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Global Well-posedness of Weak Solutions to the Time-dependent
Ginzburg-Landau Model for Superconductivity

Jishan Fan and Tohru Ozawa*

Abstract. We prove the global existence and uniqueness of weak solutions to the time
dependent Ginzburg-Landau system in superconductivity with Coulomb gauge.

1. Introduction

We consider the existence and uniqueness problem for the 3D Ginzburg-Landau model in

superconductivity:

(1) s inkos+ (19 4.4) s (i — g =0,

(1.2) atA+V¢+cur12A+Re{<;V¢—|—1/)A> ¢} = curl H

in Qr := (0,T) x Q, with boundary and initial conditions

(1.3) Viy-v=0, A-v=0, culAxv=Hxv on(0,7)x 08,
(1.4) (4, A)(-,0) = (Yo, Ao) (") in .

Here, the unknowns ¢, A, and ¢ are C-valued, R2-valued, and R-valued functions, re-
spectively, and they stand for the order parameter, the magnetic potential, and the electric
potential, respectively. T'wo positive constants n and « are Ginzburg-Landau constants,
g is a positive function that depends on the material as well as on the temperature and
other variables, H is the applied magnetic field, and i := \/—1. % denotes the complex
conjugate of 1, Ret) := (¢ +10)/2 is the real part of 1, and |[¢|* := 97 is the density of
superconductivity carriers. T is any given positive constant. € is a simply connected and
bounded domain with smooth boundary 02 and v is the outward unit normal to 0f).

It is well-known that the Ginzburg-Landau equations are gauge invariant, namely, if
(1, A, ¢) is a solution of 7, then (vYe*X, A + Vx, ¢ — dyx) is also a solution for
any real-valued smooth function x. Accordingly, in order to obtain the well-posedness of
the problem, we need to impose some gauge condition. From physical point of view, one

may usually think of four types of the gauge condition:
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(1) Coulomb gauge: divA =0in Q and [, ¢dx = 0.
(2) Lorentz gauge: ¢ = —div A in Q.

(3) Lorenz gauge: 0y = —div A in Q.

(4) Temporal gauge (Weyl gauge): ¢ =0 in .

For the initial data (1o, Ag) € Wy = {(v0, Ao) | Yo € L>® N H, Ay € H'}, Chen et
al. [4,5], Du [6], Fan and Ozawa [9], and Tang [12] proved the existence and uniqueness
of global strong solutions to f in the case of the Coulomb, Lorenz and Lorentz
as well as temporal gauges.

For the initial data 19, A9 € L?, under the Coulomb or Lorentz gauge, Tang and
Wang (2-D) [13], Fan and Jiang (3-D) [8] proved the global existence of weak solutions.
Fan and Ozawa (2-D) [10] and Fan, Gao and Guo (3-D) [7] proved the global existence
and uniqueness of weak solutions for v, Ag € L% with d = 2, 3.

Here we point out that all the above results [4-10,/12,/13] require ¢ = 1 and H is
smooth.

We will assume that
.2 3 3
(1.5) g:=g(x,t) e LP(0,T;LY(Q)) with —+—-=2,1<p< oo and 5 <4 < o0,
p q
(1.6)  H:= H(x,t) € L*(0,T; L*(Q)) N L*>?(0,T; L*(99)).

The aim of this paper is to study the well-posedness of the problem (|1.1))—(1.4)) under
the conditions (|1.5)) and ((1.6)), we will prove

Theorem 1.1. Let 19, Ag € L? and (1.5) and (1.6) hold true. Then there exists a unique
weak solution (¢, A) of (1.1))—(1.4) with the choice of Coulomb gauge, such that

(1.7) Y, Ae W = L>®(0,T; L) N L*(0,T; H') n L*>(Q x (0,T)),
(1.8) o), 0y A € W' := the dual of W
for any T > 0.

In our proofs, we will use the following lemmas.

Lemma 1.2. |[1,11] Let Q be a smooth and bounded open set in R3. Then there erists
C > 0 such that

(1.9) | £llzeon) < CUFEo@n 1F % ey

for any 1 < p < oo and f: Q — R3 in WHP(Q).
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Lemma 1.3. [2] Let Q be a reqular bounded domain in R3, let f: Q — R3 be a smooth
enough vector field, and let 1 < p < co. Then, the following identity holds true:

. . p—2 _ p—2 2 4(p —2) p/2)2
/QAf F1P2 de /Qlfl Vi 22 /QIV!f\ 2 du

(1.10)
—/ P2 - V)f - fdS.
o0

Lemma 1.4. [3,8] Let 1, A € W and | £V + Y A| |[|V/2 € L2(Qr), then Vo € L/3(Qr)
N L%(0,T; L3/?) satisfies

(1.11) —A¢p = divRe{<livw+wA> w} in Qr,

(1.12) Vo-v=0 on (0,T) x 09.

2. Proof of Theorem

By the results proved in [7,[8], one can prove a similar well-posedness result of strong
solutions. We take 10, € H'NL™, Ao, € H', g, € H*(Q2x(0,T)) and H,, € H*(2x(0,T))
such that

lYon — volls = 0, |[Aon — Aolls — 0,

|gn — gHLP(O,T;Lq(Q)) =0, |[[Hp— HHL2(0,T;L3(Q))ﬂL3/2(0,T;L3(BQ)) —0

as n — oo. Thus we have a unique strong solution 1, A,, with the data (Yon, Aon, gn, Hn).
We want to establish a priori estimates and uniformly with respect to n. Then
by the standard compactness argument, we can get ¥, — ¥ and A, — A asn —
(see Section 3| below), thus we conclude that the existence of weak solutions and a prior
estimates and . Now we drop the subscript “n” of 1, and A, and do as follows.

Multiplying by 1, integrating by parts, and then taking the real part, we see that

nd i
th/Mde—i—/‘kvw—i-wA

_ / g1l di < Nlgll o182 20yay

2-3 3
< Cllgllzallwl72* IV 111155 + Cllgllzallvw] 32
2
T Cllglga 911> + ClllIZ
L

2
dx + / [|* da

IN

11
5[

2

142
<3 ka + 94| +Cllglia 0l + CllvI
L
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which gives

i
(2.1) 191 oo 0,112y + Hka) + YA <C.
L2(0,T;L?)
Here we have used the Gagliardo-Nirenberg inequality
1-3/(2q) 3/(2
(2.2) lll 2o < Clell IV R + Ol 2,

and the diamagnetic inequality

(2.3) ';vw\‘ <

1
kvwwA‘.

Similarly, multiplying (1.1} by ]1/1@, integrating by parts, and then taking the real

part, and using ((1.10]), (2.2]) and , we have

3
dx A
s [Pt [|ivvsy
< / gl de < ||glpalll61P 2000 = lgllzallwagqory  (w = [[?)
3 3
< gl zallwll 2 Vw2 + Cllgl paljw] 22

1 2
5570+ sl + Dl
L

|d:v—|—/|w|5dx

IN

%V”w

1 (i 2
< — —
_2/‘kw+zp,4

(9] dz + C(llgliz, + DIl llZs,

which leads to

(2.4) sup /|¢|3da:+/0T/‘]iV¢+wA2

0<t<T

T
/ /|w[5dxdt§ C.
0
Testing (1.2]) by A and using ([2.4]), we obtain

th/\A|2dx+/|curlA|2dx—/chrlAdx

L7 + 0| vl do

{
-V +wA’ Y2 el Al de

Lv0 -+ v ol

) 112 s | All o
L

<C H‘lvw + sz‘ |2

(IAllz2 + [l curl Afl )
L2

[

+Cl A7,
L2

[\)

< Ljcurt a2, +CH\ wwA\ e




GL Model with Critical Data 855

which implies
| All oo 0,7;22) + 1 All 20,701y < C-

Since
T T
/ / AP dedt < ]2 / |42 dt < C,
0 0

it follows from ([2.1)) that
¥l 220,711y < C.

Testing (1.2)) by |A|A and letting u := |A[3/2, using (T.3), (L.9), (L.10), (T.11)), (T.12),
(2.4)), and the vector identities

(v-V)A-A=(A-V)A-v+ (curl A x v)A,

and
(A-VA-v=—A-V)v-A, (A-v=0o0n (0,7) x 0),

we arrive that

i " d:L‘+CO/|Vu d:v+Co/|A||VA|2dx
5/ kaJ—H/JA’|¢|u4/3dx+/\v¢|u4/3dx+0/ u?dS
o0
+0/ H % y]u4/3dS+C/ \H!\A[1/2]Vu\dx+0/ H|[A||V A da
o0 Q Q

<C 12 s w2 s + [V @l asellu/?| s

Lv0 -+ val ol

L2
+ Cllull L2y llull 710y + CHHHL?r(aQ)Hu4/3HL3/2(aQ)

+ CH|| s 1A [Vl 2 + C /Q |H||A||VA| da

<c|

(v + v 2

i w2 sl s + Cllull 2y l[ull 1.0
L
C 4/3 1/2
+ CllH | oo llull 12 50) + ClH | s @) 1Al Vull2 + C \HHAHVAIdx

1
< O |2 Vw+wA| 2| el + Cllullze el
L2

+ CIIH | ogomy (lull 2 lull ) + ClUH | ooy AN (1 Vel 22 + A2V Al 12)

/) 4 4
<C ||zt eA [l (ul Tl + ull ) + Clul el
L

1/2
+ CllH | agony (lull 2 lull 1) + ClLH s AL (V2 + A2V Al 2)

2
12 3

< J||Vu!\%2 + JH A2V A|2, 4+ C L+ A
2 2 k 12
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+c|

LV -+ val

4/3 4/3
Ml + Cllulize + Ol H | ago lull
L

3/2
+ CIH | gy el 2 + CILH sy 1A s,

which implies
I All oo 0,m528) + 1 AllLs(@p) + VUl L2(gr) < C.

Here, we have used

V1,0 < €| (370 +04) 3

<C H‘;W} + wA‘ |/

M2

L3/2 L

and the Gagliardo-Nirenberg inequality

1/4
L2

3/4

[ull L4 < Cllull 12

IVullyz + Cllull 2

The proof of uniqueness follows from [7] and the a priori estimates (1.7 and thus we
omit the details here.

This completes the proof.

3. Appendix

In this section, we will give the precise definition of weak solutions and explain more

details of the proof of the existence of weak solutions.

Definition 3.1 (Weak solutions). (1, A, ¢) is called a weak solution to the problem (|1.1])—
(1.4) in 2 x (0,7) under the Coulomb gauge if

Y, Ae W :=L®0,T; L3N L*0,T; H)YNL°(0,T; L?), V¢ e L*3(Qr)nL?*0,T;L%?),
and
r i i )
/ / [—mﬁwt + inkoypw + <kV1/J + 1/1A> (ka + Aw) + (|p]° — g)ww] dzxdt =0
0
for any w € C§°(Q x [0,T7), w(-,0) =w(-,T) =0, and
T .
/ / [—ABt + V¢B + (curl A — H) curl B + Re (;Vv,b + wA> P - B] dxdt =0
0
for any B € C§°(2 x [0,T]), B(-,0) = B(-,T) =0.
We have an approximate solution (¢, Ay, ¢,) satisfying

[nllw + [ Anllw < C,
10 llwr + |0cAnllw < C,
IVOnllLsrs @y + IVORll 20,082 < C.
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By standard compactness principle (e.g., Lions-Aubin lemma) we have
¢n — ¢ weakly in L2(0,T; L?),
¥ — ¢ strongly in L*(0,T; L3/2),

which gives
Onn — ¢y in the sense of distributions.

On the other hand, we have

Vb, — Vi weakly in L?(0,T; L?),
A, — A strongly in L*(0,T; L?),

which implies
Vi, - An — V- A in the sense of distributions.

It is easy to verify that

¥y — ¢ strongly in LP(0,T;LP), 1<p<5,
A, — A strongly in LP(0,T;LP), 1<p <5,

which implies

[¢n|*n — [¢|*  srtongly in L'(0,T; L),
UnlAnl> = P|A]* srtongly in L'(0,T; L),
[l A, — []2A  srtongly in L'(0,T; LY).

Now it is easy to completes the proof.
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