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Minimal Ruled Submanifolds Associated with Gauss Map

Sun Mi Jung, Dong-Soo Kim and Young Ho Kim*

Abstract. We set up the new models of product manifolds, namely a generalized
circular cylinder and a generalized hyperbolic cylinder as cylindrical types of ruled
submanifold in Minkowski space. We also establish some characterizations of gener-
alized circular cylinders and hyperbolic cylinders in Minkowski space with the Gauss
map. We also show that there do not exist non-cylindrical marginally trapped ruled
submanifolds with the pointwise 1-type Gauss map of the first kind, which gives a
characterization of non-cylindrical minimal ruled submanifolds in Minkowski space.

1. Introduction

Ruled submanifolds in Euclidean space or Minkowski space are defined in such a way that
they are foliated by totally geodesic submanifolds over a curve. By extending the classical
results on minimal surfaces in 3-dimensional Euclidean space to ruled submanifolds in
Fuclidean space, minimal ruled submanifolds are proved to be generalized helicoids or
planes [3]. Similarly we can consider minimal ruled submanifolds in the Minkowski space
L™. However, because of the causal characters of generators, not many works on ruled
submanifolds in the Minkowski space L™ including those of ruled surfaces in 3-dimensional
Minkowski space have been made. Very recently, two of the authors characterized minimal
ruled submanifolds of the Minkowski space L™ [20]. In [21}22], some new examples of
ruled submanifolds with degenerate rulings in L™ were introduced.

A submanifold M in an Euclidean space E™ or a pseudo-Euclidean space E" is said to
be of finite-type if its isometric immersion z: M — E™ or x: M — E7* can be represented
as a sum of finitely many eigenvectors of Laplacian A. In [6] B.-Y. Chen et al. proved that
a ruled surface of finite-type in an m-dimensional Euclidean space is an open part of either

a cylinder over a curve of finite-type or a helicoid in E3. It follows that a ruled surface of
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finite-type in E? is part of a plane, a circular cylinder or a helicoid. F. Dillen extended
these results to ruled submanifolds in Euclidean space with finite-type immersion [14]. (For
finite type immersions, see |4].) Of course, such a notion of finite-type can be extended to
any smooth maps on submanifolds.

As is well known that Gauss map plays an important role in the theory of submanifolds.
For oriented surfaces of 3-dimensional Euclidean space, it can be used to measure the total
curvature of the Gauss curvature which gives some topological character. However, a right
cone or a helicoid in Euclidean 3-space has its Gauss map G satisfying AG = f(G + O)
for some non-zero function f and a constant vector C. Generalizing such a notion, one
of the authors defined a notion of pointwise 1-type Gauss map: The Gauss map G on a

submanifold M in L™ is said to be of pointwise 1-type if it satisfies
AG = f(G+C)

for some non-zero smooth function f and a constant vector C' [5]. More precisely speaking,
if C'is zero, it is said to be of pointwise 1-type of the first kind. Otherwise, it is said to be of
pointwise 1-type of the second kind [5,[8H1226[27]. Especially, submanifolds of Euclidean
space or Minkowski space with pointwise 1-type Gauss map of the first kind have close
relationship with those with constant mean curvature. In [27,28], the authors proved that
ruled surfaces in Minkowski space with pointwise 1-type of the first kind are minimal or
of constant mean curvature depending on the dimension of the ambient space. Recently,
U. Dursun showed that all oriented hypersurfaces in Minkowski space with constant mean
curvature are characterized with pointwise 1-type Gauss map of the first kind [15]. In [16]
all flat timelike rotational surface of elliptic and hyperbolic types with pointwise 1-type
Gauss map of first and second kind are classified.

On the other hand, for the ruled surfaces with null rulings in Minkowski m-space,
two of the present authors et al. defined the extended B-scroll and the generalized B-
scroll which are generalizations of a usual B-scroll in 3-dimensional Minkowski space and
they completely classified the family of ruled surfaces of Minkowski space with finite-type
Gauss map [1,2L[23[[24]. In [19,25] the ruled surfaces and the ruled submanifolds of finite-
type immersion in Minkowski space were studied and classification theorems of such ruled
surfaces and ruled submanifolds were given.

Very recently the authors classified ruled submanifolds with harmonic Gauss map in
Minkowski space and characterized minimal ruled submanifolds in Minkowski space with
harmonic Gauss map [21].

A submanifold M in a pseudo Riemannian manifold NV is said to be marginally trapped
(or pseudo-minimal) if its mean curvature vector is null. In particular, marginally trapped
surfaces in a space-time which play an important role in general relativity have been
studied by many scientists |7}/13,[17,30]. In [29], V. Milousheva and N. C. Turgay proved
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that a non-flat marginally trapped surface with flat normal connection has pointwise 1-
type Gauss map if and only if it has constant mean curvature.

We now pose a natural question: Can we completely classify ruled submanifolds in
Minkowski space with pointwise 1-type Gauss map of the first kind?

In this paper, we study ruled submanifolds of ™ with the notion of the Gauss map of
pointwise 1-type of the first kind and examine an relationship regarding ruled submanifolds

of L™ with constant mean curvature.

2. Preliminaries

Let E7* be an m-dimensional pseudo-Euclidean space of signature (m—s, s). In particular,
for m > 2, ET" is called a Lorentz-Minkowski m-space or simply Minkowski m-space, which
is denoted by L™. A curve in L™ is said to be space-like, time-like or null if its tangent
vector field is space-like, time-like or null, respectively.

Let : M — E7* be an isometric immersion of an n-dimensional pseudo-Riemannian
manifold M into E7*. From now on, a submanifold in EI* always means pseudo-Riemannian,
that is, each tangent space of the submanifold M in EI" is non-degenerate.

Let (z1,22,...,xy) be a local coordinate system of M in E}*. For the components g;;
of the pseudo-Riemannian metric (-,-) on M induced from that of E”*, we denote by (g%/)
(respectively, G) the inverse matrix (respectively, the determinant) of the matrix (g;;) of

the components of the induced metric (-, -). Then, the Laplacian A defined on M is given

by
1 0 0
A= Ly 9 (g w).
,/|g|%:8xi< 919" 5a;

We now define the Gauss map G on M with the Grassmannian manifold. Consider the
map G: M — G(n,m) of a point p of M mapped to the oriented tangent space at p, where
G(n,m) is the Grassmannian manifold consisting of all oriented n-planes passing through
the origin. Roughly speaking, it can be achieved by parallel displacement of the oriented
tangent space at p to the origin of L. By an isomorphism, G(n,m) can be identified
with G(m — n,m). Let us express the Gauss map rigorously. Choose an adapted local
orthonormal frame {e1,es,... ey} in E7* such that e, eq,..., e, are tangent to M and
€ni1,€ni2;---,€m Normal to M. Define the map G: M — G(n,m) C EN (N = ,,C,),
G(p) = (et Nea A=+ Aen)(p).

An indefinite scalar product ({-,-)) on G(n,m) C E¥ is defined by

<<ei1 N Neg,,ej A A ejn>> = det(<eil7ejk>)'

Then, {e;; ANej, Ao Nej, | 1 <ip <--- <i, <m} is an orthonormal basis of Efgv for

some positive integer k.
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Now, let us recall the notion of a ruled submanifold M in L™. A non-degenerate
(r +1)-dimensional submanifold M in L™ is called a ruled submanifold if M is foliated by
r-dimensional totally geodesic submanifolds E(s,r) of L™ along a regular curve o = «(s)
on M defined on an open interval I. Thus, we can give a parametrization of a ruled
submanifold M in L™ by

T
(2.1) x =x(s,ty,te,...,t,) = as) + Ztiei(s), sel, t; €l
i=1
where I;’s are some open intervals for i = 1,2,...,r. Without loss of generality, we may as-

sume that 0 € I; for alli = 1,2,...,r. For each s, E(s,) is open in Span{e;(s), e2(s),. ..,
er(s)}, which is the linear span of linearly independent vector fields ej(s), ea(s), ..., er(s)
along the curve . Here, we assume E(s,r) are either non-degenerate or degenerate for
all s along a. We call E(s,r) the rulings and « the base curve of the ruled submanifold
M. In particular, the ruled submanifold M is said to be cylindrical if E(s,r) are parallel

along «, or non-cylindrical otherwise.

Remark 2.1. [19,20] (1) If the rulings of M are non-degenerate, then the base curve «
can be chosen to be orthogonal to the rulings as follows: Let V be a unit vector field on
M which is orthogonal to the rulings. Then « can be taken as an integral curve of V.
(2) If the rulings are degenerate, we can choose a null base curve which is transversal
to the rulings: Let V be a null vector field on M which is not tangent to the rulings. An

integral curve of V' can be the base curve.

Definition 2.2. [7] A space-like submanifold M of the Minkowski space L™ is called

marginally trapped or pseudo-minimal if the mean curvature vector field is null.

Definition 2.3. [18] An (r + 1)-dimensional cylindrical ruled submanifold M is called a
generalized circular cylinder ¥ x E"! if the base curve « is a circle and the generators of

rulings are orthogonal to the plane containing the circle o, where ¥ is a circular cylinder
in E3.

Similarly, we can define the generalized hyperbolic cylinder.

Definition 2.4. An (r + 1)-dimensional cylindrical ruled submanifold M is called a gen-
eralized hyperbolic cylinder ¥ x E™™! if the base curve « is a hyperbola in L2 and the
generators of rulings are orthogonal to the plane containing the hyperbola «, where ¥, is

a hyperbolic cylinder over « in L3.

By solving a system of ordinary differential equations similarly set up relative to a

frame along a curve in L™ as given in [3], we have
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Lemma 2.5. [20] Let V(s) be a smooth l-dimensional non-degenerate distribution in the
Minkowski m-space L™ along a curve a = «(s), where | > 2 and m > 3. Then, we can
choose orthonormal vector fields e1(s), ..., em—i(s) along o which generate the orthogonal
complement V1 (s) satisfying €.(s) € V(s) for 1 <i <m — L.

Let M be a non-cylindrical ruled submanifold in I.”™" whose some of generating vector
fields of rulings are constant vectors fields. By modifying a similar argument to get

Proposition 3.3 in [18], we have

Proposition 2.6. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold of
L™ parametrized by . Suppose that some of generators ej,,ej,, ... €5 (1 <k <r)
of the rulings are constant vectors along ov. Then, M has pointwise 1-type Gauss map of
the first kind if and only if the ruled submanifold My has pointwise 1-type Gauss map of
the first kind, where My is non-cylindrical ruled submanifold defined over the base curve

a with the rulings generated by e; for j # ji,52,-- ., Jk-

3. Marginally trapped ruled submanifolds in L™

Let M be a marginally trapped ruled submanifold in the Minkowski space L™ parameter-

ized by
T
(3.1) x =x(s,ty,te,...,t,) = as) + Ztiei(s), sel, t; el
i=1
where I;’s are some open intervals for ¢ = 1,2,...,r. Without loss of generality, we

may assume that « is a unit speed curve, that is, (¢/(s),a/(s)) = 1, and 0 € I; for all
i=1,2,...,r. Also, by Remark and Lemma we may assume that orthonormal

vector fields e (s),. .., e (s) along « satisfy
(a,e;)) =0= (e}, e;) and (ejej) =0

for i,7=1,2,...,r. From now on, the prime ’ stands for d/ds unless otherwise stated.

Then, the mean curvature vector field H of M is defined by

1 T T .
H = h( - ) 2 ) + h(ajti?Iti)
r+1 { @]l [ls]] ;

1 |1 -
= {h(ms,xs) + Zh(:ﬁti,xti)} ,

q =1

where h is the second fundamental form of M and ¢ is the function of s and ¢; defined by

T '
q=(Te,xs) =1+ 2uiti+ > wijtit;,
i=1 ij=1
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- e;-> fori,57 =1,2,...,r. Note that ¢ is a polynomial

int=(ty,...,t,) with functions in s as coefficients. From now on, for a polynomial F'(¢)
int = (t1,t2,...,t,), deg F(t) denotes the degree of F(t) in t = (t1,t2,...,t,) unless

otherwise stated.

where u;(s) = (d/, €}) and w;j(s) = (e

Since M is marginally trapped and z;;;, = 0,

1 1 :
(3.2) H= ?q <xss — 6<xss>xs>xs - Z<x537xti>$ti>
i=1
is null at each point of M. Therefore, we can consider a pseudo-orthonormal normal frame

field {ni,n2,€r43,...,€m—1} such that

ny=H, (ni,n1)=0=(ng,n2), (ni,n2)=—1,

(n1,eq) = 0= (no,e,) and (eq,ep) = dap

fora,b=r+3,r+4,...,m— 1.

Now, we will show that there do not exist marginally trapped ruled submanifolds in
L™ with pointwise 1-type Gauss map of the first kind.

Suppose that a marginally trapped ruled submanifold M of LL”* has pointwise 1-type
Gauss map of the first kind.

First, we consider the case that e are non-null for all : = 1,2,...,7. If ¢/, = 0 for all
i, that is, M is cylindrical, then

q=1

and the mean curvature vector field H, the Gauss map G and the Laplacian A of M are

respectively given by

1 7 0
H = "G =ad ANeg A A d A=———-) —,
(% « €1 €, an 882 2 at?

where 0 denotes zero vector. Note that o is null for all s. Equation AG = fG provides
that
Ao NegAN---Nep = fa' Ney A+ Ney,

which gives

o = —fd,
where A’ = —0?/0s? is the Laplacian of a. But,
0 — <a//7a//> — _< I”,O/> — f(a/’a/> — f

for all s, a contradiction. Therefore, according to Proposition we may assume that

e; is non-zero for all . In this case, degq = 2. As will be used the same argument to be
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developed in Section [ we quote the result
%
0s
if AG = fG. Thus, the mean curvature vector field H of (3.2)) is expressed as

1
(3.3) + Z (wijo/’ + 2u;€] 4 2u; Z wjker + wij Z ukek> tit;
k=1 k=1

4,5=1

T T
+ Z <wijeg + wyj Zwkl€l> tl'tjtk} .

i,5,k=1 =1

=0

Also, the Gauss map G and the Laplacian A of M are given by respectively,

1 T
- g2 (IH_Zti\PJ' :
j=1

1 9¢g 0 102 Z@q@ e

T 229505 qOs?

—,
Ot; Ot;  — o
where ® and V¥, are the vectors defined by

d=0d'ANegA---Ae, and \I/i:e;/\el/\---/\er.

Then, the equation AG = fG can be rewritten as

T T
1
" "
q| @ +th\11j fﬁquti\PZ
7j=1 i=1
1 ' ) ) T
+ §Z(qti—qqtiti)+fq O+ t;0;] =0
j=1

i=1
Note that the left-hand side of (3.4]) is a polynomial of ¢ with the functions of s as the
coeflicients.

Meanwhile, along the curve o, we may put

(3.5) o == we; + (o)h,
=1

where 1 denotes the normal parts of the corresponding vector fields. Since the mean
curvature vector field H is null along the base curve a, (3.3) and (3.5)) tell us that (a”)*

has to be null for all s. Furthermore, we can see that

1

H=—
r+1

(a//)L
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along the curve a. Therefore, using the frame {a/,e1,...,€,,n1,n2,€,43,...,€m_1}, along

the curve «, we can put

" "
o =— g uie; — (@, na)nq,
" /I/ " " ///
o = (E >a+ E e; — (& n2yny — (&, n1)ng + E a)€a,

! / / / /
(36) e = uia — (e}, nz)n1 — <ei,n1>n2+ E (€f ea)ea)
" 1 / / 1 /i /i
e; = (ej,a')a’ — g wije; — e-,n2>n1—<ei,n1 ng + E e;, €q)ea,
n /// /// n ///
€, = + E 1 <€i ;n2>nl - e n2 + E

fori,j=1,2,...,7rand a =r+3,...,m — 1. Here, (o', n3) has to be non-zero for all s.
We now examine (3.4]), from the definitions of ® and V¥, we obtain

T
‘I)”:O/”/\61/\"'/\6r+22a"/\61/\"'/\6;/\"'/\@
i=1

.
+2) o/ Aer A NEA - Aey A /\eT—i-Za ANerA---NeN---Ney,
i<k i=1

T
V=€ Net A Nep+2) el Ner Ao Aej A Ney
i=1

.
+2) e Aer A A A AN /\er—&—Ze ANerA---Nel N Ney.
i<k i=1

From which, we see that equation consists of ten different types of vectors formed
with the wedge products of (r + 1) vectors. Putting into ¥; and , we can
decompose the left-hand side of into the tangential and the normal parts. By using
the orthogonality of o/, e;, n1, ns and e,, we have

T

S aNer A NegA - Ae A Aep =0,

T

D At NN AN Nep =0

(2

as the vectors containing o’ and two normal vectors for i, j, k € {1,2,...,r}. Considering
the normal components of vectors contained in ®” as part of the constant terms of the
left-hand side of ([3.4), we obtain

(3.8) 2ui (', ng) — (€], na) =0,
(3.9) (@ ng)(ef,m) =0, (o, n2)(€} eq) =0,
(3.10) (€f,m) =0 and (€] ,e,) =0
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as the coefficients of &’ Aej A- - Aej_1AniAej 1N - Nep, niAerA- - Aej_1 AngAejp1 A\ - -Ney,
nigANerN---Nej_1NegNejp1 AN Nep, 0//\61/\--~/\ej_1/\n2/\ej+1/\---/\er and
o NetN---Nej_1ANegANejpr A---Nep forall j =1,...,randa=r+3,...,m—1,
respectively. Equations , and yield that

(3.11) e = uja’ — (e}, na)ny,

,
e = (€], a')a + Zwﬂei — (€], n2)n1.
=1

Together with (3.6), (3.11) and u}; = 0, (€], a’) + (€}, a”) = 0 implies that
T
(3.12) e = ijiei — (€], na)n,.
i=1

Note that u;(s) # 0 because €’ is non-null for all j and for s € I. Similarly, with the help
of (3.11) and (3.12)), considering the normal parts of vector fields contained in W7 of the
left-hand side of (3.4)), we get

(3.13) 2uy (€5, na) — uj(eg,n2) =0

as the coefficients of o/ A e; N---Nej_1AnitANejpr A---ANep forall j,k=1,...,r. Using

" > " implies

2uju(a”’,ng) =0

which is a contradiction.
Therefore, we can conclude that e; has to be null for some j € {1,2,...,7}. So, we
suppose that some generators ej, , ej,, ..., ej, of the rulings have null derivatives along the

base curve «a for j; < jo < -+ < jr € {1,2,...,r}. We can rewrite the parametrization

(13.1) of M as

k
x(s,t1, -+ ,t) = a(s) + Z tiei(s) + thieji(s).
i=1

i¢j17j27"'?jk

Then, there are two possible cases such that either all of e, ,,...,e;, generating the
rulings except ej, (s),€;,(5),...,e;.(s) are constant vector fields or not.

Case 1. Suppose that ej,_,,...,e;. are constant vector fields. In this case, according

to Proposition we may assume that e is null for all ¢ = 1,...,r, otherwise the ruled
submanifold M is a cylinder over the ruled submanifold parameterized by the base curve
a and the rulings generated by e;’s except those constant vector fields. We then have

three possible subcases according to the degree of q.
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Subcase 1.1. Let degq(t) = 0. In this case, e are null with €}(s) A ej(s) = 0 for

1,1 =1,2,...,7r and <o/(s),e;-(s)> =0 for j =1,2,...,7. The mean curvature vector field

H is given by

1 T
(3.14) H=-— (o/’ + Ztie;’> .

i=1

Clearly, H is null along the curve o which implies that o has to be null for all s € I.
Also, the nullity of H yields that

(" 0y = {a", ) = (el el) =0

and hence

" Nel' =0
for all 7. Therefore, we can put
(3.15) ¢ (s) = ¢i(s)a’(s)

for some functions ¢; of s and for all i. With the help of (3.14) and (3.15]), we have

(3.16) H=-— <1+;¢th>a.

On the other hand, the Gauss map of M is given by
T
i=1

and AG = fG implies

(@ Neg A Nep)' =—fa' Net A+ ANep,
(einer N Nep) = —Ffei Net A+ Aep,

or, equivalently,

T
o/"/\el/\“'/\€r+22a/’/\61/\"‘/\63/\"'/\67"

(3.17) =

T
+Y A Ner A NN Nep=—fo Ner A Ney,
7j=1

T
(3.18) e;”/\el/\--~/\e,«+Ze;’/\el/\---/\e;-/\-~-/\e,~:—fe;-/\el/\-~-/\er.

J=1
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By (3.15) and (3.16)), using the frame {do/,e1,...,e,,n1,n2,€r43,...,€m—1}, along the

curve «, we have

o = —<O¢”, n2>n1,

a”/ = Z<a”/’ ej>€j — <a"’, n2>n1 - <0/,/, n1>n2 + Z<Oém7 ea>ea7
j a

(3.19) ¢; = —(e},na)n1 — (¢j,na)ng + Y (e}, €a)ea,
a
e;/ = —<e§',n2>n1,
e = —(ef’,ng)ny — (e}, m)na + Y (e}, ea)ea
a

fori,j=1,2,...,randa=7r+3,...,m—1. Using (3.18)) and (3.19)), we repeat the same
methods to get (3.8)), (3.9), (3.10) and (3.13). Then, from (3.18]), we get

(3.20) (ef',na) = —f(ej,na),
(3.21) (ef',m1) = —f(e},n1),
(3.22) (ef' ea) = —f (€], ea),
(3.23) (ef ,ma) (e}, m1) = (e}, na)(e}, eq) =0

as the coefficients of ny Aeg A---Aep, no Aer A---ANep, eqg ANert A= Ne,np ANeg A= A
eji—1AnaNejp1 A---Nep andn1/\61/\---/\ejfl/\ea/\ejﬂ/\---/\er forallj=1,...,r
and a=r+3,...,m — 1, respectively.

If (e/,n2) # 0, then

(3.24) (e},nl) = <e;-,ea> =0

for all j =1,2,...,7 by (3.23)). Together with (3.19)) and (3.24)), equation (3.17)) gives us

the following

.
Oé”//\el/\"‘/\er—Z<€;’,ng>a1/\€1/\"'/\ej_l/\nl/\€j+1/\"'/\€r
Jj=1

=—fd NetA---Ney,

which implies that (€7, n2) = 0, a contradiction. Therefore, we have

(€],ng) =0,

which, together with (3.19) implies €] = 0 for all s and all j. In (3.20), (3.21)) and (3.22),
we get
f<€;'an2> = f(e;,m) = f<€9,€a> =0
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for all j. Since f is non-zero, 69 of have the value zero at some point sg € I. This
contradicts the character of e;-. Thus, this case never occur.

Subcase 1.2. Let deg q(t) = 1. In this case, (¢/(s),€}(s)) # 0 for some i (1 <7 <r) and
the null vector fields €] satisfy e Ae; =0 for 7,1 =1,2,...,r. By the same reason to get
0q/0s = 0 previously, we have u; = 0 for all ¢ from AG = fG. Thus, the mean curvature
vector field H is given by

(3.25) H= (TT (o/' + Zt el + Zuz@) .

We now put
,
(3.26) o =— Zuiei + (o)t
i=1
The nullity of H of (3.25) guarantees that () is null for all s. Furthermore, it gives us

(3.27) Zu and (o, €]) =0 = (], e])

for all j. Combining (3.26) and (3.27)), we see that

) = d5(s)(a)*

for some function ¢; of s. Therefore, we have

H= (r+1 <1+Z¢>z )

and hence
— Zujej — (" ;na)nq,
=— Zu%/ + Z "eye; — (" mayny — (& ny)ng + Z " eq)ea,
e = uid — (ei,m}nl — (el,n1)ng + Z(e;,ea>ea,

el = —(e'-’ ng)ni,

//l _ /// /// n /, ///
e; oz—f—g (e ,ej)ej — (e n2>n—<ez,n1n2—l—g a)€a

a

along the curve a for i,j =1,...,r and a =7+ 3,...,m — 1. Then, equation AG = fG

is rewritten as

s
1 G0 ST EED SULRR EO SURWAIY 30 3 B
j=1

=1
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which provides
(3.28) 2uj{a” ng) = <e;-’,n2> and (o/’,ng)(e;-,nﬂ =0= <a”,n2><69,ea>

forall j=1,...,rand a =r+3,...,m — 1 by applying the similar approaches as we did
previously. Since (o, n2) in (3.28)) is non-vanishing for all s, we have

, —_—

€j

ujo! — (€}, na)ny

which implies that

Uj = 0
!
J
this case also never occur.

because of w;; = <e;, e’y = 0 for all j. This is a contradiction to degq = 1. Therefore,

/
T

Subcase 1.3. Let degq(t) = 2. In this case, by referring to the case that €/, ¢, ... e
are non-null, we can get (3.11]), that is,

[

€j

uja’ — (e}, na)ny
for all j =1,...,r. The nullity of €} implies that
uj =0 and hence e Ae;=0

for all 4,5 =1,...,r. This contradicts degq = 2.

Consequently, we can see that in this case, there is no marginally trapped ruled sub-
manifold in ™ with pointwise 1-type Gauss map of the first kind.

Case 2. Suppose that €] # 0 for some i = ji11, ..., jr.

In this case, we may also assume that e, # 0 for all ¢ = jgy1,...,jr. Then, ]
are non-null for all ¢ = jxi1,...,Jr and degq = 2. If we follow the similar argument
for the case that e}, e, ..., e, are non-null, we obtain € = —(e}, n2)ny if €} is null, or,

e = uja' — (e}, na)ny for some non-zero function u;. Then, we have

wij = (€j,€5) =0

which is a contradiction.

Consequently, we have

Theorem 3.1. There do not exist marginally trapped ruled submanifolds in L™ with

pointwise 1-type Gauss map of the first kind.
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4. Characterizations of generalized circular and hyperbolic cylinders

Let M be an (r + 1)-dimensional ruled submanifold in L™ with non-degenerate rulings.
Then, by Remark [2.1] and Lemma we may assume that

(4.1) (d(s),d/(s)) =e (==x1), (d/(s),ei(s)) =0 and (€}(s),e;(s)) =0

fori,j7 =1,2,...,r. A parametrization of M is given by
T
(4.2) x=x(s,t1,ta,..., 1) = a(s) + Ztiei(s)

In this section, we always assume that the parametrization (4.2) satisfies Condi-
tion (4.1)). Then, the Gauss map G of M is given by

||:L‘S||$8 xtl ‘/'Utr7

or, equivalently
G = ]q\I/Q <®+Zt’ 1) :

First, we consider the case of cylindrical ruled submanifolds that are the ones of two
typical types of ruled submanifolds. Before discussing cylindrical ruled submanifolds, we

consider the following lemma.

Lemma 4.1. Suppose that a unit speed curve a(s) in the m-dimensional Minkowski space

L™ defined on an interval I satisfies

a(s) = f(s)(/(s) + C),

where f is a function and C is a constant vector in ™. Then, the curve a lies in a
3-dimensional space in L. In particular, if the constant vector C is zero, we see that «

s a plane curve.
Proof. See Lemma 3.1 of [18]. O

Let M be a cylindrical (r + 1)-dimensional ruled submanifold in " generated by non-
degenerate rulings, which is parameterized by (4.2]). Without loss of generality, we may
assume that e, es,..., e, generating the rulings are constant vectors.

The Laplacian A of M is then naturally expressed by

02 : 02
@ - Z;&at?,

1=

A=—¢
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where ¢; = (e;(s), ei(s)) = £1 and the Gauss map G of M is given by
G=ad NegA---Ne,.

If we denote by A’ the Laplacian of a, that is A’ = —586—522, the Laplacian AG of the Gauss

map becomes

AG=ANd Nel A Ne,.

We now suppose that the Gauss map G is of pointwise 1-type of the first kind, that

is, AG = fG for some non-zero smooth function f. Then we have
Ao NegtAN---Nep=fa' Net A+ Ne,

and hence

(4.3) Ad = fd.

From ([4.3)), we see that f = (a”,a”) is a non-zero constant by considering the Frenet
equations in Minkowski space. Thus, the curvature of the non-null base curve is non-
zero constant. Furthermore, Lemma implies that the curve « is contained in the
2-dimensional subspace of L"*. Therefore, we can see that the plane curve « is part of a
circle or a hyperbola.

Conversely, it is easy to show that a generalized circular cylinder or a generalized
hyperbolic cylinder has the Gauss map of pointwise 1-type of the first kind.

Therefore, we have

Theorem 4.2. The cylindrical ruled submanifold M in L™ has pointwise 1-type Gauss
map of the first kind if and only if M is part of a generalized circular cylinder or a

generalized hyperbolic cylinder.

Next, we consider the case of non-cylindrical ruled submanifolds. Let M be an (r+1)-

dimensional non-cylindrical ruled submanifold parameterized by (4.2]) in L”*. Then, we

have
.
s =a/(s) + the;»(s), xy;, = €i(s)
j=1
for i =1,2,...,7. As we introduced in Section [3| the function ¢ is given by
T T
(44) q= <.’E5,SCS> =c+ Z 2u;t; + Z wy;tit;,

i=1 ij=1

where u;(s) = (o, €;) and wy;(s) = (e, €;) fori,j =1,...,7.
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Based on Proposition without loss of generality, we may assume that e; # 0 for
all j =1,2,...,7r on the domain I of a. Then, we get the components of the metric (-, )
on M

gi1=¢q, 91;=0 and g =€

fori,j =2,3,...,r+ 1. By definition of A, we have the Laplacian

1 9g0 192 1< 9q 0 92

4.5 A= ———r ——— — — —— — .
(4.5) 220505 q0s  2g 25 ot; Ot ;6’6t3

First, we suppose that ¢),¢e,... el are non-null. Then, using (4.5), AG = fG is

rewritten as

0q 2 4 3 Oq , " ; 1 0% 4
- (I)—FZ\Ifjtj — Q= ) +Z\I/jtj — *(]72 (I)+Z\I/jtj
0s = 27 0s = 27 0s =

r r 2 r r
1 0 1 0
(4.6) + q2 " + E \I/;-/tj + 5(] E &g ((95) d + E \I’jtj - 5(]2 E 6187(]‘1/1
j=1 i=1 ¢ j=1 i=1 ?

T

1 82q r r
— 50D g | @D Wity | i (@Y Wt | =o.
i=1 v j=1 J=1

To deal with the above equation (4.6]), we use the indefinite scalar product ({-,-)) on
G(r +1,m). We then have

((2,2)) =& ((2,2) =0,

T T
(B, ") = —Fep +2)  Fespui — Y Eepwpn,
k=1 k=1

<<q)7 \I/Z>> = Eeu;, <<CI)? \Ij;» = gepi,

T T
(@, 0])) = Eey; + 2 Z EEELULW; — Z EEEKLU Wik
k=1 k=1

(U, @) = Eezi, (U3, V))) = Eewyy, (Wi, ¥})) = €&y,

where we put € = ey ---&, p = (", a"), p; = (¢ €]), yi = (/,e

"

7,z = (d’,€}) and

§ij = (e, €j). For later use, we note that

(4.7) ui(s) = pi(s) + zi(s) and ng =& +&i

fori,j =1,2,...,r. By taking the indefinite scalar product with the vector ® to the both
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sides of (4.6)), we obtain
Jdq 2 d 3 0¢ — 1 0% -
r r 2 r
~ ~ 1 Jdq 1 Jdq
2 . - . _ - 2 ) .
(4.8) +q° o+ ]E_l gt | + 51 ZE_I € (8ti> 1+ E gu;t; E_l i ot EU;

»-Q

T T T
Z 8752 1+ Zeujtj +fé 1+ Zeujtj =0,
j=1 j=1
where we have put
¢=((2, ")) and ¢; = ((2,T])).

From (4.8), we can see that the function f is a rational function in ¢ with functions in s

as coefficients which is of the form

(4.9) ft)=—

where we put

2

86] 2 r q r
P(t) = <8s) 1+ Zaujtj 2 U, Zspj 2 832 1+ Zeujtj
j=1 j=1
r 1 r aq 2 r
2 ~ ~
+4q E¢+Zé¢jt]‘ + ingi <87§Z> 1 —|—Z€thj
7j=1 =1 7j=1
T ' T
Z 51—6% — Zq? Z 61 8t2 1+ Z gu;t;
j=1

Putting (4.9) into and multiplying (1 + Z;zl sujtj) with the equation obtained in
such a way, we get

(4.10

)
_3.(% <I>’+Zt\ll’ 1+Z€ut +3 9 <I>+Zt\If Zs ¢
2q s Wk 1 0s PEk

k=1 7j=1 k=1

s s T s
+q® |+ 4] (1 +) Euktk> —¢|e+> 4y <§¢ +) &pktk>
j=1 k=1

j=1 k=1

1 2 a 8(] 4 1 2 " 8q r
_iq ;&(8@)\1}1 <1+;€uktk —i—§q ;Ei 87tz EU; (I)+;tj\pj =0.
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Lemma 4.3. Let M be an (r+ 1)-dimensional non-cylindrical ruled submanifold parame-
terized by in L™ with pointwise 1-type Gauss map of the first kind. Let e1,ea, ..., e,
be the orthonormal generators of the rulings along the base curve «.. If € are non-null for
i=1,2,...,7, then the functions

ui(s) = (d/(s),€(s)) and wi;(s) = (e;(s),eg(s))
are constant functions for alli,j =1,2,...,7.

Proof. We suppose that dq/0s # 0 on some open interval I;. Then, on I, since each term

of the left-hand side in (#.10)) involves dq/ds or ¢?, by rearranging (4.10]), we get
3 (dq

4.11 —=| =) R() = t

(111) 3 (51) meo = a0,

where

r r r r
R(t)= |2+ 4V (1 +) euktk) - [e+> 4y, (Z 5pk:tk)
j=1 k=1 J=1 k=1

Qt)y=— 2" +> ;1 (1 + Zeuktk> +le+> 4y, <5¢ + Z’s@%)
=1 k=1 j=1 k=1
+1ZT:€‘<0q) 1+Zsut —fz <a>5u <I>+Zt\lf
2 2"\ oy, K ot;)

=1 7=1

Recall that ¢ is a polynomial in ¢ of degree 2 with functions in s as coefficients. Then,
we have two cases whether the function ¢ is of the form ¢(t) =e(1+ Y7, cu; Z) or not.
Case 1. Suppose that g # 6(1 + > i suiti)2. If we use a similar argument to get
Lemma 3.4 in [18], equation with the aid of yields that R(t) has to be expressed

as

for some vector field B(s) along . Namely, we have

(4.12) =

T T

(8) £+ Z 2u;t; + Z wi;tit;

i=1 ij=1

T T T T
( ,—|-th\1/9 <1+Z€uktk) — (I)—i-ztj\lfj Zapktk
j=1 k=1
B
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Considering the constant terms in (4.12)) with respect to ¢, we see that the vector B(s) is
given by

(4.13) B(s) = e®(s).

Using (4.13), we compare the coefficients of the terms containing ¢; and ¢;t; for any
i,7=1,2,...,rin (4.12). Then, we obtain the following two equations:
(4.14) U = eu; &' + ep; P,
(4.15) 5ui\I/; + 6Uj\I/; — €pi\I/j - Epj\I/i = 25wij<I>'
fori,j =1,2,...,r. Taking the indefinite product with ¥; to the both sides of (4.14)), we
have

{jz‘ = EU;Zj + EPiUj

fori,j=1,2,...,r. So we get

(4.16) &ji + &ij = (euizj + epiuj) + (eujz; + epju;)
= cu;(pj + z;) + euj(pi + 2)
fori,j =1,2,...,7. Due to (4.7)), (4.16) yields
/

Wi = EUU; + EUSU;

which means that

(417) Wij = EUU; + Cij
for some constants ¢;; and 4,j = 1,2,...,7.
Let €41,€r42,...,€n—1 be the orthogonal normal vector fields to M along a. If we

apply Lemma to the normal space T, N of M, then there exists an orthonormal

frame {ea}Z’:—leLl of the normal space T,,(,) N satisfying

(ea(s),ev(s)) =0

for all a,b=7r+1,...,m — 1. Then we can put
m—1

(4.18) e; = eu;af + Z ea (€}, eq)ea,
a=r+1

where €, = (eg,64) = 1 fora=r+1,...,m — 1. From (4.17) and the definitions of u;

and w;;, the constants ¢;; are given by

m—1

(4.19) Cij = Z 5a<€;a€a><e;aea>

a=r+1
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fori,j=1,2,...,7.
In (4.15)), we replace ¢ with j and then we have

(420) UJ\I’; - pj\lfj = wjjq)’.
Putting (4.14)) into (4.20)), we obtain
su?q)' + Eijj(I) — pj\IJj = wjjq)',
or,
(4.21) pj(eu;® — ;) = cj; @'
because of (4.17)). Taking the indefinite product with ¥; to (4.21f), we have
pjleu; — wjj) = cjiz

which implies that

¢jj(2 + pj) = ¢jjul =0

forj=1,2,...,r.
If the constant c;; # 0 for some j € {1,2,...,7}, then

/ —_—
uj—O.

We consider the case of cj,;, = 0 for some jo. If M is Lorentzian, then the normal
space of M at each point is space-like. From (4.19)), we can see that

r_ Vi
€, = EUjpCL .

We now suppose that M is space-like. Then ¢ =1 and ¢; =1 for ¢ = 1,2,...,r. Since
Wiojo = uJQ-O, the vector field >_, eq(€) , €a)eq of (4.18) is vanishing or a null vector field

along a.
/

Suppose that >, €a<€;~0, €aq)€q is a null vector field along «. Then, from €y = wjoo +

Y aEal€lys €a)ea, we have

m—1

(4.22) W)y =ujo®+ Y galefy, ea)a,
a=r+1
where {, = e, Negt A---ANep fora=r+1,...,m — 1. Substituting (4.22) into (4.21)) and

using c¢j,j, = 0, we get
m—1

ij Z €a<€90, €a>£a - 0'

a=r+1
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By the hypothesis, the vector field " e, (€

we see that the function

€5+ €a)Sa is non-vanishing for all s. Therefore,

(423) Pjo = 0

on I. Equations (4.14)), (4.22) and (4.23)) yield

m—1 m—
(4.24) uz»ofb + Z 6a<e;-O, eq) €q + Z €a<€;‘O, eq)él = 0.
a=r+1 a=r+1
Note that <<(I)a€b>> = <<§(/17§b>> =0 and <<§a7§b>> = eqlgp for a,b=1r+1,. — 1. By

taking the indefinite product with &, to the both sides of (| - ) for b =1r + 1, coo,m—1,

we obtain

<e;-0, ea>/ =0
and hence
m—1
(4.25) Wy =— > eald, €,
a=r+1

for all a =r+1,...,m — 1. By straightforward computation of &, (4.25) takes the form

m—1

/ /
w;, ® = — E €al€y, €a)Ua®P
a=r+1

T

_E g 5auz jo, ea/\el/\ /\Ci_l/\Oé//\ei+1/\"'/\€r,
i=1 a=r+1

where u, = (o/,¢€}) for a =r+41,...,m — 1. Since the vectors ® and e, Ae; A---Ae;_1 A

o’ Nejp1 A+ A e, are linearly independent, we get

ul-(e;»o, €q) =0

foralli=1,...,randa=1r+1,...,m—1. Note that u;, # 0 for all s € I. Thus, we have

(€},,€a) = 0foralla=r+1,...,m—1, which means that the vector field >, a(€),, €a)eq
is zero that is a contradiction.
Therefore, we can conclude that if ¢;; = 0 for some j = 1,2,...,r, then
e;- = eujad/
Now, we will show that u; = 0 when ¢;; = 0 for j = 1,2,...,7. To do that, we

consider the set A = {i | ¢;; =0} C {1,2,...,r}. Note that for i € A, w;p = eu;uy for all
k=1,2,...,r. Then, the function ¢ = ¢ + > 2u;t; + > w;;t;t; can be rewritten as

2
q=-¢ (1 + Zsuiti> +2 Z eugty + Z Z wiktite + Z Wehtety-

ieA kA i€A kgA ke,h¢t A
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Since uy and wyy, are constant for k, h ¢ A,

gz = 2 (1 + Z 5uiti> Z euit; + 2 Z Z euputity

ieA ieA €A k¢A

r
=21+ Zé‘ujtj Zéu;ti.
j=1

(IS

Then, (4.11)) implies

3|1+ zr: gujt; (Z su;ti> P’

j:l €A
4.96 _ (I)// - t‘\I/H - W - - s t 1 - AUt
(4.26) =-— DI ED BT TED S DT 7a +D_ sty
j=1 j=1 =1 \j=1 J=1

r r r I r
+ (I)—f-ztj‘l’j g(ﬁ—l-zgcpjtj—é‘ZSju?—Ez Z&‘jujwjl tl
j=1 7=1 =1 \j=1

Jj=1

In (4.26]), considering the constant terms with respect to ¢ and the coefficients of terms

containing t; for ¢ € A, we have the following equations

T T
(4.27) —" + Zajujlllj +Ep® — ¢ Zaju]z d =0,
= =1

r T

—3eu,® = —eu; ®" + ¢ Z eju Wy | up — U3 + Zgjwij\l’j
j=1 J=1

(4.28)

T T
+epi® —e¢ ijujwij O +ep¥; —¢ Zsju? ;.
Jj=1 j=1

Putting (4.27) into (4.28) and using the fact that U; = eu;® for i € A, we get
T T
(4.29) — 3eu,®' = -7 + Z gjw; Wy +ep;® — € Zsjujwij o.
J=1 j=1
From ¥; = eu; P, we have
(4.30) U = cul® + 2eu® + ew;®”  and  ¢; = geul + cuo
for i € A. By (4.27)) and (4.30)), equation (4.29)) yields that

w,® =0
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for i € A.
If ® = 0, then, by definition,

O =a"Net A Nep+ Y o Aer A Nej A Nep =0,
k¢A
This implies that
o Neg AN Ne N ANepAep, =0

for k ¢ A. Thus, the vector fields o/, ey, ..., e, € are linearly dependent for all s which
means that e) = eupa/ for k ¢ A. But it contradicts the definition of ¢, which is not of

the form of completing the square. Therefore, we have

u; =0
for i € A.

So, for the case of q # 5(1 +300 euiti)z we can see that u; are constant functions for
t=1,2,...,7 and hence the functions w;; are constant for all 7,j = 1,2,...,r because of
(4.17)). Therefore, we can conclude that

0
% _,
0s

for all s, which contradicts dq/ds # 0 on the open interval I;.
Case 2. Suppose that ¢ = 5(1 + Zgzl Euiti)2. Then w;; = eu;u; and the constants c;;
defined in (4.17) are zero for all 4, j = 1,2,...,r. In Case 1, we showed that if ¢;; = 0 for

r_
=
So, we easily see that ¥, = eu;® for all i = 1,2,...,r. Therefore, G = & and hence

AG = fG is rewritten as

some j, then € = cu;a’.

(T+> 5uiti)3 (14 >0 euit;)
Taking the indefinite scalar product with ® to the both sides of (4.31]), we have

e (Y1, eulty) 5
(4.31) Liz1 €li) gy 50" = fo.

4, - =¢ .
432 I iy

Then, equation (4.31)) with the help of (4.32]) implies
T T T
(4.33) (Z su;ti> o — (1 + Zeum) " = 2o (1 + Zeum) .
i=1 i=1 i=1

From (4.33]), we can see that

(4.34) ®" =2¢p® and hence u;® =0
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foralli=1,2,...,r

If ® =0, (4.32) and yield that the function f is identically zero because @ is
non-zero vector field for all s € I. It is a contradiction. Thus, we have u; = 0 on some open
interval Iy C I; for all 4 = 1,2,...,r and hence dq/ds = 0 on Iy C Ij, a contradiction.

Therefore, we can conclude that
o,
ds
for all s € I. This is a contradiction.
According to Cases 1 and 2, we conclude from equation (4.6)) that
9q
0s
for all s € I. ]

=0

The following lemma helps us examine the mean curvature of the ruled submanifold

on L™ with pointwise 1-type Gauss map of the first kind:

Lemma 4.4. [28] Let M be an n-dimensional submanifold of a pseudo-Euclidean space
ET with pointwise 1-type Gauss map G of the first kind. Then, the mean curvature vector

field H is parallel in the normal bundle.

For a ruled submanifold M in L™, the mean curvature vector field H is defined by

1
H=——1¢h gih(wy,;, oy,
7‘+1{ (nxsu ||xsu> ZZ " }

g 5
= m (IZ? SS q xs&xs s Zgz xs&ez z)

by virtue of x4, = 0 for all <. By computation, we can see easily

(@ss,ws) = Y Gijtit; =0 and  (wes, €5) = —u; — »_ wijt;.
i

/L'7j

So, we have

T

r r
9
H= (@ Zt i (5) + D eiuiei(s) + 3 (Z 5iwiﬂ'ei(5)> i
i=1 J=1 \i=1

which yields

1 T T T
(H, H) = TV (") — Zsku% + 22(0/’, eVt — 2 Z £U;jwijt;
k=1 i=1 ij=1
(4.35)

T I
-+ Z €, J Z (Z €kwikw]-k> titj

ij=1 ij=1 \k=1
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Now, we show that (H, H) =0 on M.
Differentiating (4.35)) with respect to t;, for some iy and using Lemma we have

-2 dq
0= G () § o) = Ceand 4 22t =2 37 cumnt
10

k=1

+Z el e)tit; + Z (Zakwlkwjk>tt

i,j=1 ,j=1
2 ' T
g | @) Ze’f“kwlo” Z €0 €)1 *Z (Z%wiokwik> tj ¢
=1 \k=1

or, equivalently,

(4.36)
-
0=-2 Uiy + Zwiojtj Zekuk + 22 -2 Z ERULWE T
j=1 k,i=1
+Z el elVtit; + Z <Z€szkw]k>tt
1,5=1 i,7=1
+ 6—|—Z2ult + Z wijtit;
i,j=1
T
J=1 \k=
Considering the coefficients of terms containing t;, t? and t? for some j =1,2,...,rin

(4.36)), we obtain

T T
14 " 1 iz 2
— dugy (@, €5) + duy, Z ERULWE; — 2Wig (e, ) + 2wj; Z EpUy

(437) k=1 k=1
+ 5<e;/07 e;) —¢ Z ERWigk Wik + 2u{a”, ZO — 2u; Zakukwmk =0,
k=1 k=1
T
2u10< €js ]> + 2u;, Z 5/€wgk 4wlo]< 6;',> + 4wy Z EkUEWEj
k=1 k=1
(4.38) -
+ 2u; (e} io? ]) — 2u; Z ERWipk Wik + Wjj (o ,eZO — wj; kaukwiok =0,
k=1 k=1
IS8
(4.39) —2wjgj (€], €) + 2wy Zskwjk + wjj el €f) — wj; ngwiokwjk =0.

k=1 k=1
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Without loss of generality, we may assume that w;,;, # 0. By replacing j with ig in

[E37), (E:38) and (L39), we can get casily

'
"
(4.40) (", a" E akuk, % ,elo :E Erupwir  and (e, e lo Zeszok
k=1

Equation (4.37) with the help of (4.40) yields

(4.41) €, ] Z 5szkwjk.
and hence
I
(4.42) (o ey = Zakukwik
k=1

for all 4,5 = 1,2,...,r. Together with equations (4.35)), (4.40)), (4.41)) and (4.42)), we can
conclude that on M,

(H,H) = 0.

According to Theorem [3.1] we see that there does not exist an non-empty open subset
©={pe M| H#O0and (H,H) = 0} of a ruled submanifold M in L™ with pointwise
1-type Gauss map of the first kind.

Therefore, we have

Theorem 4.5. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold pa-
rameterized by (4.2)) in L™. Let ey, ea,..., e, be the orthonormal generators of the rulings
along the base curve a such that €] are non-null for allt =1,2,...,r. If M has pointwise

1-type Gauss map of the first kind, then M is minimal.

We now deal with the case that some of generators of rulings have null derivatives. Let
M be an (r + 1)-dimensional non-cylindrical ruled submanifold parameterized by in
™. We suppose that some generators ej,,€j,,...,¢e;, of the rulings have null derivatives
along the base curve a for j; < jo < -+ < jx € {1,2,...,7}. We can rewrite the
parametrization of M as

x(s,t1,. .., t) :a(s)+‘ Z ‘ tiei(s)—’_ztjieji(s)

and its Laplace operator is given by (4.5))

190 102 1< 9q 0 Z 92
— 15
i=1

= ———— ————— ) g—— =
2¢20s0s q0s® 2q pot ' Ot; Ot l@t?
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Then, there are two possible cases such that either all of e, ,,...,e;, generating the
rulings except e;, (s),€j,($), ..., ej.(s) are constant vector fields or not.

Case 1. Suppose that ej, ,,...,ej are constant vector fields. In this case, we may
assume that e} is null for all i = 1,...,r, otherwise the ruled submanifold M is a cylinder
defined over the ruled submanifold parameterized by the base curve « and the rulings
generated by e;’s except those constant vector fields. We then have three possible cases
according to the degree of q.

Subcase 1.1. Let degq(t) = 0, that is, e are null with €(s) A ej(s) = 0 for 4,1 =
1,2,...,7 and (&/(s),€:(s)) = 0 for j = 1,2,...,r. Note that ¢ = 1 and &; = 1 for all

%5
i=1,2,...,r. Then M has the Gauss map

G=0+) 1,
i=1
and AG = fG implies
(4.43) " =—f® and V] =-fY,

for all t = 1,2,...,r. The mean curvature vector field H is given by

1 ! //
(4.44) H=-— (a +th :

=1

from which,

1 T
(4.45) (H,H) = 12 (a", ") + 22 "oelt + Z (ef , el)tit
i=1 3,j=1

Differentiating (4.45) with respect to t;, for some iy and using Lemma we have

1
0:(T+1)2 ”0 +22 20’1

which gives
(o, €f) = 0= (ef, €])
foralli,j=1,2,...,r
On the other hands, Lemma tells us that the derivatives of the mean curvature

vector H with respect to ¢; are tangent to M for all ¢ € {1,2,...,r}. Together with this

fact and (4.44)), we can see that

(4.46) el = (e, a')a
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foralli=1,2,...,7. Since (e}, e]) = 0, taking the scalar product with ¢; to (4.46) implies
that

(ef o’y =0 and hence e =0

forall i =1,2,...,r. From ¥; =€, Ae; A--- Ae, and the above equation, we obtain
v’=0
for all ¢ = 1,2,...,r. Thus, we can see that the function f is identically zero by virtue

of because ¥; is a non-zero vector field for all s € I, which is a contradiction.
Therefore, no ruled submanifold with deg ¢(t) = 0 has pointwise 1-type Gauss map of the
first kind.

Subcase 1.2. Let deg g(t) = 1. In this case, (¢/(s),€}(s)) # 0 for some i (1 <7 <r) and
the null vector fields e} satisfy e; A e; = 0 for 4,0 = 1,2,...,r. Then, AG = fG implies
that

(4.47)
aq 2 r q o (- r N
(85> <1+;suztl> 595, Za iti 2 8 (1—1—25% ,>+q s¢+;wzt,
1 « 0q 2 4 15 Jq 3 -
+qu€j — 1+Z€uiti — —q Zej—auj+fq 1+Zsuiti =0
27 & ot; — 2 = ot; pt

with the help of (4.8). Using the function f which is obtained from (4.47)), we repeat the
same process to get (4.10). Then, we have the following equation

3 a ' T I8 T
—§£ (I)/'thj\l’;- <1+Z€U2tl> — (Zﬁpiti (I)-f—ztj‘l/j
j=1 i=1 i=1 j=1
T T I8 T
(448) =—qS [ @'+ ;0] (1 +> suit@-) - (&;s +) aoiti) O+t
j=1 i=1 i=1 j=1
T T T T
Zejuj\I/j (1 + ZEU@Q) + (Z 651-%2) <I>+th\IlJ
j=1 i=1 i=1 j=1

From g = ¢ + ), 2u;t; and dq/0s = ), 2ut;, equation (4.48)) implies
T ' T '
(4.49) P+ Z tj\I/;- (1 + Z euiti> — (Z Epz'ti) d + Z v | = qW(t)
j=1 i=1 i=1 j=1

for some vector W (t). Considering the degree of (4.49)) and comparing the constant terms
of both sides with respect to ¢ in (4.49), we can put

(450) W(t) == 5(13’/ + XT: Titi
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for some vector fields Y; along a. Using (4.50) and considering the coefficients of the

terms containing t;, for some iy with wu;, # 0, we have

eTiy + 2, = euy ' + Ui — ep;, P,
or,
(451) Tio = —’LLZ'O(I)/ + 6\1’20 — p’ioq)‘

Putting (4.51)) into (4.49) and comparing the coefficients of the terms containing t?o, we
get

(4.52) — 2up @ — 2u,piy® + uiy Ui, + £piy ¥, = 0.

Taking the indefinite product with ¥;, to , we obtain

(4.53) — 20 Ziy — 2UiyPig Wiy + EWigEigio T EDigWigio = 0.

In this case, wj; = 0 and §;; =0 for all j,k=1,2,...,7, so becomes
—2u? o Zio — 2u§0pio =0

which yields that

2
umuZO =0.
Thus, u;, (io =1,2,...,7) is a non-zero constant function on I and hence
0
9 _
0s

for all s € I.

On the other hand, the mean curvature vector field H is given by

(454) H = O“T ” + Z tze” =+ ZEJUJCJ

Note that €; =1 for all j =1,2,...,r. By straightforward computation, we have

(4.55)

o —€ // " € "
= e (ar) o+ ot + Semes ) + e

r r
3
= m —2ui00/' — 2ui0 Z tie;’ — 2“1’@ Zsjujej (6 + Z 2u2 z) 10
i=1 j=1
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for some igp € {1,2,...,r} with u;, # 0. From Lemma the partial derivative of the

mean curvature vector H with respect to ¢;,, Htio, is tangent to M. That is, the vector

in (4.55)) of the form
T
(4.56) — 2u;,0" — 2u, Ztiegf + (5 + Z 2u2tz> el
i=1

has to be tangent to M for all s and ¢ = (t1,t2,...,t,). Recall that the vector o is

expressed as

r m—1
(4.57) o =— Zuiei — Z EallaCaq-
=1

a=r+1

By differentiating (4.18)) with respect to s, we have

m—1
(4.58) e;' = ( Z Eaua<€ ) o + Z €a e],ea

a=r+1 a=r+1

with the aid of ([@.17)),([@.19), (4.57) and the fact w;j = 0 for all 4,57 = 1,2,...,r. Putting
(4.57) and (4.58)) into (4.56) and arranging the equation obtained in such a way, we obtain
the normal part of the vector given in (4.56|) as follows:

m—1 T T
(4.59) Z Ea § 2UjgUg — 2(2%0(6 a)tj +elel eq) + Z(2uj<e;’0, ea))t; ¢ €a
a=r+1 j=1 7=1

which becomes identically zero. It means that the coefficients of e, are vanishing for all

a=r+1,...,m—1. Therefore, by considering the constant terms of the coefficients of

eq with respect to ¢ in (4.59)), we get

2uiguq = —e(ej, , €q)

and hence
(4.60) 2uju, = —£(€], eq)

forall j=1,2,...,randa=7r+1,...,m — 1. By (4.60), (4.58) is rewritten as

m—1 m—1
(4.61) e;’ =¢ ( Z sau(l(e],ea)) o — 2eu, Z EalaCa-

a=r+1 a=r+1

On the other hand, from e;, A e} =0, we can put

! pig ./
€i, = [;"¢€;
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forall 5 =1,2,...,r, where f;o are non-vanishing functions for all s. By the definition of

uj, we have that
_ flo
uiy = f; u;.

Since u;, # 0 and u; are constant, f;o are also non-zero constant and hence u; # 0 for all

j=1,2,...,r. Equations (4.18), (4.61) and {;; = (€, e}) = 0 yield that

m—1
—euy ( Z 5aua<e;‘,ea>> =0, 7=12,...,r

a=r+1

and hence

m—1
(4.62) D catal€],eq) = 0.

a=r+1
By (4.61)) and (4.62), we see that

m—1

(4.63) e;’ = —2¢eu; Z €allaCq

a=r+1

for all j =1,2,...,r. Together with (4.57) and (4.63]), the mean curvature vector field H
given in (4.54)) is rewritten as

1 m—1
(4.64) H= Z EallaCa
Tt 1 a=r+1

and hence we have

u, =0

by virtue of Lemma and the fact that e/, are tangent to M foralla=r+1,...,m—1.

Equation (e, /) = 0 also tells us that

(4% () = ~(65. )

With the help of (4.18)), (4.63|) and the fact that u, are constant, equation (4.65) can be

rewritten as
m—1 m—1
2 2 o, 2 2
4uj E Eqlly, = 2uj E Eqlly
a=r+1 a=r+1

which yields

m—1
(4.66) D equl =0.
a=r+1
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Therefore, from (4.66) we can see that

(€f,ef) =0 and (H,H)=0

by virtue of (4.63)) and (4.64) for all j =1,2,...,7.
If e}’ =0forall j=1,2,...,r, since u; # 0, (4.63) and (4.64) yield

H=0.

If €7 is null for some j € {1,...,7}, then the mean curvature vector field H given in
is also null for all s because of the continuity of u,

Therefore, together with Theorem we can conclude that if a ruled submanifold M
with deg¢(t) = 1 has pointwise 1-type Gauss map of the first kind, then M is minimal.

Subcase 1.3. Let deg q(t) = 2. In this case, we can easily see that if a ruled submanifold
M with deg q(t) = 2 has pointwise 1-type Gauss map of the first kind, then M is minimal
by referring to the case that €}, ¢}, ..., el are non-null and Theorem

Case 2. Suppose that €, # 0 for some i = ji11, ..., jr.

In this case, we may also assume that €] # 0 for all ¢ = jpy1,...,Jr by virtue of
Proposition . Then, ¢, are non-null for all i = jy41,...,Jj, and degqg = 2. If we follow
the similar argument for the case that e}, e, ..., e, are non-null, then we can obtain the
sufficient condition of the minimality of M by means of the Gauss map with the Laplace
operator together with Theorem [3.1]

Conversely, suppose that a non-cylindrical ruled submanifold with non-degenerate rul-
ings in L™ is minimal. Let M be an (r+ 1)-dimensional non-cylindrical ruled submanifold
parameterized by in L™ and let e, eq, ..., e, be orthonormal generators of the rulings
along the base curve a.

For the case that €],é€),..., e, are non-null, it is sufficient to refer to Theorem 3.6
of |18]. To deal with the case that some of generators of rulings have null derivatives, as
we see in the above cases according to the degree of ¢, it is enough to consider the subcase
of degq(t) = 1. So, we suppose that M is minimal with degq(t) = 1. Since the mean

curvature vector field H is given by

1 T

i=1
1 T T
" "
= —<a + tie; + W;€; ¢ s
| e B
the minimality of M implies that

T

" "

« :—E ue; and e =0
=1



Minimal Ruled Submanifolds Associated with Gauss Map 599
and hence
/ "o ron
U; = <Oé 7ei> + <Oé,€i> =0

which means that u; are constant functions for all i =1,2,...,r.

By direct computation, we have

" = lzr: @‘Pk and ¥/ =0
2 prt Oty ¢

for all i = 1,2,...,r. Since dq/ds = 9%q/ds® = §%q/Ot? =0 on M for all i = 1,2,...,r,
by using terms in (4.6)), we obtain

1 " dq 2 "
T kzl (8tk> (cp + Z?w)

which means that the Gauss map G of M is of pointwise 1-type of the first kind. That is,

AG = —

AG = fG

fo_Ly(oaY
N 2q2k:1 oty )

Therefore, together with Theorem [£.5| we have

for some function

Theorem 4.6. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold with
non-degenerate rulings in the Minkowski m-space ™. Then, M has pointwise 1-type

Gauss map of the first kind if and only if M is minimal.

Let us consider an example of a marginally trapped ruled submanifold M whose Gauss

map is not of pointwise 1-type of the first kind.

Example 4.7. Let N be a null constant vector in the Minkowski m-space LL.”*. We consider

the ruled submanifold M parameterized by

T
(4.67) 2(s,t1,... t) = "N+ Fs+ > t;(Ns+D;)
j=1

for some constant vectors F, D; with (N,F) = (N,D;) = (F,D;) =0, (F,F) =1 and
(Dj,D;) = 0j;. Then, the mean curvature vector field H of M is given by

2

1+
which is null for all s. That is, M is a marginally trapped ruled submanifold with deg g = 0.

N

In this case, the straightforward computation provides that the vectors AG and G defined
on (4.67)) are not parallel, i.e., the Gauss map G is not of pointwise 1-type of the first
kind.
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5. Ruled submanifolds with degenerate rulings in L™

Let M be an (r + 1)-dimensional ruled submanifold in L with degenerate rulings E(s,r

).

Since E(s,r) is degenerate, it can be spanned by a degenerate frame {B(s) = e1(s), e2(s),
.,er(s)} such that

)
)

along a regular curve and let its parametrization be given by Z (s, t) where t = (t1, ta, . ..

<B(S)7B(S)> = <B(S)76i(s)> 207 <€i(5),€j(5)> :6Z]7 Za] :2,3,...,7“.
Without loss of generality as Lemma [2.5] we may assume that
(eé(s),q(s)) =0, ¢,j=2,3,...,7.

Since the tangent space of M at Z(s,t) is non-degenerate and contains the degenerate

ruling E(s,r), there exists a tangent vector field A to M which satisfies
(A(s,t), A(s,t)) =0, (A(s,t),B(s)) =—-1, (A(s,t),ei(s))=0, i=23,...,r

at Z(s,t).
Let a(s) be an integral curve of the vector field A on M. Then we can define another

parametrization x of M as follows:
T
x(s, tl, tQ, . ,tr) = a(s) + Ztiei(s),
i=1

where o/ (s) = A(s).
Lemma 5.1. [20] We may assume that (A(s), B'(s)) =0 for all s.

If we put P = (zs,x5) and Q = —(xg, x4, ), Lemma implies

T

P(s,t) = QZUi(S)ti + Z wij(s)tit; and Q(s,t) =1+ Zvi(s)ti,
i=2 ij=1 i=2
where v;(s) = (B'(s),€i(s)), ui(s) = (A(s),€j(s)) and wij(s) = (€j(s),€;(s)) for i,j =
1,2,...,r. Note that P and @ are polynomials in ¢t = (¢1,to,...,t,) with functions in s as

coefficients. Then the Laplacian A of M can be expressed as follows:

1 JoP 0 NG, 0? — 02 - ok " 9?
A=< —— =2 o +2Q=—— + P—— — 2 e —Q* Y —
Q? {8151 oty Q;“ati * Qasat1 * ot? Q;vztlatlati © ; 8153}’

where P =P — 31, v2.
By definition of the indefinite scalar product ((-,-)) on G(r + 1,m), we may put

(s Ngy NTpy N o ATy, s ATy NTgy Ao ATy ) = -Q2.
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Let € = sign Q(t). Then the Gauss map G is given by

1
G = @xs/\xtl/\xtz/\-'-/\:ctr
1 T
= 6@{A/\B/\eg/\'-~/\6r+tlB//\B/\62/\'-‘/\6r+ztie;/\B/\egA‘~-/\er}.
i=2
Suppose that the Gauss map G is of pointiwse 1-type of the first kind, i.e., AG = fG for

some non-zero smooth function f. The straightforward computation provides

—1 r r
2% <
@ Z {(Z(B’,eé}ti—Zv%) Uh—i—U;lQ}eh/\B/\eg/\---/\er
h=r+1 =1 =2
2% L,
5 > vRAABAesA---Ae,
h=r+1
2
+@Z Z vivpen NBAea A~ Neji_1 NANe 1 AN Ne,
i*?h*r—‘,—l
2w
(5.1) Z Z vpziten NBANea N~ Nei_1 NegANejp1 AN Nep
1=2 h,l=r+1
=
:fQ{ <1+Ztivi>A/\B/\eg/\~-/\er
=2
m—1 r
+ Z (tlvh—Zzi,hti>eh/\B/\eg/\~-/\er}
h=r+1 =2

— I8

g
:5fA/\B/\€2/\"'/\er+Qf g <tlvh— zi,hti)eh/\B/\eg/\---/\er,
h=r+1 =2

where we have put

m—1
/
B :Zviei and e =v;A—u;B+ Z —2zj1)e
1=2 I=r+1

forj=2,...,7randl=r+1,...,m — 1. Considering the orthogonality of the vectors in

(5.1]), we can see that

vivp =0 and w2z =0

fort=2,3,...,rand h,l=r+1,...,m— 1.

If the function vy(s) =0 for all s € I and h =7+ 1,...,m — 1, then the coefficient of
the vector AANB Aea A--- Ae, on the left-hand side of vanishes. Thus the function
f becomes identically zero because of the orthogonality of the vectors on the right-hand
side of , a contradiction.
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Therefore, vy, # 0 for some h € {r+1,...,m — 1}, say vp,. Then, we have
v; =0, 2z;=0 andhence Q=1

fori=2,3,...,rand l=r+1,...,m — 1. So, equation (5.1)) implies

m—1 T
2% ), {(Z(B/7€§>ti> vh+v§1}eh/\BA62/\.../\er

h=r+1 i=1

m—1
(5.2) +25<Z vZ)A/\B/\eQ/\'-J\er

h=r+1
m—1
=EfANBANes A+ Nep+Ef > (tivp)en ABAea A= Aey.
h=r+1
Equation (/5.2)) yields
m—1 T
(5.3) f=2Y vp=2B.B) and 2) (B e)vp)t;+v} =0
h=r+1 =2

fori=2,3,...,rand h=r+1,...,m — 1. From ({5.3), we can see that vy, is a non-zero
constant function which means that the function f is also non-zero constant, that is, the
Gauss map G of M is of usual 1-type.

Thus, we have

Theorem 5.2. Let M be a ruled submanifold in the Lorentz-Minkowski m-space L™ with
degenerate rulings. Then, M has pointwise 1-type Gauss map of the first kind if and only

if the Gauss map is of non-null 1-type in usual sense.

6. Minimal ruled submanifolds in L™

In Section [3] we characterized minimal ruled submanifolds with non-degenerate rulings in
terms of pointwise 1-type Gauss map of the first kind in the Lorentz-Minkowski space ™.
In [21], the authors defined a minimal ruled submanifold with degenerate rulings called a
G-kind ruled submanifold in ™.

Therefore, considering Theorem 4.5 of [21] and Theorem /4.6, we have

Theorem 6.1. Let M be a non-cylindrical ruled submanifold in a Lorentz-Minkowski m-
space L. Then, M is minimal if and only if, according to the character of the base curve,

M s one of the followings:

(1) The Gauss map of M is of pointwise 1-type of the first kind if the base curve is

non-null.
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(2) M is an open portion of a G-kind ruled submanifold if the base curve is null.

Remark 6.2. We would like to correct the authors’ statement of Theorem 4.3 in [22]. In

their proof of Case 1 of the theorem, they accidently dropped one trivial case of Gauss

map which is of 1-type. The statement of the theorem should be “Let M be a ruled

submanifold in L™ with degenerate rulings. If M has finite-type Gauss map G, G is of

either 1-type or null 2-type.”
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