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On the Numerical Quadrature of Weakly Singular Oscillatory Integral and

its Fast Implementation

Zhenhua Xu

Abstract. In this paper, we present a Clenshaw-Curtis-Filon-type method for the

weakly singular oscillatory integral with Fourier and Hankel kernels. By interpolating

the non-oscillatory and nonsingular part of the integrand at (N + 1) Clenshaw-Curtis

points, the method can be implemented in O(N logN) operations, which requires the

accurate computation of modified moments. We first give a method for the derivation

of recurrence relation for the modified moments, which can be applied to the derivation

of recurrence relation for the modified moments corresponding to other type oscillatory

integrals. By using the recurrence relation, special functions and classic quadrature

methods, the modified moments can be computed accurately and efficiently. Then,

we present the corresponding error bound in inverse powers of frequencies k and ω for

the proposed method. Numerical examples are provided to support the theoretical

results and show the efficiency and accuracy of the method.

1. Introduction

In this work we consider the evaluation of the weakly singular oscillatory integral of the

form

(1.1) I[f ] =

∫ 1

0
f(x)xα(1− x)βei2kxH(1)

ν (ωx) dx

where α − |ν| > −1, β > −1, and k � 1, ω � 1, H
(1)
ν (x) = Jν(x) + iYν(x) is Hankel

function of the first kind of order ν, and f is a sufficiently smooth function on [0, 1].

In many areas of science and engineering, for example, in astronomy, optics, quantum

mechanics, seismology image processing, electromagnetic scattering (see [2–4,11,19]), one

will come across the computation of the integral (1.1).

The integral (1.1) has the following two characteristics:
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1. When k + ω � 1, the integrand becomes highly oscillatory. Consequently, a pro-

hibitively number of quadrature nodes are needed to obtain satisfied accuracy if

one uses classical numerical methods like Simpson rule, Gaussian quadrature, etc.

Moreover, it presents serious difficulties in obtaining numerical convergence of the

integration.

2. The function H
(1)
ν (x) has a logarithmic singularity when ν = 0, and algebraic sin-

gularity when ν 6= 0 at the point x = 0. In addition, if −1 < α, β < 0, the

integrand also has algebraic singularities at two endpoints, which impacts heavily

on its quadrature and error bound. For a special case that α = 0, β = 0, and k = 0,

the integral can be rewritten in a special form

I[f ] =

∫ 1

0
f(x)H(1)

ν (ωx) dx.

In the last few years, many efficient numerical methods have been devised for the

evaluation of oscillatory integrals. Here, we only mention several main methods, such

as Levin method and Levin-type method [26, 27, 32], generalized quadrature rule [15, 16],

Filon method and Filon-type method [12, 13, 17, 21, 36–38], Gauss-Laguerre quadrature

[7–9, 19–21, 39]. In what follows, we will introduce several other papers related to the

integrals considered in this paper. For the integral
∫ 1
0 f(x)xα(1 − x)βeikx dx, as early as

in 1992, Piessens [33] constructed a fast algorithm to approximate it by truncating f by

its Chebyshev series and using the recurrence relation of the modified moments. Recently,

the references [24, 25] developed this method by using a special Hermite interpolation

at Clenshaw-Crutis points and Chebyshev expansion for eikx. If f is analytic in a suffi-

ciently large complex region containing [0, 1], a numerical steepest descent method [23]

was presented by using complex integration theory. The same idea was also applied to the

computation of the integral
∫ b
a (x− a)α(b− x)β ln(x− a)f(x)eiωx dx, α, β > −1, based on

construction of the Gauss quadrature rule with logarithmic weight function [18]. For the

integral
∫ 1
0 f(x)xα(1− x)βJm(ωx) dx, α, β > −1, a Filon-type method based on a special

Hermite interpolation polynomial at Clenshaw-Curtis points was introduced in [10]. On

the other hand, the reference [22] proposed a Clenshaw-Curtis-Filon method for the com-

putation of the oscillatory Bessel integral
∫ 1
0 f(x)xα ln(x)(1 − x)βJm(ωx) dx, α, β > −1,

with algebraic or logarithmic singularities at the two endpoints.

For the evaluation of the integral (1.1), the literature [18] transformed it into two line

integrals by using the analytic continuation and the construction of Gauss quadrature

rules. However, this method requires that f is analytic in a enough large region. A recent

work [41] presented a Clenshaw-Curtis-Filon-type method for the special case α = β =

k = 0 by using special functions. In addition, a composite method [12] can also be applied
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to the computation of this integral for this case, by absorbing the non-oscillatory part of

Hankel function into f , then interpolating its product with f . However, the accuracy of

this method may becomes worse as the number of Clenshaw-Curtis points increases and

the fastest convergence of this method obtained is O(ω−2) for fixed number of Clenshaw-

Curtis points [41].

In view of the advantages of Clenshaw-Curtis-Filon method, in this paper we will

consider a higher order Clenshaw-Curtis-Filon-type method for the integral (1.1), which

does not require that f is analytic in a enough large region. As we know, the fast im-

plementation of Clenshaw-Curtis-Filon-type method largely depends on the accurate and

efficient computation of modified moments. In addition, the key problem of the efficient

computation of the modified moments is how to obtain a recurrence relation for them.

Fortunately, we can give a universal method for the derivation of recurrence relation for

the modified moments. Moreover, this method can be applied to the modified moments

with other type kernels.

The outline of this paper is organized as follows. In Section 2, we describe a Clenshaw-

Curtis-Filon-type method for the integral (1.1), and present a universal method for the

derivation of recurrence relation for the modified moments, by which the modified moments

can be efficiently computed with several initial values. In Section 3, we give an error bound

on k and ω for the presented method. Some examples are given in Section 4 to show the

efficiency and accuracy. Finally, we finish this paper in Section 5 by presenting some

concluding remarks.

2. Clenshaw-Curtis-Filon-type method and its implementation

In what follows we will consider a Clenshaw-Curtis-Filon-type method for the integral (1.1)

and its fast implementation. Suppose that f is a sufficiently smooth function on [0, 1], and

let PN+2s(x) denote the Hermite interpolation polynomial at the Clenshaw-Curtis points

xj =
1 + cos(jπ/N)

2
, j = 0, . . . , N,

where s is a nonnegative integer, and for ` = 0, . . . , s, there holds

(2.1) P
(`)
N+2s(0) = f (`)(0), PN+2s(xj) = f(xj), P

(`)
N+2s(1) = f (`)(1), j = 1, . . . , N−1.

Then PN+2s(x) can be written in the following form

(2.2) PN+2s(x) =
N+2s∑
n=0

anT
∗
n(x),

where an can be fast calculated by fast Fourier transform [36] with O(N logN) operations,

T ∗n(x) is the shifted Chebyshev polynomial of the first kind of degree n on [0, 1].
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In view of (2.1) and (2.2), we can define a Clenshaw-Curtis-Filon-type method for the

integral (1.1) by

(2.3) QCCFN,s [f ] =

∫ 1

0
PN+2s(x)xα(1− x)βei2kxH(1)

ν (ωx) dx =
N+2s∑
n=0

anM(n, k, ω),

where the modified moments

M(n, k, ω) =

∫ 1

0
xα(1− x)βT ∗n(x)ei2kxH(1)

ν (ωx) dx

have to be computed accurately.

2.1. Recurrence relation for the modified moments

As we have stated in Section 1, the key problem of the fast computations of the modified

moment M(n, k, ω) is to obtain a recurrence relation for them. In the following, we will

give a universal method for the derivation of recurrence relation for the modified moments.

Theorem 2.1. The modified moments M(n, k, ω) for n ≥ 4, k ≥ 0, ω > 0 satisfy the

following recurrence relation:(
1

16
ω2 − 1

4
k2
)
M(n+ 4, k, ω) + f1(n, α, β)M(n+ 3, k, ω)

+ f2(n, α, β)M(n+ 2, k, ω) + f3(n, α, β)M(n+ 1, k, ω) + f4(n, α, β)M(n, k, ω)

+ f3(−n, α, β)M(n− 1, k, ω) + f2(−n, α, β)M(n− 2, k, ω)

+ f1(−n, α, β)M(n− 3, k, ω) +

(
1

16
ω2 − 1

4
k2
)
M(n− 4, k, ω) = 0,

(2.4)

where

f1(n, α, β) = ik(α+ β + n+ 4)− 1

2
ik,

f2(n, α, β) = 9 + 6(α+ β + n) + k2 + n2 + α2 + β2 − 1

4
ω2 − ν2

+ 2(αβ + αn+ βn) + ik(1− 2α+ 2β),

f3(n, α, β) = 2n− 8α+ 12β + 4(1− iαk − iβk + ν2 + βn− αn)

− 31

2
ik + 3ik(α+ β − n+ 4) + 4(β2 − α2),

f4(n, α, β) = 6 + 4α+ 12β − 4αβ − 2ik + 4ik(α− β)

+
3

8
ω2 − 3

2
k2 + 6(α2 + β2 − ν2)− 2n2.

Proof. First, we can rewrite the modified moments M(n, k, ω) by

M(n, k, ω) =
1

2α+β+1
eik
∫ 1

−1
(1 + x)α(1− x)βTn(x)eikxH(1)

ν

(
1 + x

2
ω

)
dx,
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where Tn(x) is the Chebyshev polynomial of degree n of the first kind.

From the above equality, we can see that the modified moments M(n, k, ω) and the

integral
∫ 1
−1(1 + x)α(1− x)βTn(x)eikxH

(1)
ν

(
1+x
2 ω

)
dx have the same recurrence relation.

Since the function y = H
(1)
ν (x) satisfies the following Bessel’s differential equation [1,

p. 358]

x2
d2y

dx2
+ x

dy

dx
+ (x2 − ν2) = 0,

we have

(1 + x)2
[
H(1)
ν

(
1 + x

2
ω

)]′′
+ (1 + x)

[
H(1)
ν

(
1 + x

2
ω

)]′
−
(
ν2 − (1 + x)2ω2

4

)
H(1)
ν

(
1 + x

2
ω

)
= 0.

(2.5)

Let

K1 = 4

∫ 1

−1
(1 + x)α(1− x)β(1− x)2(1 + x)2eikx

[
H(1)
ν

(
1 + x

2
ω

)]′′
Tn(x) dx,

K2 = 4

∫ 1

−1
(1 + x)α(1− x)β(1− x)2(1 + x)eikx

[
H(1)
ν

(
1 + x

2
ω

)]′
Tn(x) dx,

and

K3 = 4

∫ 1

−1
(1 + x)α(1− x)β(1− x)2

(
ν2 − (1 + x)2ω2

4

)
eikxH(1)

ν

(
1 + x

2
ω

)
Tn(x) dx.

It follows from (2.5) that

(2.6) K1 +K2 −K3 = 0.

Noting that the integrands in K1 and K2 have the common factor (1− x)2 and using

integration by parts, we can easily get

K1 = 4

∫ 1

−1

[
(1 + x)α(1− x)β(1− x)2(1 + x)2eikxTn(x)

]′′
H(1)
ν

(
1 + x

2
ω

)
dx,

K2 = 4

∫ 1

−1

[
(1 + x)α(1− x)β(1− x)2(1 + x)eikxTn(x)

]′
H(1)
ν

(
1 + x

2
ω

)
dx.

According to the properties of the Chebyshev polynomial of the first kind [30]

xmTn(x) = 2−m
m∑
j=0

(
m

j

)
Tn+m−2j(x) and

d

dx
Tn(x) =

n

2

Tn−1(x)− Tn+1(x)

1− x2
,
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by rewriting the integrands in K1, K2 and K3 as the sum of the product of Chebyshev

polynomials of different degree and (1 + x)α(1− x)βeikxH
(1)
ν

(
1+x
2 ω

)
, we derive

K1 = −1

4
k2M(n+ 4, k, ω) + f5(n, α, β)M(n+ 3, k, ω) + f6(n, α, β)M(n+ 2, k, ω)

+ f7(n, α, β)M(n+ 1, k, ω) + f8(n, α, β)M(n, k, ω)

+ f7(−n, α, β)M(n− 1, k, ω) + f6(−n, α, β)M(n− 2, k, ω)

+ f5(−n, α, β)M(n− 3, k, ω)− 1

4
k2M(n− 4, k, ω),

(2.7)

where

f5(n, α, β) = ik(α+ β + n+ 4),

f6(n, α, β) = 12 + 7(α+ β + n) + k2 + n2 + α2 + β2 + 2(αβ + αn+ βn) + 2ik(β − α),

f7(n, α, β) = 12(β − α)− 4ik(α+ β) + 4(βn− αn) + 3ik(α+ β − n+ 4) + 4(β2 − α2),

f8(n, α, β) = 8 + 10(α+ β) + 4ik(α− β)− 2n2 − 3

2
k2 + 6(α2 + β2)− 4αβ,

K2 = −
{

1

2
ikM(n+ 3, k, ω) + (α+ β + n+ 3− ik)M(n+ 2, k, ω)

−
(

1

2
ik + 4 + 4α+ 2n

)
M(n+ 1, k, ω) + (6α− 2β + 2ik + 2)M(n, k, ω)

−
(

1

2
ik + 4 + 4α+ 2n

)
M(n− 1, k, ω)

+ (α+ β − n+ 3− ik)M(n− 2, k, ω) +
1

2
ikM(n− 3, k, ω)

}
,

(2.8)

K3 = − 1

16

{
ω2M(n+ 4, k, ω)− (4ω2 + 16ν2)M(n+ 2, k, ω) + 64ν2M(n+ 1, k, ω)

+ (6ω2 − 96ν2)M(n, k, ω) + 64ν2M(n− 1, k, ω)

− (4ω2 + 16ν2)M(n− 2, k, ω) + ω2M(n− 4, k, ω)

}
.

(2.9)

A combination of (2.6), (2.7), (2.8), (2.9) leads to recurrence relation (2.4).

In the following, let us denote by

M̃ [1]
n =

∫ 1

0
ln(x)xα(1− x)βT ∗n(x)ei2kxH(1)

ν (ωx) dx,

M̃ [2]
n =

∫ 1

0
xα(1− x)β ln(1− x)T ∗n(x)ei2kxH(1)

ν (ωx) dx,

M̃ [3]
n =

∫ 1

0
ln(x)xα(1− x)β ln(1− x)T ∗n(x)ei2kxH(1)

ν (ωx) dx,
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respectively, where α− |ν| > −1, β > −1. Using the fact that

M̃ [1]
n =

∂

∂α
M(n, k, ω), M̃ [2]

n =
∂

∂β
M(n, k, ω), M̃ [3]

n =
∂2

∂α∂β
M(n, k, ω),

and according to Theorem 2.1, we can readily obtain the following result.

Corollary 2.2. The sequences M̃
[`]
n , ` = 1, 2, 3 and n ≥ 4, k ≥ 0, ω > 0 satisfy the

following ninth-order homogeneous recurrence relations(
1

16
ω2 − 1

4
k2
)
M̃

[`]
n+4 + f1(n, α, β)M̃

[`]
n+3 + f2(n, α, β)M̃

[`]
n+2 + f3(n, α, β)M̃

[`]
n+1

+ f4(n, α, β)M̃ [`]
n + f3(−n, α, β)M̃

[`]
n−1 + f2(−n, α, β)M̃

[`]
n−2 + f1(−n, α, β)M̃

[`]
n−3

+

(
1

16
ω2 − 1

4
k2
)
M̃

[`]
n−4 = r[`]n ,

where

r[1]n = −
{

ikM(n+ 3, k, ω) + (6 + 2β + 2n+ 2α+ 2ik)M(n+ 2, k, ω)

− (8 + ik + 4n+ 8α)M(n+ 1, k, ω) + (4− 4β + 4ik + 12α)M(n, k, ω)

− (8 + ik − 4n+ 8α)M(n− 1, k, ω) + (6 + 2β − 2n+ 2α+ 2ik)M(n− 2, k, ω)

+ ikM(n− 3, k, ω)
}
,

r[2]n = −
{

ikM(n+ 3, k, ω) + (6 + 2β + 2n+ 2α− 2ik)M(n+ 2, k, ω)

+ (12− ik + 4n+ 8β)M(n+ 1, k, ω) + (12− 4α− 4ik + 12β)M(n, k, ω)

+ (12− ik − 4n+ 8β)M(n− 1, k, ω) + (6 + 2β − 2n+ 2α− 2ik)M(n− 2, k, ω)

+ ikM(n− 3, k, ω)
}
,

and

r[3]n = −
{

ik
(
M̃

[1]
n+3 + M̃

[2]
n+3

)
+ (6 + 2β + 2n+ 2α− 2ik)M̃

[1]
n+2

+ (6 + 2β + 2n+ 2α+ 2ik)M̃
[2]
n+22M(n+ 2, k, ω) + (12− ik + 4n+ 8β)M̃

[1]
n+1

+ (8 + ik + 4n+ 8α)M̃
[2]
n+1 − 4M(n, k, ω) + (12− ik − 4n+ 8β)M̃

[1]
n−1

+ (8 + ik − 4n+ 8α)M̃
[2]
n−1 + (6 + 2β − 2n+ 2α− 2ik)M̃

[1]
n−2

+ (6 + 2β − 2n+ 2α+ 2ik)M̃
[2]
n−2 + 2M(n− 2, k, ω) + ik

(
M̃

[1]
n−3 + M̃

[2]
n−3
)}
.

Remark 2.3. The proof of Theorem 2.1 provides a universal method for the derivation

of recurrence relation of the modified moments, which can be applied to the modified
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moments with other kernels that satisfy some linear differential equations. For example,

for the derivation of recurrence relations of the following three kinds of modified moments∫ 1

0
xα(1− x)βT ∗n(x)ei2kx Ai(−ωx) dx,∫ 1

0
xα(1− x)βT ∗n(x)ei2kxjν(ωx) dx,∫ 1

0
xα(1− x)βT ∗n(x)ei2kxyν(ωx) dx,

the method is applicable, where Ai(x) is Airy function, jν(x), yν(x) are spherical Bessel

functions of the first kind and second kind [1], respectively. Moreover, by differentiating

the recurrence relation with respect to parameters α, β, one can also obtain recurrence

relations for the modified moments with logarithmic singularities at two endpoints. As

this idea is tangential to the topic of this paper, we will not study it further.

Remark 2.4. For ω = 2k, the coefficients of M(n + 4, k, ω) and M(n − 4, k, ω) are both

zero, then the recurrence relation (2.4) reduces to a seven-term recurrence relation.

2.2. Fast computations of the modified moments

In this subsection, we will be concerned with the fast computation of the modified mo-

ments by using the recurrence relation (2.4). According to the symmetry of the recur-

rence relation of the shifted Chebyshev polynomials T ∗n(x) on [0, 1], it is convenient to

define T ∗−n(x) = T ∗n(x) for n = 1, 2, 3, . . .. Consequently, M(−n, k, ω) = M(n, k, ω),

k = 1, 2, 3, . . .. Moreover, it can be shown that (2.4) is valid, not only for n ≥ 4, but also

for all integers of n.

Unfortunately, the application of recurrence relations in the forward direction is not al-

ways numerically stable. Practical experiments show that the modified momentsM(n, k, ω),

n = 0, 1, 2, . . . can be computed accurately by using the recurrence relation (2.4) as long

as n ≤ (k + ω/2). However, for n > (k + ω/2), forward recursion is no longer applicable

due to the loss of significant figures increases. In this case, (2.4) has to be solved as a

boundary value problem. Fortunately, we can use Oliver’s algorithm [31] or Lozier’s algo-

rithm [28] to solve this problem for the modified moments with five starting moments and

three end moments. Particularly, for Lozier’s algorithm, we can set three end moments

to zero. Also, this algorithm incorporates a numerical test for determining the optimum

location of the endpoint. The advantage is that a user-required accuracy is automati-

cally obtained, without computation of the asymptotic expansion. In conclusion, several

starting values for the modified moments for forward recursion and Oliver’s algorithm or

Lozier’s algorithm are needed. In addition, three end moments can be computed by using

asymptotic expansion in [14] or the method in [18].
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Since the shifted Chebyshev polynomials T ∗n(x) can be rewritten in terms of powers of

x, the five starting modified moments can be computed by the following formulas

M(0, k, ω) = I(0, k, ω),

M(1, k, ω) = 2I(1, k, ω)− I(0, k, ω),

M(2, k, ω) = 8I(2, k, ω)− 8I(1, k, ω) + I(0, k, ω),

M(3, k, ω) = 32I(3, k, ω)− 48I(2, k, ω) + 18I(1, k, ω)− I(0, k, ω),

M(4, k, ω) = 128I(4, k, ω)− 256I(3, k, ω) + 160I(2, k, ω)− 32I(1, k, ω) + I(0, k, ω),

where

(2.10) I(j, k, ω) =

∫ 1

0
xα+j(1− x)βei2kxH(1)

ν (ωx) dx,

which can be efficiently computed by the method in [18] with small number of points.

For a special case ω = 2k, the computation of the integral (2.10) is reduced to the

evaluation of

Î(α, β, ν, ω) =

∫ 1

0
xα(1− x)βeiωxH(1)

ν (ωx) dx, α > −1, β > −1,

which can also be accurately computed through the following theorem.

Theorem 2.5. For all α− |ν| > −1, β > −1 and ω > 0, it holds that

(2.11) Î(α, β, ν, ω) = I1 + i(I2 + I3)− I4,

where

I1 = CG1,4
4,6

 −α
2 ,

1−α
2 , 14 ,

3
4

ν
2 ,−

ν
2 ,

1+ν
2 , 1−ν2 ,−α+β+1

2 ,−α+β
2

∣∣∣∣∣ ω2

 ,

I2 = ωCG1,4
4,6

 −α+1
2 ,−α

2 ,−
1
4 ,

1
4

ν
2 ,−

ν
2 ,−

1−ν
2 ,−1+ν

2 ,−α+β+2
2 ,−α+β+1

2

∣∣∣∣∣ ω2

 ,

I3 = −CG2,4
5,7

 −α
2 ,

1−α
2 , 14 ,

3
4 ,

1−ν
2

−ν
2 ,

ν
2 ,

1+ν
2 , 1−ν2 , 1−ν2 ,−α+β+1

2 ,−α+β
2

∣∣∣∣∣ ω2

 ,

I4 = −ωCG2,4
5,7

 −α+1
2 ,−α

2 ,−
1
4 ,

1
4 ,

1−ν
2

−ν
2 ,

ν
2 ,

1−ν
2 ,−1+ν

2 , ν−12 ,−α+β+2
2 ,−α+β+1

2

∣∣∣∣∣ ω2

 ,

and

Gm,np,q

a1, . . . , an, an+1, . . . , ap

b1, . . . , bm, bm+1, . . . , bq

∣∣∣∣∣ z


=
1

2πi

∮
L

∏m
k=1 Γ(bk − s)

∏n
j=1 Γ(1− aj + s)∏q

k=m+1 Γ(1− bk + s)
∏p
j=n+1 Γ(aj − s)

zs ds
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is Meijer G-function [5], C = 2−(β+3/2)Γ(β + 1).

Proof. Substituting H
(1)
ν (x) = Jν(x) + iYν(x) into Î(α, β, ν, ω) yields

Î(α, β, ν, ω)

=

∫ 1

0
xα(1− x)β cos(ωx)Jν(ωx) dx+ i

∫ 1

0
xα(1− x)β sin(ωx)Jν(ωx) dx

+ i

∫ 1

0
xα(1− x)β cos(ωx)Yν(ωx) dx−

∫ 1

0
xα(1− x)β sin(ωx)Yν(ωx) dx.

(2.12)

Note that [42,43]

0F1( ; b;−z2/4)Jν(z) =
Γ(b)√
π

2b−1G1,2
2,4

 1−b
2 , 1− b

2

−ν
2 ,

ν
2 , 1− b+ ν

2 , 1− b−
ν
2

∣∣∣∣∣ z2
 ,(2.13)

0F1( ; b;−z2/4)Yν(z) =
Γ(b)√
π

2b−1G1,2
2,4

 1−b
2 , 1− b

2 ,
1−ν
2

−ν
2 ,

ν
2 ,

1−ν
2 , 1− b+ ν

2 , 1− b−
ν
2

∣∣∣∣∣ z2
 .(2.14)

On the other hand, there holds [44]

∫ x

0
tα−1(x− t)β−1Gm,np,q

a1 . . . an, an+1 . . . ap

b1 . . . bm, bm+1 . . . bq

∣∣∣∣∣ ωtl
 dt

=
l−βΓ(β)

x1−α−β
Gm,n+lp+l,q+l

 1−α
l , . . . , l−αl , a1 . . . an, an+1, . . . , ap

b1, . . . , bm, bm+1, . . . , bq,
1−α−β

l , . . . , l−α−βl

∣∣∣∣∣ ωxl
 ,

(2.15)

and [29]

cos(z) = 0F1( ; 1/2;−z2/4), sin(z) = 0F1( ; 3/2;−z2/4).

According to (2.12), and setting b = 1/2, 3/2 in (2.13) and (2.14), respectively, then

substituting them into (2.15), we can easily derive the result (2.11).

Remark 2.6. We choose 10 points for the Gauss-type method in [18] to evaluate I(j, k, ω),

j = 0, 1, 2, 3, 4 for ω 6= 2k. While for ω = 2k, we compute them by using the formula

(2.11) through Meijer G-function, which can be efficiently computed with the Matlab

code MeijerG.m [45].

3. Error estimate about k and ω for the method (2.3)

In [34,35], Sloan and Smith presented a product-integration rule with the Clenshaw-Curtis

points for approximating the integral
∫ 1
−1 k(x)f(x) dx, where k(x) is integrable and f(x)
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is continuous. Moreover, the authors also considered the theoretical convergence proper-

ties of the method, and obtained the satisfactory rates of convergence for all continuous

functions f(x), if k(x) satisfies
∫ 1
−1 |k(x)|p dx <∞ for some p > 1. Since∫ 1

0

∣∣∣xα(1− x)βei2kxH(1)
ν (ωx)

∣∣∣p dx <∞

for all p > 1 from [34, 35], we see that the Clenshaw-Curtis-Filon-type method (2.3) for

integral (1.1) is uniformly convergent in N for fixed k and ω, that is

lim
N→∞

∫ 1

0
PN+2s(x)xα(1− x)βei2kxH(1)

ν (ωx) dx =

∫ 1

0
f(x)xα(1− x)βei2kxH(1)

ν (ωx) dx.

In what follows we will consider the error estimate on k and ω for the method (2.3). To

obtain an error bound for method (2.3), we first introduce the following theorem.

Theorem 3.1. For each α− |ν| > −1, β > −1, the asymptotics of the integral
∫ 1
0 x

α(1−
x)βei2kxH

(1)
ν (ωx) dx can be estimated by the following three formulas.

(i) If k is fixed and ω →∞, there holds

(3.1)

∫ 1

0
xα(1− x)βei2kxH(1)

ν (ωx) dx = O

(
1

ω1+τ1

)
,

where τ1 = min{α, β}.

(ii) If ω is fixed and k →∞, there holds

(3.2)

∫ 1

0
xα(1− x)βei2kxH(1)

ν (ωx) dx =


O
(
1+ln(k)
k1+α

)
ν = 0, α ≤ β,

O
(

1
k1+β

)
ν = 0, α > β,

O
(

1
k1+τ2

)
ν 6= 0,

where τ2 = min{α− |ν|, β}.

(iii) If ω = 2k and ω →∞, there holds

(3.3)

∫ 1

0
xα(1− x)βeiωxH(1)

ν (ωx) dx = O

(
1

ω1+τ1

)
.

Proof. By using the complex integration theory and substituting the original interval

of integration by the paths of steepest descent, we can rewrite the integral
∫ 1
0 x

α(1 −
x)βei2kxH

(1)
ν (ωx) dx as a sum of two line integrals (which is a special case of Eq. (20)

in [18] with f(x) = 1, b = 1), that is∫ 1

0
xα(1− x)βei2kxH(1)

ν (ωx) dx = L0[f ]− L1[f ]
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where

L0[f ] =
2iα

iνπ(2k + ω)1+α

∫ ∞
0

(
1− ix

2k + ω

)β
Kν

(
ωx

2k + ω

)
xαe−2kx/(2k+ω) dx,

L1[f ] =
(−i)βieiω

π(2k + ω)1+β

∫ ∞
0

(
1 +

ix

2k + ω

)α
H(1)
ν

(
ω +

iωx

2k + ω

)
eωx/(2k+ω)xβe−x dx,

here, Kν(x) is the modified Bessel function of the second kind of order ν [1].

According to the Theorem in [6], when ω →∞, for every fixed k, we have

L0[f ] = O

(
1

ω1+α

)
, L1[f ] = O

(
1

ω1+β

)
,

which leads to (3.1) directly.

On the other hand, when k →∞, for every fixed ω, we have

L0[f ] =

O
(
1+ln(k)
k1+α

)
ν = 0,

O
(

1
k1−|ν|+α

)
ν 6= 0,

and L1[f ] = O

(
1

k1+β

)
,

which derives (3.2) directly.

Equation (3.3) can be derived by a similar way to the proof of (3.1). This completes

the proof.

Example 3.2. Let us consider the asymptotics of the integral

(3.4) Ĩ1(α, β, ω) =

∫ 1

0
xα(1− x)βei20xH(1)

ν (ωx) dx.
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Figure 3.1: Absolute values of (3.4) when ω runs from 1 to 1000.

Example 3.3. Let us consider the asymptotics of the integral

(3.5) Ĩ2(α, β, k) =

∫ 1

0
xα(1− x)βei2kxH(1)

ν (10x) dx.
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Figure 3.2: Absolute values of (3.5) when k runs from 1 to 1000.

Example 3.4. Let us consider the asymptotics of the integral

(3.6) Ĩ3(α, β, ω) =

∫ 1

0
xα(1− x)βeiωxH(1)

ν (ωx) dx.
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Figure 3.3: Absolute values of (3.6) when ω runs from 1 to 1000.

From Figures 3.1–3.3, we see that the asymptotic orders on k and ω stated in Theo-

rem 3.1 are attainable.

According to Theorem 3.1, we can easily obtain the error bound for the Clenshaw-

Curtis-Filon-type method (2.3), by using the technique of Theorem 3.1 in [40].

Theorem 3.5. Suppose that f(x) is a sufficiently smooth function on [0, 1], then for

each α − |ν| > −1, β > −1 and fixed N , the error bound on k and ω for the Clenshaw-

Curtis-Filon-type method (2.3) for the integral (1.1) can be estimated by the following three

formulas.
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(i) For fixed k, when ω →∞, there holds

I[f ]−QCCFN,s [f ] = O

(
1

ωs+2+τ1

)
,

where τ1 = min{α, β}.

(ii) For fixed ω, when k →∞, there holds

I[f ]−QCCFN,s [f ] =


O
(
1+ln(k)
ks+2+α

)
ν = 0, α ≤ β,

O
(

1
ks+2+β

)
ν = 0, α > β,

O
(

1
ks+2+τ2

)
ν 6= 0,

where τ2 = min{α− |ν|, β}.

(iii) For a special case that ω = 2k, when ω →∞, there holds

I[f ]−QCCFN,s [f ] = O

(
1

ωs+2+τ1

)
.

4. Numerical examples

In this section, we will present several examples to illustrate the efficiency and accuracy

of the proposed method. Throughout the paper, all numerical computations were imple-

mented on the R2012a version of the Matlab system. The experiments were performed

on a computer with 3.20 GHz processor and 4 GB of RAM. In addition, the exact values of

all the considered integrals I[f ] were computed in the Maple 17 using 32 decimal digits

precision arithmetic.
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Figure 4.1: Absolute errors for the Clenshaw-Curtis-Filon-type method for the inte-

gral (4.1) when N = 4, k = 50, ω from 1 to 1000 by 2.
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Example 4.1. Let us consider the computation of the integral

(4.1)

∫ 1

0
xα(1− x)β cos(x)ei2kxH(1)

ν (ωx) dx

by the Clenshaw-Curtis-Filon-type method (2.3), where ν = 0, α = −0.6 and β = −0.3.

The absolute errors and scaled absolute errors are displayed in Figures 4.1 and 4.2, re-

spectively. Also, the relative errors are displayed in Table 4.1.
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Figure 4.2: Absolute errors for the Clenshaw-Curtis-Filon-type method for the inte-

gral (4.1) when N = 4, k = 50, ω from 1 to 1000 by 2.

Table 4.1: Relative errors for the integral (4.1) by the Clenshaw-Curtis-Filon-type method

with k = 10, N = 2, 4, 6 and s = 0, 1, 2.

s N ω = 10 ω = 20 ω = 50

0 2 1.78× 10−4 1.35× 10−4 7.60× 10−5

4 1.35× 10−6 8.93× 10−7 5.22× 10−7

6 3.34× 10−9 1.97× 10−9 1.20× 10−9

1 2 3.94× 10−7 1.96× 10−7 5.32× 10−8

4 1.04× 10−9 6.75× 10−10 1.71× 10−10

6 1.72× 10−12 9.28× 10−13 2.49× 10−13

2 2 6.56× 10−10 2.20× 10−10 4.47× 10−11

4 1.48× 10−12 3.74× 10−13 7.76× 10−14

6 1.89× 10−15 6.79× 10−16 1.26× 10−16

Real Values
0.841824877078759 0.708386698058846 0.517419675175559

−1.172097304662626 i −0.956797421788702 i −0.711685588704216 i
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Example 4.2. Let us consider the computation of the integral

(4.2)

∫ 1

0
xα(1− x)β

1

1 + 16x2
ei2kxH(1)

ν (ωx) dx

by the Clenshaw-Curtis-Filon-type method (2.3), where ν = 0.6, α = 0 and β = −0.3 (see

Figures 4.3, 4.4 and Table 4.2).
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Figure 4.3: Absolute errors for the Clenshaw-Curtis-Filon-type method for the inte-

gral (4.2) when N = 6, ω = 50, k from 1 to 1000 by 2.
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Figure 4.4: Absolute errors for the Clenshaw-Curtis-Filon-type method for the inte-

gral (4.2) when N = 6, ω = 50, k from 1 to 1000 by 2.

Example 4.3. Finally, we consider the computation of the integral of a special form

(4.3)

∫ 1

0
xα(1− x)β

1

1 + (1 + x)2
eiωxH(1)

ν (ωx) dx

by the Clenshaw-Curtis-Filon-type method (2.3), where ν = 0.3, α = −0.2 and β = −0.3.

Figures 4.5 and 4.6 show error bound on ω for the Clenshaw-Curtis-Filon-type method for

this case. Table 4.3 displays the relative errors for the proposed method with N = 3, 6, 9

and s = 0, 1, 2.
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Table 4.2: Relative errors for the integral (4.2) by the Clenshaw-Curtis-Filon-type method

with ω = 10, N = 8, 16, 24 and s = 0, 1, 2.

s N k = 80 k = 160 k = 320

0 8 4.36× 10−4 2.19× 10−4 1.11× 10−4

16 1.51× 10−6 8.45× 10−7 4.13× 10−7

24 3.11× 10−9 1.12× 10−9 3.53× 10−10

1 8 4.80× 10−6 8.59× 10−7 2.62× 10−7

16 7.80× 10−8 1.48× 10−8 3.37× 10−9

24 7.96× 10−10 1.28× 10−10 2.61× 10−11

2 8 7.96× 10−7 8.89× 10−8 1.19× 10−8

16 8.10× 10−9 7.17× 10−10 7.77× 10−11

24 2.95× 10−11 1.81× 10−12 1.37× 10−13

Real Values
0.030083151162300 0.023581342870858 0.017909179561849

−0.042241981991079 i −0.031875514971454 i −0.024353985798652 i
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Figure 4.5: Absolute errors for the Clenshaw-Curtis-Filon-type method for the inte-

gral (4.3) when N = 4, ω from 1 to 1000 by 2.
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Figure 4.6: Absolute errors for the Clenshaw-Curtis-Filon-type method for the inte-

gral (4.3) when N = 4, ω from 1 to 1000 by 2.
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Table 4.3: Relative errors for the integral (4.3) by the Clenshaw-Curtis-Filon-type method

with N = 3, 6, 9 and s = 0, 1, 2.

s N ω = 25 ω = 50 ω = 100

0 3 2.26× 10−5 9.40× 10−6 4.04× 10−6

6 1.33× 10−6 5.97× 10−7 2.75× 10−7

9 2.59× 10−9 1.29× 10−9 6.98× 10−10

1 3 2.03× 10−6 4.66× 10−7 1.11× 10−7

6 5.78× 10−10 1.60× 10−10 2.41× 10−11

9 4.42× 10−11 1.32× 10−11 2.82× 10−12

2 3 1.25× 10−8 1.98× 10−9 2.74× 10−10

6 1.86× 10−10 2.26× 10−11 2.37× 10−12

9 2.11× 10−13 7.48× 10−15 2.98× 10−15

Real Values
0.030229145167903 0.017639904837672 0.010310330002264

−0.034246416918332 i −0.019163197919570 i −0.010688289764988 i

Form Figures 4.2, 4.4, 4.6, we can see that the error bounds given in Theorem 3.5

for the Clenshaw-Curtis-Filon-type method are attainable. Figures 4.1, 4.3, 4.5 and Ta-

bles 4.1–4.3 show that the presented method is very efficient for the approximation of the

integral (1.1). Moreover, for the well-behaved function f(x), the integral (1.1) can be

efficiently approximated by Clenshaw-Curtis-Filon-type method with a small number of

interpolation points. In addition, the improvement of the accuracy for the integral (1.1)

can be obtained by using interpolation with derivatives of higher order at two endpoints,

or adding the number of the interpolation points.

5. Concluding remarks

In this paper, we consider a Clenshaw-Curtis-Filon-type method for the computation of the

integral (1.1) with (N + 1) Clenshaw-Curtis points, which can be efficiently implemented

in O(N logN) operations. Moreover, we present a universal method for the derivation of

the recurrence relation for the modified moments, which can be applied to the modified

moments with other type kernels. Based on this recurrence relation, the modified moments

can be efficiently computed by using special functions and Gauss-type method with small

number of points. Finally, an error bound on k and ω and several numerical experiments

are given to show the accuracy and efficiency for the proposed method.
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