DOI: 10.11650/tjm/170903

b-generalized (α, β) -derivations and *b*-generalized (α, β) -biderivations of Prime Rings

Vincenzo De Filippis* and Feng Wei

Abstract. Let R be a ring, α and β two automorphisms of R. An additive mapping $d: R \to R$ is called an (α, β) -derivation if $d(xy) = d(x)\alpha(y) + \beta(x)d(y)$ for any $x, y \in R$. An additive mapping $G: R \to R$ is called a generalized (α, β) -derivation if $G(xy) = G(x)\alpha(y) + \beta(x)d(y)$ for any $x, y \in R$, where d is an (α, β) -derivation of R. In this paper we introduce the definitions of b-generalized (α, β) -derivation and b-generalized (α, β) -biderivation. More precisely, let $d: R \to R$ and $G: R \to R$ be two additive mappings on R, α and β automorphisms of R and $b \in R$. G is called a b-generalized (α, β) -derivation of R, if $G(xy) = G(x)\alpha(y) + b\beta(x)d(y)$ for any $x, y \in R$.

Let now $D: R \times R \to R$ be a biadditive mapping. The biadditive mapping $\Delta: R \times R \to R$ is said to be a b-generalized (α, β) -biderivation of R if, for every $x, y, z \in R$, $\Delta(x, yz) = \Delta(x, y)\alpha(z) + b\beta(y)D(x, z)$ and $\Delta(xy, z) = \Delta(x, z)\alpha(y) + b\beta(x)D(y, z)$.

Here we describe the form of any b-generalized (α, β) -biderivation of a prime ring.

1. Introduction

Let R be a prime ring with center Z(R), right Martindale quotient ring Q_r and extended centroid C. An additive mapping $d: R \to R$ is said to be a derivation of R if

$$d(xy) = d(x)y + xd(y)$$

for all $x, y \in R$. An additive mapping $F: R \to R$ is called a *generalized derivation* of R if there exists a derivation d of R such that

$$F(xy) = F(x)y + xd(y)$$

for all $x, y \in R$. The derivation d is uniquely determined by F, which is called an associated derivation of F.

In a recent paper [9], Koşan and Lee propose the following new definition. Let $d: R \to Q_r$ be an additive mapping and $b \in Q_r$. An additive mapping $F: R \to Q_r$ is called a *left b-generalized derivation*, with an associated mapping d, if F(xy) = F(x)y + bxd(y), for all

Received June 13, 2017; Accepted September 14, 2017.

Communicated by Kunio Yamagata.

2010 Mathematics Subject Classification. 16R50, 16W25, 16N60.

Key words and phrases. prime ring, generalized skew derivation, biderivation.

^{*}Corresponding author.

 $x, y \in R$. In the same paper it is proved that, if R is prime ring, then d is a derivation of R. In the present paper this mapping F will be called a b-generalized derivation with an associated pair (b, d). Clearly, any generalized derivation with an associated derivation d is a b-generalized derivation with an associated pair (1, d).

Let α be an automorphism of R. An additive mapping $d: R \to R$ is said to be a *skew* derivation of R if

$$d(xy) = d(x)y + \alpha(x)d(y)$$

for all $x, y \in R$. The automorphisms α is called an associated automorphism of d. An additive mapping $F: R \to R$ is called a generalized skew derivation of R if there exists a skew derivation d of R with an associated automorphism α such that

$$F(xy) = F(x)y + \alpha(x)d(y)$$

for all $x, y \in R$.

Let now α and β be two automorphisms of R. An additive mapping $d: R \to R$ is said to be a (α, β) -derivation of R if

$$d(xy) = d(x)\alpha(y) + \beta(x)d(y)$$

for all $x, y \in R$. An additive mapping $F: R \to R$ is called a generalized (α, β) -derivation of R if there exists an (α, β) -derivation d of R such that

$$F(xy) = F(x)\alpha(y) + \beta(x)d(y)$$

for all $x, y \in R$.

There arises the question of whether there exists a unified definition of b-generalized derivation and generalized (α, β) -derivation. In view of this idea, we now give a definition which is a common generalization of the previous two definitions:

Definition 1.1. Let R be an associative algebra, $b \in Q_r$, d an additive mapping of R and α , β be two automorphisms of R. A linear mapping $F: R \to R$ is called a b-generalized (α, β) -derivation of R, with an associated word (b, α, β, d) if

$$F(xy) = F(x)\alpha(y) + b\beta(x)d(y)$$

holds for all $x, y \in R$.

Let now $D: R \times R \to R$ be a biadditive map. D is called a biderivation if D(xy, z) = D(x, z)y + xD(y, z) for all $x, y, z \in R$. In this case we have that D(x, yz) = D(x, y)z + yD(x, z) for all $x, y, z \in R$.

The concept of a biderivation was introduced in [10] by Maksa. In [3] Brešar, Martindale III and Miers characterized biderivations of noncommutative rings and proved that

any biderivation D of a prime ring R has the following form: $D(x,y) = \lambda[x,y]$ for any $x,y \in R$, where λ is a fixed element of C.

Later in [1] Argaç introduced the notion of generalized biderivation. More precisely, let $D: R \times R \to R$ be a biderivation. A biadditive mapping $\Delta: R \times R \to R$ is said to be a generalized biderivation if for every $x \in R$, the map $y \mapsto \Delta(x,y)$ is a generalized derivation of R associated with D as well as for every $y \in R$, the map $x \mapsto \Delta(x,y)$ is a generalized derivation of R associated with D, i.e., $\Delta(x,yz) = \Delta(x,y)z + yD(x,z)$ and $\Delta(xy,z) = \Delta(x,z)y + xD(y,z)$ for all $x,y,z \in R$. Argaç also proved that any generalized biderivation D of a prime ring R has the following form: $D(x,y) = \lambda[x,y]$ for any $x,y \in R$, where λ is a fixed element of C.

Let now $D: R \times R \to R$ be a biadditive mapping, α an automorphism of R. D is said to be a *skew biderivation* associated with α if for every $x \in R$, the map $y \mapsto D(x,y)$ is a skew derivation of R associated with α as well as for every $y \in R$, the map $x \mapsto D(x,y)$ is a skew derivation of R associated with α , i.e., $D(x,yz) = D(x,y)z + \alpha(y)D(x,z)$ and $D(xy,z) = D(x,z)y + \alpha(x)D(y,z)$ for all $x,y,z \in R$. In [2], Brešar determined the form of any skew biderivation of a prime ring R. More precisely, if D is a skew biderivation with an associated automorphism α , then there exists an invertible element q of Q such that $\alpha(x) = qxq^{-1}$ and D(x,y) = q[x,y] for any $x,y \in R$.

More recently, in [6] Fošner described the form of generalized skew biderivations in a prime ring. More precisely, if $D: R \times R \to R$ is a skew biderivation of R, associated with the automorphism α of R, then the biadditive mapping $\Delta: R \times R \to R$ is said to be a generalized skew biderivation associated with α and D, if for every $x \in R$, the map $y \mapsto \Delta(x,y)$ is a generalized skew derivation of R associated with α and D, as well as for every $y \in R$, the map $x \mapsto \Delta(x,y)$ is a generalized skew derivation of R associated with α and D, i.e., $\Delta(x,yz) = \Delta(x,y)z + \alpha(y)D(x,z)$ and $\Delta(xy,z) = \Delta(x,z)y + \alpha(x)D(y,z)$ for all $x,y,z \in R$. In [6, Theorem 1] it is proved that if Δ is a generalized skew biderivation with an associated automorphism α , then there exists an invertible element q of Q such that $\alpha(x) = qxq^{-1}$ and $\Delta(x,y) = q[x,y]$ for any $x,y \in R$.

In light of Definition 1.1, here we would like to introduce the following concepts, which generalize the previous cited ones:

Definition 1.2. Let R be an associative algebra, $b \in Q_r$, $D: R \times R \to R$ a biadditive mapping of R and α , β be two automorphisms of R. D is said to be an (α, β) -biderivation of R if for every $x \in R$, the map $y \mapsto D(x, y)$ is an (α, β) -derivation of R, as well as for every $y \in R$, the map $x \mapsto D(x, y)$ is an (α, β) -derivation of R, i.e.,

- (a) $D(x,yz) = D(x,y)\alpha(z) + \beta(y)D(x,z)$ for any $x,y,z \in R$;
- (b) $D(xy,z) = D(x,z)\alpha(y) + \beta(x)D(y,z)$ for any $x,y,z \in R$.

Definition 1.3. Let R be an associative algebra, $b \in Q_r$, $D: R \times R \to R$ a biadditive mapping of R and α , β be two automorphisms of R. The biadditive mapping $\Delta: R \times R \to R$ is said to be a b-generalized (α, β) -biderivation associated with the word (b, α, β, D) if for every $x \in R$, the map $y \mapsto \Delta(x, y)$ is a b-generalized (α, β) -derivation of R associated with the word (b, α, β, D) , as well as for every $y \in R$, the map $x \mapsto \Delta(x, y)$ is a b-generalized (α, β) -derivation of R associated with the word (b, α, β, D) , i.e.,

(a)
$$\Delta(x, yz) = \Delta(x, y)\alpha(z) + b\beta(y)D(x, z)$$
 for any $x, y, z \in R$;

(b)
$$\Delta(xy,z) = \Delta(x,z)\alpha(y) + b\beta(x)D(y,z)$$
 for any $x,y,z \in R$.

Here we will describe the structure of an arbitrary b-generalized (α, β) -biderivation in a prime ring and prove the following:

Theorem 1.4. Let R be a non-commutative prime ring, $b \in Q_r$, $D: R \times R \to R$ a biadditive mapping of R and α , β be two automorphisms of R. If Δ is a non-zero b-generalized (α, β) -biderivation of R, associated with the word (b, α, β, D) , then D is an (α, β) -biderivation of R and there exists $q \in Q$ such that $\alpha^{-1}\beta(x) = qxq^{-1}$ for any $x \in R$, and $D(x, y) = \alpha(q)[\alpha(x), \alpha(y)]$, $\Delta(x, y) = b\alpha(q)[\alpha(x), \alpha(y)]$ for all $x, y \in R$.

2. Characterization of b-generalized (α, β) -derivations

In this section we would like to describe the general form of b-generalized (α, β) -derivations in prime rings.

Lemma 2.1. Let R be a prime ring, $\alpha, \beta \in \text{Aut}(R)$, $0 \neq b \in Q_r$, $d: R \to R$ be an additive mapping of R and F be the b-generalized (α, β) -derivation of R with an associated word (b, α, β, d) . Then d is an (α, β) -derivation of R.

Proof. For any $x, y, z \in R$, we have both

$$F(xyz) = F(xy)\alpha(z) + b\beta(xy)d(z) = F(x)\alpha(y)\alpha(z) + b\beta(x)d(y)\alpha(z) + b\beta(x)\beta(y)d(z)$$

and

$$F(xyz) = F(x)\alpha(y)\alpha(z) + b\beta(x)d(yz).$$

Comparing the above two relations, it follows that

$$0 = b\beta(x)d(y)\alpha(z) + b\beta(x)\beta(y)d(z) - b\beta(x)d(yz).$$

That is,

$$b\beta(R)\big(d(yz) - d(y)\alpha(z) - \beta(y)d(z)\big) = 0.$$

Therefore, by the primeness of R and since $b \neq 0$, we get $d(yz) = d(y)\alpha(z) + \beta(y)d(z)$ for all $y, z \in R$, as required.

Fact 2.2. Let R be a prime ring, then the following statements hold:

- (a) Any automorphism of R can be uniquely extended to Q_r (see [5, Fact 2]).
- (b) Every generalized skew derivation of R can be uniquely extended to Q_r (see [4, Lemma 2]).

Proposition 2.3. Let R be a prime ring, $\alpha, \beta \in \text{Aut}(R)$, $b \in Q_r$, $d : R \to R$ be an additive mapping of R and F be the b- (α, β) -derivation of R with an associated word (b, α, β, d) . Then F can be uniquely extended to Q_r and assumes the form $F(x) = a\alpha(x) + bd(x)$, where $a \in Q_r$.

Proof. First we recall that, for any $x \in Q_r$, there exists an ideal I_x of R such that $xI_x \subseteq R$. In case b = 0, then $F(xy) = F(x)\alpha(y)$. Thus F can be extended to Q_r by $F(xy) = F(x)\alpha(y)$ for all $y \in I_x$.

Let us consider the case of $b \neq 0$. Define $T: R \to R$ such that T(x) = F(x) - bd(x). Since d is an (α, β) -derivation of R, we have

$$T(xy) = F(x)\alpha(y) + b\beta(x)d(y) - bd(x)\alpha(y) - b\beta(x)d(y)$$
$$= (F(x) - bd(x))\alpha(y) = T(x)\alpha(y)$$

for all $x, y \in R$. As above, T can be extended to Q_r by $T(xy) = T(x)\alpha(y)$ for all $y \in I_x$. Since F(x) = T(x) + bd(x) and both T and d can be uniquely extended to Q_r , we know that F can be uniquely extended to Q_r .

Moreover, for any $x \in Q_r$, $F(x) = F(1 \cdot x) = F(1)\alpha(x) + b\beta(1)d(x) = a\alpha(x) + bd(x)$, where $a = F(1) \in Q_r$.

Example 2.4. Let R be an associative algebra, α and β be two automorphisms of R, $a, b, c \in R$. The following mapping

$$G \colon R \to R, \quad x \mapsto a\alpha(x) + b\beta(x)c$$

is a b-generalized (α, β) -derivation of R with an associated word (b, α, β, d) , where $d(x) = \beta(x)c - c\alpha(x)$ for all $x \in R$. Indeed, for all $x, y \in R$,

$$G(xy) = a\alpha(x)\alpha(y) + b\beta(x)\beta(y)c$$

$$= a\alpha(x)\alpha(y) - b\beta(x)c\alpha(y) + b\beta(x)c\alpha(y) + b\beta(x)\beta(y)c$$

$$= (a\alpha(x) + b\beta(x)c)\alpha(y) + b\beta(x)(\beta(y)c - c\alpha(y))$$

$$= G(x)\alpha(y) + b\beta(x)d(y),$$

where $d(y) := \beta(y)c - c\alpha(y)$ is an inner (α, β) -derivation of R induced by the element $c \in R$, with two associated automorphisms α and β . Such b-generalized (α, β) -derivations are called *inner b-generalized* (α, β) -derivations.

Example 2.5. Let R be an associative algebra, $b \in R$, α , β two automorphisms of R and d an (α, β) -derivation of R. Then the following mapping

$$G \colon R \to R, \quad x \mapsto b(\alpha - d)(x)$$

is a b-generalized (α, β) -derivation of R. Indeed, for all $x, y \in R$,

$$G(xy) = b(\alpha - d)(xy) = b\alpha(x)\alpha(y) - bd(xy)$$
$$= b\alpha(x)\alpha(y) - bd(x)\alpha(y) - b\beta(x)d(y)$$
$$= (b\alpha(x) - bd(x))\alpha(y) - b\beta(x)d(y)$$
$$= G(x)\alpha(y) - b\beta(x)d(y).$$

Thus G is a b-generalized (α, β) -derivation of R, with an associated word $(-b, \alpha, \beta, d)$.

Example 2.6. Let R be an associative algebra, $b \in R$, α , β two automorphisms of R and d an (α, β) -derivation of R. Then the following mapping

$$G: R \to R, \quad x \mapsto b(\beta - d)(x)$$

is a b-generalized (α, β) -derivation of R. Indeed, for all $x, y \in R$,

$$G(xy) = b(\beta - d)(xy) = b\beta(x)\beta(y) - bd(xy)$$

$$= b\beta(x)\beta(y) - bd(x)\alpha(y) - b\beta(x)d(y)$$

$$= b\beta(x)\beta(y) - bd(x)\alpha(y) - b\beta(x)d(y) + b\beta(x)\alpha(y) - b\beta(x)\alpha(y)$$

$$= (b\beta(x) - bd(x))\alpha(y) + b\beta(x)(\beta(y) - \alpha(y) - d(y))$$

$$= G(x)\alpha(y) - b\beta(x)g(y)$$

where it is easy to see that $g(y) = \beta(y) - \alpha(y) - d(y)$ is an (α, β) -derivation of R. Thus G is a b-generalized (α, β) -derivation of R, with an associated word (b, α, β, g) .

3. b-generalized (α, β) -biderivations of prime rings

We permit the following:

Lemma 3.1. Let R be a prime ring, $\Delta \colon R \times R \to R$ a non-zero biadditive mapping of R and α be an automorphism of R. Assume that:

(a)
$$\Delta(x, yz) = \Delta(x, y)\alpha(z)$$
 for any $x, y, z \in R$;

(b)
$$\Delta(xy,z) = \Delta(x,z)\alpha(y)$$
 for any $x,y,z \in R$.

Then R is commutative.

Proof. For any $x, y, z, t \in R$ we have both

(3.1)
$$\Delta(xy, zt) = \Delta(x, zt)\alpha(y) = \Delta(x, z)\alpha(t)\alpha(y)$$

and

(3.2)
$$\Delta(xy, zt) = \Delta(xy, z)\alpha(t) = \Delta(x, z)\alpha(y)\alpha(t).$$

Comparing (3.1) with (3.2) one has $\Delta(x,z)[\alpha(y),\alpha(t)]=0$ for all $x,y,z,t\in R$. Replacing y by ry, for any $r\in R$, we get $\Delta(x,z)r[\alpha(y),\alpha(t)]=0$ for all $x,y,z,t,r\in R$. By the primeness of R and since $\Delta\neq 0$, it follows that $[\alpha(y),\alpha(t)]=0$ for any $y,t\in R$, that is R is commutative.

Lemma 3.2. Let R be a non-commutative prime ring, $b \in Q_r$, $D: R \times R \to R$ a biadditive mapping of R and α , β be two automorphisms of R. If Δ is a non-zero b-generalized (α, β) -biderivation of R, associated with the word (b, α, β, D) , then D is an (α, β) -biderivation of R.

Proof. Since R is not commutative and in light of Lemma 3.1, we may assume $b \neq 0$. Let x, y, z, t be arbitrary elements of R. Then

(3.3)
$$\Delta(x(yt), z) = \Delta(x, z)\alpha(y)\alpha(t) + b\beta(x)D(yt, z).$$

On the other hand

(3.4)
$$\Delta((xy)t, z) = \Delta(xy, z)\alpha(t) + b\beta(x)\beta(y)D(t, z) = \Delta(x, z)\alpha(y)\alpha(t) + b\beta(x)D(y, z)\alpha(t) + b\beta(x)\beta(y)D(t, z).$$

Relations (3.3) and (3.4) imply that

$$(3.5) b\beta(x)\big(D(yt,z)-D(y,z)\alpha(t)-\beta(y)D(t,z)\big)=0, \quad \forall x,y,z,t\in R.$$

By the primeness of R and since $b \neq 0$, relation (3.5) implies that $D(yt, z) = D(y, z)\alpha(t) + \beta(y)D(t, z)$.

By using the same argument one may prove that $D(y,tz) = D(y,t)\alpha(z) + \beta(t)D(y,z)$ for any $y,z,t \in R$, that is D is an (α,β) -biderivation, as required.

Proposition 3.3. Let R be a non-commutative prime ring, α , β be two automorphisms of R, $D: R \times R \to R$ a non-zero (α, β) -biderivation of R. Then there exists $q \in Q_r$ such that $\alpha^{-1}\beta(x) = qxq^{-1}$ for any $x \in R$, and $D(x, y) = \alpha(q)[\alpha(x), \alpha(y)]$ for all $x, y \in R$.

Proof. For any $x, y, z, t \in R$ we have both

(3.6)
$$D(xy, zt) = D(x, zt)\alpha(y) + \beta(x)D(y, zt)$$
$$= D(x, z)\alpha(t)\alpha(y) + \beta(z)D(x, t)\alpha(y) + \beta(x)D(y, z)\alpha(t)$$
$$+ \beta(x)\beta(z)D(y, t)$$

and

(3.7)
$$D(xy, zt) = D(xy, z)\alpha(t) + \beta(z)D(xy, t)$$
$$= D(x, z)\alpha(y)\alpha(t) + \beta(x)D(y, z)\alpha(t) + \beta(z)D(x, t)\alpha(y)$$
$$+ \beta(z)\beta(x)D(y, t).$$

Comparing (3.6) with (3.7) we have that

$$(3.8) D(x,z)[\alpha(t),\alpha(y)] + [\beta(x),\beta(z)]D(y,t) = 0, \quad \forall x,y,z,t \in R.$$

Replacing y by uy in (3.8), it follows that

(3.9)
$$D(x,z)[\alpha(t),\alpha(u)]\alpha(y) + D(x,z)\alpha(u)[\alpha(t),\alpha(y)] + [\beta(x),\beta(z)]D(u,t)\alpha(y) + [\beta(x),\beta(z)]\beta(u)D(y,t) = 0, \quad \forall x,y,z,t,u \in R.$$

By using (3.8) in (3.9), one has

$$(3.10) D(x,z)\alpha(u)[\alpha(y),\alpha(t)] - [\beta(x),\beta(z)]\beta(u)D(y,t) = 0, \quad \forall x,y,z,t,u \in R.$$

We remark that, since R is not commutative and $D \neq 0$, then there exist $x_0, y_0, z_0, t_0 \in R$ such that

$$[\alpha(y_0), \alpha(t_0)] \neq 0$$
 and $D(x_0, z_0) \neq 0$.

Therefore, by (3.10), $[\beta(x_0), \beta(z_0)]\beta(u)D(y_0, t_0) \neq 0$ for some element $u \in R$, that is both $[\beta(x_0), \beta(z_0)] \neq 0$ and $D(y_0, t_0) \neq 0$.

Now we fix x_0 , z_0 , y_0 , t_0 , with $[x_0, z_0] \neq 0$, $[y_0, t_0] \neq 0$, $D(x_0, z_0) \neq 0$ and $D(y_0, t_0) \neq 0$. O. For simplicity of notation we write $a_1 = D(x_0, z_0) \neq 0$, $a_2 = [\alpha(y_0), \alpha(t_0)] \neq 0$, $a_3 = [\beta(x_0), \beta(z_0)] \neq 0$ and $a_4 = D(y_0, t_0) \neq 0$, so that, by relation (3.10) we get

$$(3.11) a_1\alpha(u)a_2 - a_3\beta(u)a_4 = 0, \quad \forall u \in R$$

that is R satisfies the following generalized polynomial identity with automorphisms α and β :

(3.12)
$$a_1 \alpha(X) a_2 - a_3 \beta(X) a_4$$
.

Suppose that α and β are mutually outer, that is $\alpha^{-1}\beta$ is not an inner automorphism of Q_r . In this case, by [7, Theorem 4] and relation (3.12), it follows that $a_1Xa_2 - a_3Ya_4$ is

a generalized polynomial identity for R, that is $a_1r_1a_2 - a_3r_2a_4 = 0$ for any $r_1, r_2 \in Q_r$. In particular, for $r_1 = 0$ (respectively for $r_2 = 0$) we have $a_3r_2a_4 = 0$ for any $r_2 \in Q_r$ (respectively $a_1r_1a_2 = 0$ for any $r_1 \in Q_r$). Hence, by the primeness of Q_r , either $a_1 = 0$ or $a_2 = 0$ (respectively either $a_3 = 0$ or $a_4 = 0$), which is a contradiction, since a_1, a_2, a_3, a_4 are not zeros.

Hence we may assume that $\alpha^{-1}\beta$ is an inner automorphism of Q_r , that is there exists an invertible element of Q_r such that $\alpha^{-1}\beta(x) = pxp^{-1}$ for any $x \in R$. Now we apply automorphism α^{-1} to relation (3.11):

$$\alpha^{-1}(a_1)u\alpha^{-1}(a_2) - \alpha^{-1}(a_3)pup^{-1}\alpha^{-1}(a_4) = 0, \quad \forall u \in \mathbb{R}.$$

Since $\alpha^{-1}(a_1) \neq 0$, $\alpha^{-1}(a_2) \neq 0$, $\alpha^{-1}(a_3)p \neq 0$ and $p^{-1}\alpha^{-1}(a_4) \neq 0$ and by using the result in [8, Lemma 1.3.2], it follows that there exists an element $\lambda \in C$, depending on the choice of x_0 , z_0 , y_0 and t_0 , such that $\alpha^{-1}(a_1) = \lambda \alpha^{-1}(a_3)p$ and $p^{-1}\alpha^{-1}(a_4) = \lambda \alpha^{-1}(a_2)$. Hence $\alpha^{-1}(D(x_0, z_0)) = \lambda p[x_0, z_0]$ and $\alpha^{-1}(D(y_0, t_0)) = \lambda p[y_0, t_0]$.

By repeating the same process for y_1 , t_1 elements of R such that $[y_1, t_1] \neq 0$ and $D(y_1, t_1) \neq 0$, it follows that there exist $\lambda' \in C$, depending on the choice of x_0, z_0, y_1 and t_1 , such that $\alpha^{-1}(D(x_0, z_0)) = \lambda' p[x_0, z_0]$ and $\alpha^{-1}(D(y, t)) = \lambda' p[y, t]$.

Thus $\lambda' p[x_0, z_0] = \lambda p[x_0, z_0]$ and, since $0 \neq p$ is invertible and $[x_0, z_0] \neq 0$, one has $\lambda = \lambda'$. In other words, there exists a unique $\lambda \in C$ such that

$$[x,z] \neq 0 \implies \alpha^{-1}(D(x,z)) = \lambda p[x,z].$$

Finally consider two elements $x_1, z_1 \in R$ such that $[x_1, z_1] = 0$. Then, by (3.10),

$$(3.14) D(x_1, z_1)\alpha(u)[\alpha(y), \alpha(t)] = 0, \quad \forall y, t, u \in R.$$

By the primeness of R and since R is not commutative, relation (3.14) implies $D(x_1, z_1) = 0$.

Notice that in a similar way one may prove that $D(x_2, z_2) = 0$ implies $[x_2, z_2] = 0$. Hence it is proved that

$$[x,z] = 0 \iff D(x,z) = 0.$$

From (3.13) and (3.15) it follows that there exists $\lambda \in C$ such that

(3.16)
$$\alpha^{-1}(D(x,z)) = \lambda p[x,z], \forall x, z \in R.$$

Notice that $\alpha^{-1}\beta(x) = pxp^{-1} = (\lambda p)x(\lambda p)^{-1}$. Hence, if we denote $q = \lambda p$ then (3.16) reduces to

$$D(x,z) = \alpha(q)[\alpha(x),\alpha(z)], \forall \, x,z \in R$$

and we are done. \Box

Proof of Theorem 1.4. For any $x, y, z, t \in R$ we have both

(3.17)
$$\Delta(xy, zt) = \Delta(x, zt)\alpha(y) + b\beta(x)D(y, zt)$$
$$= \Delta(x, z)\alpha(t)\alpha(y) + b\beta(z)D(x, t)\alpha(y) + b\beta(x)D(y, z)\alpha(t)$$
$$+ b\beta(x)\beta(z)D(y, t)$$

and

(3.18)
$$\Delta(xy, zt) = \Delta(xy, z)\alpha(t) + b\beta(z)D(xy, t)$$
$$= \Delta(x, z)\alpha(y)\alpha(t) + b\beta(x)D(y, z)\alpha(t) + b\beta(z)D(x, t)\alpha(y)$$
$$+ b\beta(z)\beta(x)D(y, t).$$

Comparing (3.17) with (3.18) we have that

$$(3.19) \Delta(x,z)[\alpha(t),\alpha(y)] + b[\beta(x),\beta(z)]D(y,t) = 0, \quad \forall x,y,z,t \in R.$$

In light of Proposition 3.3, there exists $q \in Q_r$ such that $\alpha^{-1}\beta(x) = qxq^{-1}$ and $D(y,t) = \alpha(q)[\alpha(y), \alpha(t)]$. Thus we may write relation (3.19) as follows:

$$\Delta(x,z)[\alpha(t),\alpha(y)] + b[\beta(x),\beta(z)]\alpha(q)[\alpha(y),\alpha(t)] = 0, \quad \forall x,y,z,t \in R,$$

that is

$$(\Delta(x,z) - b[\beta(x),\beta(z)]\alpha(q))[\alpha(t),\alpha(y)] = 0, \quad \forall x,y,z,t \in R.$$

Replacing t by t't, for any $t' \in R$, we have

$$0 = (\Delta(x, z) - b[\beta(x), \beta(z)]\alpha(q))[\alpha(t')\alpha(t), \alpha(y)]$$

= $(\Delta(x, z) - b[\beta(x), \beta(z)]\alpha(q))\alpha(t')[\alpha(t), \alpha(y)], \quad \forall x, y, z, t, t' \in R,$

that is

$$\big(\Delta(x,z)-b[\beta(x),\beta(z)]\alpha(q)\big)R[\alpha(t),\alpha(y)]=0,\quad\forall\,x,y,z,t\in R.$$

By the primeness of R and since R is not commutative, it follows that $\Delta(x, z) = b[\beta(x), \beta(z)]\alpha(q)$. Finally, since $\alpha^{-1}\beta(x) = qxq^{-1}$ implies $\beta(x)\alpha(q) = \alpha(q)\alpha(x)$ for all $x \in R$, then $\Delta(x, z) = b\alpha(q)[\alpha(x), \alpha(z)]$, as required.

References

- N. Argaç, On prime and semiprime rings with derivations, Algebra Colloq. 13 (2006), no. 3, 371–380.
- [2] M. Brešar, On generalized biderivations and related maps, J. Algebra 172 (1995), no. 3, 764–786.

- [3] M. Brešar, W. S. Martindale III and C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra 161 (1993), no. 2, 342–357.
- [4] J.-C. Chang, On the identity h(x) = af(x) + g(x)b, Taiwanese J. Math. 7 (2003), no. 1, 103–113.
- [5] C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms I,
 J. Algebra 149 (1992), no. 2, 371–404.
- [6] A. Fošner, On generalized α -biderivations, Mediterr. J. Math. 12 (2015), no. 1, 1–7.
- [7] V. K. Harčenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220–238, 242–243.
- [8] I. N. Herstein, *Rings with Involution*, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, Ill.-London, 1976.
- [9] M. T. Koşan and T.-K. Lee, b-generalized derivations of semiprime rings having nilpotent values, J. Aust. Math. Soc. **96** (2014), no. 3, 326–337.
- [10] G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat. Ser. III 15 (35) (1980), no. 2, 279–282.

Vincenzo De Filippis

MIFT, University of Messina, 98166, Messina, Italy

E-mail address: defilippis@unime.it

Feng Wei

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, P. R. China

E-mail address: daoshuo@hotmail.com, daoshuowei@gmail.com