d}) \end{aligned}$$

where $\psi_j(\cdot) = 2^{jd} \psi(2^j \cdot)$ and $\vec{k} = (k_1, \dots, k_{d-1}) \in (\mathbb{Z}^+)^{d-1}$.

Lemma 2.1 (van der Corput's Lemma). Suppose ω is real-valued and $\omega \in C^k(a, b)$, and that $|\omega^{(k)}(t)| \geq 1$ for all $t \in (a, b)$. Then we have

$$\left| \int_{a}^{b} \mathrm{e}^{\mathrm{i}\lambda\omega(t)}\eta(t) \, dt \right| \leq c_{k}\lambda^{-1/k} \left(|\eta(b)| + \int_{a}^{b} |\eta'(t)| \, dt \right)$$

when $k \geq 2$ or k = 1 and $\omega'(t)$ is monotonic. The bound c_k is independent of ω and λ .

1389

Lemma 2.2. Let $2 \leq N \in \mathbb{Z}^+$ and $\phi_i \in \mathfrak{C}^N([-1,1];t_i;a_i)$, $i = 1, \ldots, d-1$. Then for each $1 \leq k_1, \ldots, k_{d-1} < \infty$ and multi-index α we have

$$\begin{aligned} &(2.1)\\ &|\partial_{\xi}^{\alpha}\widehat{\mu_{k}}(\xi)|\\ &\leq \begin{cases} C_{\alpha}2^{-k_{1}-\dots-k_{d-1}}\prod_{i=1}^{d-1}\min\left(|\xi|^{-\frac{1}{2}}2^{\frac{a_{i}}{2}k_{i}},1\right) & \text{ if } |\xi_{d}| \geq |(\xi_{1},\dots,\xi_{d-1})|,\\ &C_{\alpha}2^{-k_{1}-\dots-k_{d-1}}\min\left(|\xi|^{-(N-1)}2^{k_{i}(N-1)},1\right) & \text{ if } |\xi_{d}| \leq |(\xi_{1},\dots,\xi_{d-1})| \sim |\xi_{i}| \text{ for some } i. \end{aligned}$$

Hence we have

$$|\partial_{\xi}^{\alpha}\widehat{\mu_{k}}(\xi)| \leq C_{\alpha}2^{-k_{1}-\dots-k_{d-1}} \left(\prod_{i=1}^{d-1} \min\left(|\xi|^{-\frac{1}{2}}2^{\frac{a_{i}}{2}k_{i}}, 1\right) + \sum_{i=1}^{d-1} \min\left(|\xi|^{-(N-1)}2^{k_{i}(N-1)}, 1\right) \right).$$

Proof. For the proof we use van der Corput's lemma (see [12, pp. 332–334]). It suffices to show the case $\alpha = 0$, since the other cases are similar. Note that

$$|\widehat{\mu_{\vec{k}}}(\xi)| = \prod_{i=1}^{d-1} \left| \int_{\mathbb{R}} e^{-2\pi i (\xi_i y + \xi_d \phi_i(y))} \varphi(2^{k_i} (y - t_i)) \eta_i(y) \, dy \right|, \quad \xi = (\xi_1, \dots, \xi_{d-1}, \xi_d).$$

By Definition 1.2(1), for each $1 \le i \le d-1$, we have

$$\left|\partial_y^2(\xi_i y + \xi_d \phi_i(y))\right| \gtrsim |\xi_d| |y - t_i|^{a_i - 2}.$$

Hence by Lemma 2.1 with k = 2

(2.2)
$$\left| \int_{\mathbb{R}} e^{-2\pi i (\xi_i y + \xi_d \phi_i(y))} \varphi(2^{k_i} (y - t_i)) \eta_i(y) \, dy \right| \le C |\xi_d|^{-\frac{1}{2}} 2^{\frac{a_i - 2}{2}k_i}.$$

If $|\xi_i| \gtrsim |\xi_d|$ for some $1 \le i \le d-1$, then since $\phi_i \in C^1([-1,1])$

$$|\xi_i + \xi_d \phi_i'(y)| \gtrsim |\xi_i|.$$

Hence if we integrate by parts (N-1) times, by using the identity

$$e^{-2\pi i(\xi_i y + \xi_d \phi_i(y))} = \frac{1}{-2\pi i(\xi_i + \xi_d \phi_i'(y))} \frac{d}{dy} \left(e^{-2\pi i(\xi_i y + \xi_d \phi_i(y))} \right)$$

together with Definition 1.2(2), if $|\xi_i| \gtrsim |\xi_d|$ then we have

(2.3)
$$\left| \int_{\mathbb{R}} e^{-2\pi i (\xi_i y + \xi_d \phi_i(y))} \varphi(2^{k_i} (y - t_i)) \eta_i(y) \, dy \right| \le C |\xi_i|^{-(N-1)} 2^{k_i (N-2)} .$$

The proof of (2.1) follows from (2.2) and (2.3) together with the trivial estimates

$$\left| \int_{\mathbb{R}} e^{-2\pi i (\xi_i y + \xi_d \phi_i(y))} \varphi(2^{k_i} (y - t_i)) \eta_i(y) \, dy \right| \le C 2^{-k_i}.$$

Lemma 2.3. For each $j \in \mathbb{Z}^+$ and $\vec{k} = (k_1, \dots, k_{d-1}) \in (\mathbb{Z}^+)^{d-1}$ define $B(j, \vec{k}) := \sup_{|\alpha| \le 1} \sup_{\xi \in \mathbb{R}^d} \left| \widehat{\psi}(2^{-j}\xi) \partial_{\xi}^{\alpha} \widehat{\mu_{\vec{k}}}(\xi) \right|.$

Then for each $t, t' \in [1, 2]$, we have the following:

(1)
$$B(j,\vec{k}) \le C 2^{-k_1 - \dots - k_{d-1}} \left(\prod_{i=1}^{d-1} \left(2^{\min(-\frac{j}{2} + \frac{a_i}{2}k_i, 0)} \right) + \sum_{i=1}^{d-1} 2^{(N-1)\min(-j+k_i, 0)} \right).$$

(2) For $1 \le p \le 2$,

$$\left\| \mathbf{T}_{t}^{j,\vec{k}} f \right\|_{p} \leq C (2^{-k_{1}-\dots-k_{d-1}})^{\frac{2}{p}-1} \mathbf{B}(j,\vec{k})^{2-\frac{2}{p}} \|f\|_{p},$$
$$\left\| \frac{d}{dt} \mathbf{T}_{t}^{j,\vec{k}} f \right\|_{p} \leq C (2^{-k_{1}-\dots-k_{d-1}})^{\frac{2}{p}-1} 2^{j} \mathbf{B}(j,\vec{k})^{2-\frac{2}{p}} \|f\|_{p}.$$

(3) For $2 \leq p < \infty$,

$$\left\| \mathbf{T}_{t}^{j,\vec{k}}f \right\|_{p} \leq C(2^{-k_{1}-\dots-k_{d-1}})^{1-\frac{2}{p}} \mathbf{B}(j,\vec{k})^{2/p} \|f\|_{p},$$
$$\left\| \frac{d}{dt} \mathbf{T}_{t}^{j,\vec{k}}f \right\|_{p} \leq C(2^{-k_{1}-\dots-k_{d-1}})^{1-\frac{2}{p}} 2^{j} \mathbf{B}(j,\vec{k})^{2/p} \|f\|_{p}$$

Proof. (1) follows from Lemma 2.2. Recall that

$$\Pi_t^{j,\vec{k}} f(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(z) \, 2^{jd} \psi(2^j(x - ty - z)) \, d\mu_{\vec{k}}(y) \, dz,$$

and it is easy to see that

(2.4)
$$\| \mathbf{T}_{t}^{j,\vec{k}}f \|_{1} \leq C \, 2^{-k_{1}-\dots-k_{d-1}} \, \|f\|_{1}, \qquad \left\| \frac{d}{dt} \mathbf{T}_{t}^{j,\vec{k}}f \right\|_{1} \leq C \, 2^{j} \, 2^{-k_{1}-\dots-k_{d-1}} \, \|f\|_{1}, \\ \| \mathbf{T}_{t}^{j,\vec{k}}f \|_{\infty} \leq C \, 2^{-k_{1}-\dots-k_{d-1}} \, \|f\|_{\infty}, \qquad \left\| \frac{d}{dt} \mathbf{T}_{t}^{j,\vec{k}}f \right\|_{\infty} \leq C \, 2^{j} \, 2^{-k_{1}-\dots-k_{d-1}} \, \|f\|_{\infty}.$$

Also note that

$$\mathbf{T}_t^{j,\vec{k}} f(x) = \int_{\mathbb{R}^d} \mathrm{e}^{2\pi \mathrm{i} x \cdot \xi} \, \widehat{f}(\xi) \, \widehat{\psi}(2^{-j}\xi) \, \widehat{\mu_{\vec{k}}}(t\xi) \, d\xi,$$

and by Plancherel's identity we have

(2.5)
$$\left\| \mathbf{T}_{t}^{j,\vec{k}}f \right\|_{2} \leq C \operatorname{B}(j,\vec{k}) \|f\|_{2}, \quad \left\| \frac{d}{dt} \mathbf{T}_{t}^{j,\vec{k}}f \right\|_{2} \leq C 2^{j} \operatorname{B}(j,\vec{k}) \|f\|_{2}.$$

By interpolating (2.4) and (2.5) we have (2) and (3).

Lemma 2.4. Suppose that $S \in C^1([1,2])$. Let $t_0 = 1 < t_1 < \cdots < t_m = 2$ be a partition of [1,2] with $|t_{i+1} - t_i| \sim 2^{-j}$ for $i = 0, 1, \ldots, m-1$. Then for $1 \le p < \infty$,

$$\sup_{t \in [1,2]} |S(t)| \lesssim \left(\sum_{i=0}^{m-1} |S(t_i)|^p \right)^{1/p} + 2^{-j/p'} \left(\int_1^2 |S'(u)|^p \, du \right)^{1/p}.$$

Proof. For each $t \in [t_i, t_{i+1}]$, we have $S(t) = S(t_i) + \int_{t_i}^t S'(u) \, du$. And by Hölder's inequality for $1 \le p < \infty$

$$|S(t)| \le |S(t_i)| + |t_{i+1} - t_i|^{1/p'} \left(\int_{t_i}^{t_{i+1}} |S'(u)|^p \, du \right)^{1/p},$$

and so

$$\sup_{t \in [1,2]} |S(t)| \lesssim \sup_{i} |S(t_{i})| + 2^{-j/p'} \left(\int_{1}^{2} |S'(u)|^{p} du \right)^{1/p},$$

$$\lesssim \left(\sum_{i} |S(t_{i})|^{p} \right)^{1/p} + 2^{-j/p'} \left(\int_{1}^{2} |S'(u)|^{p} du \right)^{1/p}.$$

Now we proceed to prove Theorem 1.3 for the case of E = [1, 2]. By Lemma 2.4, for $1 \le p < \infty$ we have

(2.6)
$$\left\| \sup_{t \in [1,2]} |\mathbf{T}_t^{j,\vec{k}} f| \right\|_p \le \left(\sum_i \|\mathbf{T}_{t_i}^{j,\vec{k}} f\|_p^p \right)^{1/p} + 2^{-j/p'} \left(\int_1^2 \left\| \frac{d}{dt} \mathbf{T}_t^{j,\vec{k}} f \right\|_p^p dt \right)^{1/p}.$$

By Lemma 2.3(2), for $1 \le p \le 2$, the right-hand side of (2.6) is dominated by

$$C\left[\sum_{\vec{k}} 2^{j/p} (2^{-k_1 - \dots - k_{d-1}})^{\frac{2}{p} - 1} B(j, \vec{k})^{2 - \frac{2}{p}}\right] \|f\|_p \le C[\mathbf{I}(j) + \mathbf{II}(j)] \|f\|_p,$$

where

$$I(j) := 2^{j/p} \sum_{\vec{k}} (2^{-k_1 - \dots - k_{d-1}}) \prod_{i=1}^{d-1} \left(2^{\min(-\frac{j}{2} + \frac{a_i}{2}k_i, 0)} \right)^{2 - \frac{2}{p}},$$

$$II(j) := 2^{j/p} \sum_{i=1}^{d-1} \sum_{\vec{k}} (2^{-k_1 - \dots - k_{d-1}}) \left(2^{(N-1)\min(-j+k_i, 0)} \right)^{2 - \frac{2}{p}}.$$

Note that

$$II(j) = 2^{j/p} \sum_{i=1}^{d-1} \sum_{k_i} \left(2^{-k_i} \prod_{\ell \neq i} \left(\sum_{k_\ell} 2^{-k_\ell} \right) \right) \left(2^{(N-1)\min(-j+k_i,0)} \right)^{2-\frac{2}{p}}.$$

Hence if

(2.7)
$$p > \frac{2N-2}{2N-3} \quad \Longleftrightarrow \quad (N-1)\left(2-\frac{2}{p}\right) > 1,$$

then

$$II(j) \le C \, 2^{j/p} \sum_{i=1}^{d-1} \sum_{k_i} 2^{-k_i} \left(2^{(N-1)\min(-j+k_i,0)} \right)^{2-\frac{2}{p}}$$

$$\leq C 2^{j/p} \sum_{i=1}^{d-1} \left(\sum_{k_i \geq j} 2^{-k_i} + \sum_{k_i < j} 2^{-j(N-1)(2-\frac{2}{p})} 2^{k_i(N-1)(2-\frac{2}{p})-k_i} \right)$$

$$\leq C 2^{j(\frac{1}{p}-1)},$$

and $\sum_{j=1}^{\infty} II(j) < \infty$. Next we estimate I(j). Note that

(2.8)
$$I(j) = 2^{j/p} \prod_{i=1}^{d-1} \left(\sum_{k_i=1}^{\infty} (2^{-k_i}) 2^{\min(-\frac{j}{2} + \frac{a_i}{2}k_i, 0)(2-\frac{2}{p})} \right).$$

For every $1 \le i \le d-1$ by considering k_i in two cases $k_i \le j/a_i$ and $k_i > j/a_i$ we obtain that

$$(2.9) \qquad \sum_{k_i=1}^{\infty} (2^{-k_i}) 2^{\min(-\frac{j}{2} + \frac{a_i}{2}k_i, 0)(2 - \frac{2}{p})} \lesssim 2^{-\frac{j}{a_i}} + 2^{-j(1 - \frac{1}{p})} \lesssim \begin{cases} 2^{-\frac{j}{a_i}} & \text{if } p \ge \frac{a_i}{a_i - 1}, \\ 2^{-j(1 - \frac{1}{p})} & \text{if } p < \frac{a_i}{a_i - 1}. \end{cases}$$

In particular when $1 \le i \le n$ since $a_i < 2$, we have $p \le 2 < \frac{a_i}{a_i - 1}$. Hence by (2.9)

(2.10)
$$\sum_{k_i=1}^{\infty} (2^{-k_i}) 2^{\min(-\frac{j}{2} + \frac{a_i}{2}k_i, 0)(2-\frac{2}{p})} \le C 2^{-j(1-\frac{1}{p})} \quad \text{for } 1 \le i \le n.$$

Note that

(2.11)
$$1 < \frac{a_{d-1}}{a_{d-1}-1} \le \frac{a_{d-2}}{a_{d-2}-1} \le \dots \le \frac{a_{n+1}}{a_{n+1}-1} < 2.$$

We consider 1 as a union of <math>(d - n) subintervals

$$1$$

And for each interval, we estimate I(j) by using (2.8), (2.9), (2.10) and (2.11).

Case 1: 1 .

$$I(j) \le C \, 2^{j\left(\frac{d}{p} - (d-1)\right)}$$

and the series converges when

(2.12)
$$p \in \mathcal{F}_d := \left\{ p : 1 \frac{d}{d-1} \right\}.$$
$$Case \ 2: \ \frac{a_{\ell}}{a_{\ell} - 1}
$$I(j) \le C \ 2^{j/p} 2^{-j(1-\frac{1}{p})n} 2^{-j(1-\frac{1}{p})(\ell-n-1)} 2^{-\nu_{\ell}j} \le C \ 2^{j(\frac{\ell}{p} - (\ell-1+\nu_{\ell}))}$$$$

and the series converges when

(2.13)
$$p \in \mathcal{F}_{\ell} := \left\{ p : \frac{a_{\ell}}{a_{\ell} - 1} \frac{\ell}{\ell - 1 + \nu_{\ell}} \right\}.$$

Case 3: $\frac{a_{n+1}}{a_{n+1}-1} .$

$$I(j) \le C \, 2^{j/p} 2^{-j(1-\frac{1}{p})n} 2^{-\nu_{n+1}j} \le C \, 2^{j(\frac{n+1}{p} - (n+\nu_{n+1}))}$$

and the series converges when

(2.14)
$$p \in \mathcal{F}_{n+1} := \left\{ p : \frac{a_{n+1}}{a_{n+1} - 1} \frac{n+1}{n + \nu_{n+1}} \right\}.$$

Hence from (2.12), (2.13) and (2.14) the series I(j) converges if

$$p \in \bigcup_{k=n+1}^{d} \mathcal{F}_k.$$

Lemma 2.5. Let $\nu_1 > 1/2$. For each $n + 1 \le k \le d$, let \mathcal{F}_k be as in (2.12), (2.13) and (2.14). Then

(2.15)
$$\bigcup_{k=n+1}^{d} \mathcal{F}_k = \left\{ p : \max_{k=n+1}^{d} \left(\frac{k}{k-1+\nu_k} \right)$$

For the moments we assume Lemma 2.5, then the series I(j) converges if

$$p > p_0 := \max_{k=n+1}^d \left(\frac{k}{k-1+\nu_k}\right),$$

and so by (2.7) the series I(j) + II(j) converges if

(2.16)
$$\max\left(p_0, \frac{2N-2}{2N-3}\right)$$

which is the desired estimate for the case E = [1, 2] and $\nu_1 > 1/2$.

Proof of Lemma 2.5. Let

$$\max_{k=n+1}^{d} \left(\frac{k}{k-1+\nu_k}\right) = \frac{\ell}{\ell-1+\nu_\ell}$$

for some $n+1 \leq \ell \leq d$, then we have

$$\frac{\ell}{\ell - 1 + \nu_{\ell}} \ge \frac{j}{j - 1 + \nu_j} \quad \text{for all } j = n + 1, \dots, d.$$

This condition is equivalent to

(2.17)
$$\ell(\nu_j - 1) \ge j(\nu_\ell - 1) \text{ for all } j = n + 1, \dots, d.$$

We claim that

(2.18)
$$\mathcal{F}_j = \emptyset \quad \text{for all } \ell < j \le d.$$

To see this, by applying (2.17) with $j > \ell$, we have

$$\ell(\nu_j - 1) \ge j(\nu_\ell - 1) = j\left(\frac{1}{a_\ell} + \dots + \frac{1}{a_{j-1}} + \nu_j - 1\right) \ge j\left(\frac{j-\ell}{a_{j-1}} + \nu_j - 1\right)$$

and so

$$a_{j-1}(1-\nu_j) \ge j \quad \text{if } j > \ell.$$

This is equivalent to

$$\frac{a_{j-1}}{a_{j-1}-1} \le \frac{j}{j-1+\nu_j},$$

and so we have $\mathcal{F}_j = \emptyset$ for $\ell < j \leq d$.

Case 1: $\ell = n + 1$. By applying (2.17) with j = n + 2, we have

$$a_{n+1}(1 - \nu_{n+1}) \ge n+1$$

and this is equivalent to

$$\frac{a_{n+1}}{a_{n+1}-1} \le \frac{n+1}{n+\nu_{n+1}}$$

Hence we have

$$\mathcal{F}_{n+1} = \left\{ p : \frac{n+1}{n+\nu_{n+1}}$$

and by (2.18) we have $\bigcup_{k=n+1}^{d} \mathcal{F}_{k} = \mathcal{F}_{n+1}$ and so we have (2.15). Case 2: $n+2 \leq \ell \leq d-1$. We will show that

(2.19)
$$\mathcal{F}_{n+1} = \left\{ p : \frac{a_{n+1}}{a_{n+1} - 1}$$

(2.20)
$$\mathcal{F}_j = \left\{ p : \frac{a_j}{a_j - 1}$$

and

(2.21)
$$\mathcal{F}_{\ell} = \left\{ p : \frac{\ell}{\ell - 1 + \nu_{\ell}}$$

Then from the condition

$$\frac{a_{d-1}}{a_{d-1}-1} \le \frac{a_{d-2}}{a_{d-2}-1} \le \dots \le \frac{a_n}{a_n-1},$$

we have

$$\bigcup_{j=n+1}^{d} \mathcal{F}_j = \left\{ p : \frac{\ell}{\ell - 1 + \nu_\ell}$$

By applying (2.17) with $n+1 \leq j < \ell$, we have

$$\ell(\nu_j - 1) \ge j(\nu_\ell - 1) = j\left(-\frac{1}{a_j} - \dots - \frac{1}{a_{\ell-1}} + \nu_j - 1\right).$$

From this we have

$$(\ell - j)(1 - \nu_j) \le j\left(\frac{1}{a_j} + \dots + \frac{1}{a_{\ell-1}}\right) \le j\frac{(\ell - j)}{a_j}$$

and so $a_j(1-\nu_j) \leq j$. This is equivalent to

$$\frac{j}{j-1+\nu_j} \le \frac{a_j}{a_j-1}$$

and we have (2.19) and (2.20). To show (2.21), by applying (2.17) with $j = \ell - 1$ and $j = \ell + 1$ we have

$$a_{\ell}(1-\nu_{\ell}) \ge \ell$$
 and $a_{\ell-1}(1-\nu_{\ell}) \le \ell$.

These are equivalent to

$$\frac{a_{\ell}}{a_{\ell} - 1} \le \frac{\ell}{\ell - 1 + \nu_{\ell}} \le \frac{a_{\ell-1}}{a_{\ell-1} - 1}$$

and we have (2.21).

Case 3: $\ell = d$. By applying (2.17) with j = d-1 we have $a_{d-1} \leq d$, hence $\frac{d}{d-1} \leq \frac{a_{d-1}}{a_{d-1}-1}$ and

$$\mathcal{F}_d = \left\{ p : \frac{d}{d-1}$$

And by (2.20) we have

$$\bigcup_{k=n+1}^{d} \mathcal{F}_k = \left\{ p : \frac{d}{d-1}$$

2.2. The case E = [1, 2] and $\nu_1 \le 1/2$

As in Section 2.1, for each $2 \le p < \infty$, the right-hand side of (2.6) is dominated by

(2.22)
$$C\left[2^{j/p}\sum_{\vec{k}} (2^{-k_1-\cdots-k_{d-1}})^{1-\frac{2}{p}} \mathbf{B}(j,\vec{k})^{2/p}\right] \|f\|_p$$

By applying Lemma 2.3(1) with N = 2 we have

$$(2.22) \le C [I(j) + II(j)] ||f||_p$$

where

$$I(j) = 2^{j/p} \sum_{i=1}^{d-1} \sum_{\vec{k}} (2^{-k_1 - \dots - k_{d-1}}) \left(2^{\min(-j+k_i,0)} \right)^{2/p},$$

$$II(j) = 2^{j/p} \sum_{\vec{k}} (2^{-k_1 - \dots - k_{d-1}}) \prod_{i=1}^{d-1} \left(2^{\min(-\frac{j}{2} + \frac{a_i}{2}k_i,0)} \right)^{2/p}.$$

1396

For p > 2, it is easy to see that

(2.23)
$$I(j) \le C \, 2^{-j/p}$$

Note that

II(j) =
$$2^{j/p} \prod_{i=1}^{d-1} \left(\sum_{k_i=1}^{\infty} (2^{-k_i}) 2^{\min(-\frac{j}{2} + \frac{a_i}{2}k_i, 0)\frac{2}{p}} \right).$$

By considering k_i in two cases $k_i \leq j/a_i$ and $k_i > j/a_i$, we have

(2.24)
$$\sum_{k_i=1}^{\infty} (2^{-k_i}) 2^{\min(-\frac{j}{2} + \frac{a_i}{2}k_i, 0)\frac{2}{p}} \leq \begin{cases} C 2^{-\frac{j}{a_i}} & \text{if } p \leq a_i, \\ C 2^{-\frac{j}{p}} & \text{if } p > a_i. \end{cases}$$

Since $d \ge 3$ we have $1/\nu_1 < a_1$. Hence by using the estimates (2.24) with $2 < 1/\nu_1 < p < a_1$ we have

(2.25)
$$II(j) \le C 2^{j(\frac{1}{p} - \nu_1)}.$$

By (2.23) and (2.25), for each $1/\nu_1 we have$

$$I(j) + II(j) \le C \left(2^{j(\frac{1}{p} - \nu_1)} + 2^{-\frac{j}{p}} \right)$$

and the series converges when

$$\frac{1}{\nu_1}$$

3. Proof of Theorem 1.3: maximal averages over the interval $E = (0, \infty)$

For the general case $E = (0, \infty)$, the L^p boundedness of the maximal operator T_E follows by the argument of M. Christ as in [3].

3.1. The general case $E = (0, \infty)$ and $\nu_1 > 1/2$

Let $E = (0, \infty)$ and define $E_l = [2^{-l}, 2^{-l+1}]$. Then we have

$$T_E f(x) = \sup_{l \in \mathbb{Z}} |T_{E_l} f(x)|.$$

And for each $t \in E_l$, we write

$$(\mathbf{T}_t f)^{\wedge}(\xi) = \widehat{f}(\xi)\widehat{\mu}(t\xi) \left(\widehat{\psi}_0(2^{-l}\xi) + \sum_{j\geq 1}\widehat{\psi}(2^{-j-l}\xi)\right),$$

then by using the condition $t \in E_l$ we have

(3.1)
$$T_{E_l} f(x) \le C M f(x) + \sum_{j \ge 1} T_{E_l} (f * \psi_{j+l})(x),$$

where M denotes the Hardy-Littlewood maximal operator. It is easy to see that

$$T_{E_l}(f * \psi_{j+l})(x) = \sup_{t \in 2^l E_l} |T_t^j(f(2^{-l} \cdot))(2^l x)|$$

where T_t^j is the same as in Section 2.1. Hence we have

(3.2)
$$\|\mathbf{T}_{E_l}(f * \psi_{j+l})\|_p \le \left\| \sup_{t \in 2^l E_l} |\mathbf{T}_t^j| \right\|_{L^p \to L^p} \|f\|_p := C_p(j,l) \|f\|_p.$$

Define $C_p(j) := \sup_l C_p(j,l)$. Note that $C_p(j) < \infty$ and the series $C_p(j)$ converges if p satisfies the condition (2.16). For a fixed positive integer \mathcal{N} , define the operator

$$\mathbf{T}_{\mathcal{N}}^* := \sup_{|l| \le \mathcal{N}} |\mathbf{T}_{E_l}|.$$

And let $A_p(\mathcal{N})$ be such that

(3.3)
$$\|\mathbf{T}_{\mathcal{N}}^*(f)\|_p \le A_p(\mathcal{N}) \|f\|_p$$

We need to prove that $A_p(\mathcal{N})$ is actually bounded by a constant independent of \mathcal{N} . Define the vector-valued operator

$$\mathbf{T} \colon \{f_l\}_{l=-\mathcal{N}}^{\mathcal{N}} \to \{\mathbf{T}_{E_l}(f_l * \psi_{j+l})\}_{l=-\mathcal{N}}^{\mathcal{N}}.$$

Then by assumption (3.3) and $|f * \psi_{j+l}(x)| \le CMf(x)$ we have

(3.4)
$$\|\mathbf{T}(\{f_l\})\|_{L^p(\ell^{\infty})} = \left\|\sup_{|l| \leq \mathcal{N}} |\mathbf{T}_{E_l}(f_l * \psi_{j+l})|\right\|_p \leq \left\|\sup_{|l| \leq \mathcal{N}} |\mathbf{T}_{\mathcal{N}}^*(\mathbf{M}(f_l))|\right\|_p$$
$$\leq \left\|\mathbf{T}_{\mathcal{N}}^*\left(\mathbf{M}(\sup_{|l| \leq \mathcal{N}} |f_l|)\right)\right\|_p \leq A_p(\mathcal{N}) \|\{f_l\}\|_{L^p(\ell^{\infty})}.$$

Also by (3.2) we have

(3.5)
$$\|\mathbf{T}(\{f_l\})\|_{L^p(\ell^p)} \le C_p(j)\|\{f_l\}\|_{L^p(\ell^p)}.$$

Hence by interpolating (3.4) and (3.5) under the condition 1 , we have

(3.6)
$$\|\mathbf{T}(\{f_l\})\|_{L^p(\ell^2)} \le A_p(\mathcal{N})^{1-\frac{p}{2}} C_p(j)^{p/2} \|\{f_l\}\|_{L^p(\ell^2)}.$$

Choose $\widehat{\Psi} \in C^{\infty}(\mathbb{R}^d)$ which is supported in $\{1/8 < |\xi| < 4\}$ and $\widehat{\Psi}(\xi) \equiv 1$ on $\{1/4 < |\xi| < 2\}$. Then we have

$$\widehat{\Psi}(2^{-j-l}\xi) = \widehat{\Psi}(2^{-j-l}\xi)\widehat{\psi}(2^{-j-l}\xi).$$

Hence from (3.6), we have

$$\begin{aligned} \left\| \sup_{|l| \le \mathcal{N}} |\mathcal{T}_{E_{l}}(f * \psi_{j+l})| \right\|_{p} &= \left\| \sup_{|l| \le \mathcal{N}} |\mathcal{T}_{E_{l}}(f * \Psi_{j+l} * \psi_{j+l})| \right\|_{p} \\ &\leq \left\| \left(\sum_{|l| \le \mathcal{N}} |\mathcal{T}_{E_{l}}(f * \Psi_{j+l} * \psi_{j+l})|^{2} \right)^{1/2} \right\|_{p} \\ &\leq A_{p}(\mathcal{N})^{1-\frac{p}{2}} C_{p}(j)^{p/2} \left\| \left(\sum_{|l| \le \mathcal{N}} |f * \Psi_{j+l}|^{2} \right)^{1/2} \right\|_{p} \\ &\leq A_{p}(\mathcal{N})^{1-\frac{p}{2}} C_{p}(j)^{p/2} \left\| f \right\|_{p}. \end{aligned}$$

Adding in j and comparing this with (3.1) and (3.3), we have

$$A_p(\mathcal{N}) \le C + A_p(\mathcal{N})^{1-\frac{p}{2}} \sum_{j \ge 1} C_p(j)^{p/2}.$$

If p satisfies the condition (2.16), then the series $C_p(j)^{p/2}$ converges and thus $A_p(\mathcal{N}) \leq C$.

3.2. The general case $E = (0, \infty)$ and $\nu_1 \leq 1/2$

For $2 \leq p < \infty$, we have

$$\begin{aligned} \left\| \sup_{l} |\mathcal{T}_{E_{l}}(f * \psi_{j+l})| \right\|_{p} &= \left\| \sup_{l} |\mathcal{T}_{E_{l}}(f * \Psi_{j+l} * \psi_{j+l})| \right\|_{p} \\ &\leq \sum_{l} \left\| \mathcal{T}_{E_{l}}(f * \Psi_{j+l} * \psi_{j+l}) \right\|_{p} \leq C_{p}(j)^{p} \sum_{l} \left\| f * \Psi_{j+l} \right\|_{p} \\ &\leq C_{p}(j)^{p} \left\| \left(\sum_{l} |f * \Psi_{j+l}|^{2} \right)^{1/2} \right\|_{p} \leq C_{p}(j)^{p} \|f\|_{p} \end{aligned}$$

and the series $C_p(j)^p$ converges when $1/\nu_1 .$

Acknowledgments

The authors would like to thank the referee for the careful reading and valuable suggestions to improve the presentation of this paper.

References

 J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85.

- [2] J. Bruna, A. Nagel and S. Wainger, Convex hypersurfaces and Fourier transforms, Ann. of Math. (2) 127 (1988), no. 2, 333–365.
- [3] J. Duoandikoetxea and A. Vargas, Maximal operators associated to Fourier multipliers with an arbitrary set of parameters, Proc. Roy. Soc. Edinburgh Sect. A. 128 (1998), no. 4, 683–696.
- [4] A. Greenleaf, Principal curvature and harmonic analysis, Indiana Univ. Math. J. 30 (1981), no. 4, 519–537.
- [5] I. A. Ikromov, M. Kempe and D. Müller, Damped oscillatory integrals and boundedness of maximal operators associated to mixed homogeneous hypersurfaces, Duke Math. J. 126 (2005), no. 3, 471–490.
- [6] _____, Estimates for maximal functions associated with hypersurfaces in \mathbb{R}^3 and related problems of harmonic analysis, Acta Math. **204** (2010), no. 2, 151–271.
- [7] A. Iosevich, Maximal operators associated to families of flat curves in the plane, Duke Math. J. 76 (1994), no. 2, 633–644.
- [8] A. Iosevich, E. Sawyer and A. Seeger, On averaging operators associated with convex hypersurfaces of finite type, J. Anal. Math. 79 (1999), 159–187.
- [9] A. Nagel, A. Seeger and S. Wainger, Averages over convex hypersurfaces, Amer. J. Math. 115 (1993), no. 4, 903–927.
- [10] C. D. Sogge and E. M. Stein, Averages of functions over hypersurfaces in Rⁿ, Invent. Math. 82 (1985), no. 3, 543–556.
- [11] E. M. Stein, Maximal functions I: Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175.
- [12] _____, Harmonic Analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993.
- [13] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295.
- [14] A. N. Varčenko, Newton polyhedra and estimates of oscillatory integrals, Funkcional. Anal. i Priložen. 10 (1976), no. 3, 13–18.
- [15] E. Zimmermann, On L^p-estimates for Maximal Averages over Hypersurfaces not Satisfying the Transversality Condition, Ph.D Thesis, 43, der Christian-Albrechts-Universitt zu Kiel, 2014.

Yaryong Heo Department of Mathematics, Korea University, Seoul 136-701, Korea *E-mail address*: yaryong@korea.ac.kr

Sunggeum Hong Department of Mathematics, Chosun University, Gwangju 61452, Korea *E-mail address*: skhong@chosun.ac.kr

Chan Woo Yang Department of Mathematics, Korea University, Seoul 136-701, Korea *E-mail address*: cw_yang@korea.ac.kr