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Remark on Proper Holomorphic Maps Between Reducible Bounded

Symmetric Domains

Aeryeong Seo

Abstract. In this paper we study proper holomorphic maps between bounded sym-

metric domains when the source domain is not irreducible. More precisely, we provide

sufficient conditions for semi-product proper holomorphic maps to be product proper.

As an application we characterize proper holomorphic maps between equidimensional

bounded symmetric domains.

1. Introduction

Proper holomorphic maps between bounded domains in the Euclidean spaces have been

studied quite intensively since Alexander proved that any proper holomorphic self-map

of the unit ball is an automorphism [1]. Henkin and Tumanov generalized this result to

irreducible bounded symmetric domains of rank ≥ 2. One of the most important theorem

along these lines was proved by Tsai [18]: let Ω and ω be bounded symmetric domains.

Suppose that Ω is irreducible and rank(Ω) ≥ rank(ω) ≥ 2. Then rank(Ω) = rank(ω)

and any proper holomorphic map f : Ω → ω is a totally geodesic isometric embedding up

to normalizing constants with respect to the Bergman metrics. Furthermore, Tu showed

that for equidimensional bounded symmetric domains Ω, ω where Ω is irreducible and

rank(Ω) ≥ 2, every proper holomorphic map from Ω to ω is a biholomorphism [19]. On

the other hand, in case the source domain is reducible and it does not have an irreducible

factor of complex dimension equal to 1, to the author’s knowledge it is not known whether

or not there exists a proper holomorphic self-map which is not an automorphism.

In this paper we study the proper holomorphic maps between the reducible bounded

symmetric domains and prove the following:

Theorem 1.1. Let Ω1, . . . ,Ωk, ω1, . . . , ωl be irreducible bounded symmetric domains. Let

Ω = Ω1 × · · · × Ωk and ω = ω1 × · · · × ωl. Suppose that

(1) dim Ωi1 + dim Ωi2 ≥ dimωj for any i1, i2 ∈ {1, . . . , k}, j ∈ {1, . . . , l}, and

(2) rank(Ω1) + · · ·+ rank(Ωk) ≥ rank(ω1) + · · ·+ rank(ωl).
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Suppose that there is a proper rational map f : Ω→ ω. Then k = l and f is a product map,

i.e., there is a permutation σ of {1, . . . , k} such that f = (f1, . . . , fk) where fj : Ωσ(j) → ωj

is a proper holomorphic map for each j = 1, . . . , k.

Theorem 1.2. Any proper holomorphic map between bounded symmetric domains with

the same dimension is a product map. In particular for Ω = Uk × Ω′ and ω = U l × ω′

where U is the unit disc in C and Ω′, ω′ are products of the unit balls of dimension ≥ 2

and irreducible bounded symmetric domains of rank ≥ 2, if there is a proper holomorphic

map f from Ω to ω, then k = l and f is of the form

(z1, . . . , zk, z) 7→ (φ1(zσ(1)), . . . , φk(zσ(k)), f
′(z)),

where

φj(zσ(j)) = eiθj
mj∏
µ=1

ajµ − zσ(j)

1− ajµzσ(j)

with some (θ1, . . . , θk) ∈ [0, 2π)k, aij ∈ U for each i, j, a permutation σ of {1, . . . , k} and

f ′ is a biholomorphism from Ω′ to ω′.

In Theorem 1.2 the maps φj , 1 ≤ j ≤ k comes from the known classification result of

proper holomorphic self-maps of the polydisc Uk (cf. [16]).

Let ΩI
r,s be a bounded symmetric domain of type I defined by

ΩI
r,s = {Z ∈MC

r,s : Ir,r − ZZ∗ > 0}.

Here we denote by > 0 positive definiteness of square matrices, by MC
r,s the set of r×s com-

plex matrices and by Ir,r the r×r identity matrix. Besides for Z ∈MC
r,s, denote by Z∗ the

complex conjugate of Z. Let f : ΩI
2,2 ×ΩI

2,2 → ΩI
4,4 be a proper holomorphic map defined

by f(Z,W ) =
(
Z 0
0 W

)
. By composing proper holomorphic maps from ΩI

4,4 into bounded

symmetric domains with higher rank, one can produce a lot of proper holomorphic maps

from ΩI
2,2 × ΩI

2,2 that are not product maps.

The study on the structure of the set of proper holomorphic maps between the given

domains along the lines of Theorem 1.1 initiated by Remmert and Stein [14]. They proved

that for given domains Ω = Ω1 × Ω2 and ω = ω1 × ω2 with bounded planar domains Ω1,

Ω2, ω1, ω2, any proper holomorphic map from Ω to ω is a product map. Its generalization

can be found in [12]. Recently Janardhanan [9] and Chakrabarti-Verma [5] extended it to

the product of compact Riemann surfaces and that of pseudoconvex domains satisfying

Condition R.

2. Preliminaries

In [4], Cartan introduced the notion of Riemannian symmetric spaces. Among them,

Hermitian symmetric spaces of non-compact type are realized as bounded domains in
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the complex Euclidean spaces and those are called bounded symmetric domains. All

irreducible bounded symmetric domains are consisted of 4 classical types and 2 exceptional

types. Here is the list [4, 7]:

(1) ΩI
r,s = {Z ∈MC

r,s : Ir − ZZ∗ > 0},

(2) ΩII
n = {Z ∈MC

n,n : In − ZZ∗ > 0, Zt = −Z},

(3) ΩIII
n = {Z ∈MC

n,n : In − ZZ∗ > 0, Zt = Z},

(4) ΩIV
n = {Z = (z1, . . . , zn) ∈ Cn : ZZ∗ < 1, 0 < 1− 2ZZ∗ + |ZZt|2},

(5) ΩV
16 = {z ∈MOC

1,2 : 1− (z|z) + (z#|z#) > 0, 2− (z|z) > 0}, and

(6) ΩV I
27 = {z ∈ H3(OC) : 1 − (z|z) + (z#|z#) − | det z|2 > 0, 3 − 2(z|z) + (z#|z#) >

0, 3− (z|z) > 0}.

The notation to define bounded symmetric domains of type V and V I will be given in

Section 2.2. From now on, we recall boundary components of Hermitian symmetric spaces

of non-compact type. For more detail, refer to [11,20].

2.1. Boundary components of irreducible bounded symmetric domains

Let X0 be a Hermitian symmetric space of non-compact type. Let G0 be the identity

component of the isometry group of X0 with respect to the Bergman metric of X0 and

K0 ⊂ G0 the isotropy subgroup at o ∈ X0. Then X0 is biholomorphic to G0/K0. Denote

by g0 and k0 the Lie algebras of G0 and K0 respectively. Let g0 = k0 + m0 be the Cartan

decomposition. Let g = g0 ⊗R C, k = k0 ⊗R C and m = m0 ⊗R C. Let gc = k0 +
√
−1m0

be a Lie algebra of compact type and Gc the corresponding connected Lie group of gc.

Then Xc = Gc/K0 is the compact dual of X0. Let h0 be a Cartan subalgebra of g0

contained in k0. Note that h = h0 ⊗R C is a Cartan subalgebra of g. Let ∆ denote the

set of roots of g with respect to h and let gα denote the root space with respect to a root

α ∈ ∆. Let ∆k, ∆m denote the set of compact, non-compact roots of g with respect to the

Cartan decomposition g = k+m respectively and choose an order of ∆ such that the set of

positive non-compact roots ∆+
m satisfies that

∑
α∈∆+

m
gα = T 1,0

o X0. Here T 1,0X0 denotes

the holomorphic tangent bundle of X0.

For α, β ∈ ∆, one says that α and β are strongly orthogonal if and only if α±β /∈ ∆. Let

Π := {α1, . . . , αr} denote a maximal set of strongly orthogonal positive non-compact roots

of g. Then X0 is of rank r. Let Λ ⊂ Π. Denote gΛ the derived algebra of h +
∑

α⊥Π\Λ gα

where ⊥ is the orthogonality with respect to the inner product induced by the Killing

form of g. Let GΛ denote the Lie subgroup of G corresponding to gΛ and GΛ,0 denote
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G0 ∩GΛ. Let XΛ = GΛ · o and XΛ,0 = GΛ,0 · o ⊂ X0. If Λ = Π− {α} for α ∈ Π, then XΛ

and XΛ,0 are called maximal characteristic subspaces of Xc and X0 respectively.

Let ∂X0 be the topological boundary of X0 in Xc and U = {z ∈ C : |z| < 1} the

unit disc. A holomorphic map g : U → Xc such that g(U) ⊂ ∂X0 is called a holomorphic

arc in ∂X0. A finite sequence {g1, . . . , gs} of holomorphic arcs in ∂X0 is called a chain of

holomorphic arcs in ∂X0 if fj(U)∩ fj+1(U) 6= ∅ for any j = 1, . . . , s− 1. One can give an

equivalence class on ∂X0 such that for z1, z2 ∈ ∂X0, z1 ∼ z2 if and only if there is a chain

of holomorphic arcs {g1, . . . , gs} in ∂X0 with z1 ∈ g1(U) and z2 ∈ gs(U). The equivalence

classes are the boundary components of ∂X0 in Xc.

Theorem 2.1 (Wolf, [20]). The G0 orbits on the topological boundary of X0 in its compact

dual are the sets

G0(cΠ−Λo) =
⋃
k∈K0

kcΠ−ΛXΛ,0, Λ ( Π

where cΠ−Λ is the Cayley transformation with respect to Π−Λ. Furthermore the boundary

components of X0 in X are the sets kcΠ−ΛXΛ,0 with k ∈ K0 and Λ ( Π. These are

Hermitian symmetric spaces of non-compact type and rank is given by

rank(kcΠ−ΛXΛ,0) = |Λ|.

The boundary components with |Λ| = |Π| − 1 are called the maximal faces of X0

(cf. [11, Definition 1.5.2]). Note that any proper holomorphic map f : Ω → ω between

irreducible bounded symmetric domains with rank Ω ≥ rankω ≥ 2 has a rational extension

over the compact duals of Ω and ω by Mok and Tsai in [11].

Lemma 2.2. Let f, g : Ω → ω be proper holomorphic maps between irreducible bounded

symmetric domains with rank Ω ≥ rankω ≥ 2. Suppose that for any maximal face X ⊂
∂Ω, f and g map X into the same maximal face of ∂ω. Then f ≡ g.

Proof. The lemma is due to a result of Mok and Tsai in [11]. Here is a summary. Let Ωc and

ωc denote the compact duals of Ω and ω respectively. Let D(Ω), D(Ωc), D(ω) and D(ωc) be

the moduli spaces of maximal characteristic symmetric spaces contained in Ω, Ωc, ω and ωc

respectively. Under the condition that rank Ω ≥ rankω, f maps the maximal characteristic

symmetric spaces of Ω into those of ω. This phenomenon induces a meromorphic map

f# : D(Ω)→ D(ω) and f# admits a rational extension f̃# : D(Ωc)→ D(ωc). Furthermore

f# induces a rational extension f̃ : Ωc → ωc of f . In this process let us assume that for

each maximal face X ⊂ ∂Ω, the images of f and g are contained in the same maximal

face. This implies that f̃# ≡ g̃# on the collection of all maximal faces, which is a maximal

totally real subset of D(Ωc). Hence f̃# ≡ g̃# on D(Ωc) and consequently f ≡ g on Ω (on

Ωc).
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Corollary 2.3. Let Ω ⊂ Cn and ω be irreducible bounded symmetric domains of rank Ω ≥
rankω and M a connected bounded domain in complex Euclidean space. Let f : Ω×M → ω

be a holomorphic map such that f( · , z) : Ω → ω is a proper holomorphic map for each

z ∈M . Then f does not depend on z ∈M .

Proof. Suppose that rankω ≥ 2. Then f( · , z) has a rational extension over the boundary

and for each p ∈ ∂Ω, f(p, · ) : M → Cn is a holomorphic map such that f(p,M) ⊂ ∂ω.

Let X ⊂ ∂Ω be a boundary component. Suppose that the boundary components of ω

containing f(X, z1) and f(X, z2) are different. In particular for p ∈ X, f(p, z1) and f(p, z2)

belong to the different boundary components. However if we consider the holomorphic map

f(p, · ) : M → Cn, f(p, z1) and f(p, z2) should belong to the same boundary component.

By Lemma 2.2, we obtain the result.

In case rank Ω = 1, f is a holomorphic map from Bn ×M to BN for some n ≤ N . Fix

p ∈ ∂Bn and let Up = {λp ∈ Bn : λ ∈ C} which is biholomorphic to the unit disc in C. By

Fatou’s theorem, for generic θ ∈ [0, 2π), f(eiθp, · ) := limr→1 f(reiθp, · ) : M → CN exists

and it is a holomorphic function. Since f(eiθp,M) ⊂ ∂BN , we obtain that f(eiθp, · ) is a

constant map for each generic θ ∈ [0, 2π). In particular, f(eiθp, z) does not depend on

z ∈M and ∂f
∂zl

(eiθp, z) = ∂f
∂zl

(eiθp, z) = 0 for each l. Since this holds for each p ∈ ∂Bn and

generic θ ∈ [0, 2π), we obtain that ∂f
∂zl
≡ ∂f

∂zl
≡ 0 for each l on Bn ×M . This implies that

f does not depend on z ∈M .

Remark 2.4. An alternative proof of the case rank(Ω) = 1 can be obtained through [13,

Proposition 2.3].

2.2. Irreducibility of generic norms

Let us briefly introduce the notation for the exceptional cases ΩV
16 and ΩV I

27 . Refer to [15]

for more details. Let OC denote the complex 8-dimensional algebra of complex octonions.

For a = (a0, a1, . . . , a7) ∈ OC with ai ∈ C, let a 7→ ã := (a0,−a1, . . . ,−a7) denote the

Cayley conjugation and a 7→ a := (a0, a1, . . . , a7) the complex conjugation. The Hermitian

scalar product is given by (a|b) = ab̃+ ãb. Let H3(OC) be the complex vector space of 3×3

matrices with entries in OC which are Hermitian with respect to the Cayley conjugation

in OC. Explicitly A ∈ H3(OC) can be expressed as

(2.1) A =


α1 a3 ã2

ã3 α2 a1

a2 ã1 α3

 with ai ∈ OC and αi ∈ C for all i = 1, 2, 3.
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For A ∈ H3(OC) expressed by (2.1), let A# ∈ H3(OC) be the adjoint matrix of A expressed

by

(2.2) A# =


α2α3 − a1ã1 ã2ã1 − α3a3

˜ã1ã3 − α2a2

˜ã2ã1 − α3a3 α3α1 − a2ã2 ã3ã2 − α1a1

ã1ã3 − α2a2
˜ã3ã2 − α1a1 α1α2 − a3ã3

 .

The Hermitian scalar product on H3(OC) is given by (A|B) =
∑3

i=1 αiβi +
∑3

i=1(ai|bi).
Explicitly,

(A|A) =
3∑
i=1

|αi|2 + 2
3∑
i=1

(|ai0|2 + · · ·+ |ai7|2),

(A#|A#) = |α2α3 − a1ã1|2 + |α3α1 − a2ã2|2

+ |α1α2 − a3ã3|2(ã3ã2 − α1a1|ã3ã2 − α1a1)

+ (ã1ã3 − α2a2|ã1ã3 − α2a2) + (α1α2 − a3ã3|α1α2 − a3ã3),

|detA|2 =

∣∣∣∣∣α1α2α3 −
3∑
i=1

αiaiãi + a1(a2a3) + (ã3ã2)ã1

∣∣∣∣∣
2

with ai = (ai0, . . . , ai7) ∈ OC for i = 1, 2, 3. Let MOC
1,2 denote the set of 1 × 2 complex

octonion matrices. For z = (z1, z2) ∈MOC
1,2 , we identify z with

0 z2 z̃1

z̃2 0 0

z1 0 0

 ∈ H3(OC)

and apply the same notation #, ( · , · ) and so on.

Denote SMC
n,n (resp. ASMC

n,n) the set of symmetric (resp. antisymmetric) n×n complex

matrices. Let SIr,s, S
II
n , SIIIn , SIVn , SV and SV I be generic norms to the corresponding

domains (cf. [10]) defined by

SIr,s(Z,Z) = det(Ir − ZZ∗) for Z ∈MC
r,s,

SIIn (Z,Z) = sIIn (Z) for Z ∈ ASMC
n,n,

SIIIn (Z,Z) = det(In − ZZ∗) for Z ∈ SMC
n,n,

SIVn (Z,Z) = 1− 2ZZ∗ + |ZZt|2 for Z ∈ Cn,

SV (Z,Z) = 1− (Z|Z) + (Z#|Z#) for Z ∈MOC
1,2 ,

SV I(Z,Z) = 1− (Z|Z) + (Z#|Z#)− | detZ|2 for Z ∈ H3(OC)

with det(In−ZZ∗) = sIIn (Z)2 for some polynomial sIIn (Z) and Z ∈ ASMC
n,n (cf. [10]). Note

that the topological boundary of an irreducible bounded symmetric domain is contained

in the zero set of the generic norm of the domain.
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Lemma 2.5. Generic norms of irreducible bounded symmetric domains are irreducible.

Proof. In case of the classical bounded symmetric domains, it is proved in [17]. Since

the same method can be applied to type V , we only prove the lemma for the bounded

symmetric domains of type V I. By the explicit expression (2.2), the total degree of SV I(A)

is 6 which come from | detA|2 and the maximal degrees in variables Re aij and Im aij are

4 for any i = 1, 2, 3 and j = 0, 1, . . . , 7 which come from | detA|2 and the first line of the

expression of (A#|A#). Note that if we rearrange the equation in descending power of

variable Re aij , the coefficient of (Re aij)
4 is |αi|2 + 1. Suppose that SV I(A) is reducible,

that is, SV I(A) = P1(A)P2(A) with nonzero polynomial P1(A) and P2(A).

Suppose that (Re a10)4 term belongs to P1. This implies that all other (Re aij)
4 vari-

ables should appear in P1 but not in P2 and P2(A) should contain |α1|2 + 1. However

there is no (Re aij)|α1|2 term in SV I(A) for i 6= 1 and j 6= 0, P1(A) and hence P2(A)

cannot contain (Re a10)4. Hence SV I(A) = P1(A)P2(A) and P1(A), P2(A) should contain

(Re a10)k, (Re a10)4−k(1 + |α1|2) respectively or vice versa for some k ∈ {1, 2, 3}.
Input ai = 0 and αj = 0 for all i = 2, 3 and j = 1, 2, 3. Then SV I(A) equals to SIV in

C8 which is irreducible. This gives us a contradiction and the lemma is proved.

3. Proof of Theorem 1.1

Definition 3.1. Let Ω1, . . . ,Ωk, ω1, . . . , ωl be bounded domains in Cµ1 , . . . ,Cµk , Cν1 , . . . ,
Cνl respectively. Let Ω = Ω1 × · · · × Ωk and ω = ω1 × · · · × ωl. Denote

∂iΩ := Ω1 × · · · × Ωi−1 × ∂Ωi × Ωi+1 × · · · × Ωk

and

Ωî1...̂iµ
= Ω1 × · · · × Ω̂i1 × · · · × Ω̂iµ × · · · × Ωk

for 1 ≤ i1 < i2 < · · · < iµ ≤ k. Here the circumflex over a term means that it is to be

omitted. Let f : Ω → ω be a proper holomorphic map. Denote f = (f1, . . . , fl) where fj

is πj ◦ f with the projection πj : Ω→ Ωj . For w = (w1, . . . , ŵi1 , . . . , ŵiµ , . . . , wk) ∈ Ωî1...̂iµ
,

define a holomorphic map fi1...iµ,j,w : Ωi1 × · · · × Ωiµ → ωj by

fi1...iµ,j,w(z1, . . . , zµ) = fj(w1, . . . , z1, . . . , zµ, . . . , wk).

We say that f is a semi-product proper holomorphic map, if for each i ∈ {1, . . . , k} there

exists j ∈ {1, . . . , l} such that fi,j,w is a proper holomorphic map for all w ∈ U where U is

an open dense subset of Ωî.

Example 3.2. Let Ω1, . . . ,Ωk, ω1, . . . , ωl be bounded domains with k ≤ l in Cµ1 , . . . ,Cµk ,

Cν1 , . . . ,Cνl respectively. Let fj : Ωj → ωj be a proper holomorphic map for each j =
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1, . . . , k. Let fj : Ω1×· · ·×Ωk → ωj be a holomorphic map for each j = k+1, . . . , l. Then

the holomorphic map f = (f1, . . . , fl) : Ω1 × · · · × Ωk → ω1 × · · · × ωl is a semi-product

proper holomorphic map.

Definition 3.3. For given domains Ω = Ω1 × · · · × Ωk, ω = ω1 × . . .× ωk, we say that a

proper holomorphic map f : Ω → ω is a product map if f is of the form in Example 3.2

up to the permutation of the set {1, . . . , k}.

Proposition 3.4. Let Ω1, . . . ,Ωk, ω1, . . . , ωl be irreducible bounded symmetric domains.

Let Ω = Ω1 × · · · × Ωk and ω = ω1 × · · · × ωl. Suppose that

(1) dim Ωi1 + dim Ωi2 ≥ dimωj for any i1, i2 ∈ {1, . . . , k}, j ∈ {1, . . . , l}, and

(2) rank(Ω1) + · · ·+ rank(Ωk) ≥ rank(ω1) + · · ·+ rank(ωl).

Let f : Ω→ ω be a semi-product proper holomorphic map. Then k = l and f is a product

map.

Proof. Suppose that dim Ωi1 + dim Ωi2 > dimωj for any i1, i2 ∈ {1, . . . , k}, j ∈ {1, . . . , l}.
Since f is semi-product proper, for each i1 < i2 ∈ {1, . . . , k} there are j1, j2 ∈ {1, . . . , l}
such that fi1,j1,w : Ωi1 → ωj1 and fi2,j2,ζ : Ωi2 → ωj2 are proper for each w ∈ Ωî1

and

ζ ∈ Ωî2
. If j1 = j2 then

fj1(z1, . . . , zi1−1, · , zi1+1, . . . , zi2−1, · , zi2+1, . . . , zk) : Ωi1 × Ωi2 → ωj1

is a proper holomorphic map. If dim Ωi1 + dim Ωi2 > dimωj1 , this yields a contradic-

tion because the source domain’s dimension is bigger than that of the target domain.

If dim Ωi1 + dim Ωi2 = dimωj1 , we apply [3, Theorem 1.1]: if ν : D1 → D2 is a proper

holomorphic map between bounded symmetric domains D1 and D2 of the same complex

dimension ≥ 2, and either D1 or D2 is irreducible, then ν is a biholomorphism. This

implies that fj1 is a biholomorphism. However since Ωi1 × Ωi2 is reducible while ωj is

irreducible, it is also a contradiction. Hence j1 6= j2 and k ≤ l.
Up to permutation of {1, . . . , l}, without loss of generality, we may assume that f : Ω→

ω is a proper holomorphic map such that fi,i,w : Ωi → ωi is proper for each i ∈ {1, . . . , k}
and w ∈ Ωî. Besides by Tsai’s theorem [18], rank(Ωi) ≤ rank(ωi) for each i ∈ {1, . . . , k}.
Hence we obtain that rank(Ωi) = rank(ωi) for each i ∈ {1, . . . , k} and k = l.

If we apply Corollary 2.3 to fi,i,w for each i, we may obtain that f is product proper.

To prove Theorem 1.1, we only need to prove that f is semi-product proper by Propo-

sition 3.4.

Proposition 3.5. Let Ω1, . . . ,Ωk, ω1, . . . , ωl be irreducible bounded symmetric domains.

Let Ω = Ω1×· · ·×Ωk and ω = ω1×· · ·×ωl. Then any proper holomorphic map f : Ω→ ω

which has a rational extension to the ambient Euclidean space is a semi-product map.
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Remark 3.6. In Proposition 3.5, we don’t need the assumption about rank or dimension

of the domains.

Proof of Proposition 3.5. Let Si, sj be generic norms of Ωi, ωj respectively. Let f =

(f1, . . . , fl) where fj = πj ◦ f with the projection πj : ω → ωj onto the j-th component.

Fix i ∈ {1, . . . , k}. Since f is proper,

s1(f1(Z), f1(Z)) . . . sl(fl(Z), fl(Z)) = 0

whenever Z = (Z1, . . . , Zk) ∈ Ω with Si(Zi, Zi) = 0. Choose a point z ∈ ∂Ω such that

zi := πi(z) ∈ ∂Ωi and dSi(zi, zi) 6= 0 (zi is a smooth boundary point of Ωi). Since

Si(Zi, Zi) and sj(fj(Z), fj(Z)) are rational functions, there exists an open neighborhood

U of z in Cdim Ω and an real analytic function Qi on U such that

Si(Zi, Zi)Qi(Z,Z) = s1(f1(Z), f1(Z)) . . . sl(fl(Z), fl(Z)).

This induces the polarized holomorphic equation

Si(Zi,Wi)Qi(Z,W ) = s1(f1(Z), f1(W )) . . . sl(fl(Z), f l(W ))

on U × U and hence whenever Si(Zi,Wi) = 0 on U × U , we obtain

s1(f1(Z), f1(W )) . . . sl(fl(Z), f l(W )) = 0

on U × U . Let V be the maximal connected set of regular points of Ṽ := {(Zi,Wi) ∈
Cdim Ωi × Cdim Ωi : Si(Zi,Wi) = 0} containing (zi, zi). Then

V ⊂ {(Z,W ) ∈ Cdim Ω × Cdim Ω : s1(f1(Z), f1(W )) . . . sl(fl(Z), f l(W )) = 0}

by the identity theorem for analytic sets (cf. [6]). Since the set of regular points of Ṽ is

open dense subset of Ṽ , we can obtain that the irreducible polynomial Si(Zi,Wi) is a factor

of the numerator of s1(f1(Z), f1(W )) . . . sl(fl(Z), f l(W )) which is a polynomial. Hence

there exists j such that S(Zi,Wi) divides sj(fj(Z), f j(W )). By applying W = Z, we

obtain that Si(Zi, Zi) is a factor of sj(fj(Z), fj(Z)). This implies that f is a semi-product

proper holomorphic map.

Remark 3.7. By the proof of Theorem 1.1, we can obtain that the following: Let Ω, ω1, . . . ,

ωl be irreducible bounded symmetric domains. Let f : Ω → ω1 × · · · × ωl be a proper

rational map. Then there should be at least one j ∈ {1, . . . , l} such that fj is a proper

holomorphic map from Ω into ωi.

In [2], Bell proved the following: let Ω be a bounded domain in Cn whose associated

Bergman kernel function is a rational function and ω a bounded circular domain in Cn

that contains the origin. Then any proper holomorphic map f : Ω→ ω must be rational.

Hence if dim Ω = dimω, any proper holomorphic map is rational.
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Proof of Theorem 1.2. By a theorem of Bell [2] and Proposition 3.5, we obtain that

f : Ω → ω is semi-product proper. Let Ω = Ω1 × · · · × Ωk and ω = ω1 × · · · × ωl with

irreducible factors Ω1, . . . ,Ωk, ω1, . . . , ωl. Let f = (f1, . . . , fl).

For each j ∈ {1, . . . , k}, choose ij ∈ {1, . . . , l} such that fi,ij ,w : Ωi → ωji is a proper

holomorphic map. Suppose that {j1, . . . , jk} ( {1, . . . , l}. Then for µ ∈ {1, . . . , l} \
{j1, . . . , jk}, (f1, . . . , f̂µ, . . . , fl) : Ω → ω1 × · · · × ω̂µ × · · · × ωl is also proper holomorphic

map, a plain contradiction since the dimension of the source domain should be smaller

than or equal to that of the target domain. This implies that {j1, . . . , jk} = {1, . . . , l} and

hence k ≥ l. Furthermore by the permutation of {1, . . . , k} we may assume that there is

a partition of {1, . . . k}, 1 ≤ i1 < i2 < · · · < il−1 < il = k such that

(3.1)

f1...i1,1,w1 : Ω1 × · · · × Ωi1 → ω1 with w1 ∈ Ω1̂...î1
,

fi1+1...i2,2,w2 : Ωi1+1 × · · · × Ωi2 → ω2 with w2 ∈ Ω
î1+1...î2

,

...

fil−1+1...k,l,wl : Ωil−1+1 × · · · × Ωk → ωl with wl ∈ Ω ̂il−1+1...k̂

are proper holomorphic maps. Since dim Ω = dimω, we obtain that

iµ+1∑
i=iµ+1

dim Ωi = dimωµ+1

for each iµ = i1, . . . , il−1. Then when dimωj ≥ 2, [3, Theorem 1.1] yields that ij = j in

(3.1) and when dimωj = 1, Ωij−1+1×· · ·×Ωij also has dimension 1. Hence we obtain that

fi,i,wi : Ωi → ωi is a proper holomorphic map and dim Ωi = dimωi for each i = 1, . . . , k

and wi ∈ Ωî.

Now by Corollary 2.3 f is a product map and by the classification of proper holo-

morphic maps between polydiscs in [16] and that between equidimensional irreducible

bounded symmetric domains in [19], we obtain the theorem.

4. Remark on the proper holomorphic self-maps of pseudoconvex flag domains

Let G be a complex semisimple Lie group and G/Q a flag manifold with a parabolic

subgroup Q of G. Let G0 be a real form of G and D a flag domain in G/Q, that is, an

open G0-orbit in G/Q.

Assume that O(D) 6= C and give an equivalence relation on D:

x ∼ y ⇐⇒ f(x) = f(y) for all f ∈ O(D).

In general D/ ∼ is a complex homogeneous manifold G0/V̂0 and the projection D =

G0/V0 → G0/V̂0 is a holomorphic mapping. Let’s take Q to be an isotropy group of G at
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z0 ∈ D = G0z0. Then there exists Q̂ containing Q and the following diagram is commute:

z0 ∈ G/Q = Z ⊃ D = G0/V0

π ↓ ↓ (∗)

ẑ0 ∈ G/Q̂ = Ẑ ⊃ D̂ = G0/V̂0

Furthermore fiber of π is F = Kz0 and D̂ is a Hermitian symmetric space of non-compact

type where K0 is a maximal compact subgroup of G0 and K is a complexification of K0.

Since D̂ is a Stein manifold and D̂ is contractible, we obtain that (∗) is topologically

trivial. Furthermore by the Grauert-Oka principle, (∗) is holomorphically trivial. This

implies that D = D̂ × F with the flag manifold F .

Theorem 4.1 (Huckleberry, [8]). Let D be a flag domain. The followings are equivalent:

(1) O(D) 6= C,

(2) D is pseudoconvex, i.e., there is a continuous exhaustion function ρ : D → R≥0 which

is plurisubharmonic on the complement D \ S for a compact subset S ⊂ D.

(3) D = D̂ × F with a Hermitian symmetric space of non-compact type D̂ and a flag

manifold F .

Theorem 4.2. Let D1 = D̂1 × F1, D2 = D̂2 × F2 be pseudoconvex flag domains with

D̂1 = D̂2. Then f : D1 → D2 is a proper holomorphic map if and only if f is of the

form (f1, f2) where f1 : D̂1 → D̂2 is a proper holomorphic map and f2 : D1 → F2 is a

holomorphic map.

Proof. Let f = (f1, f2) : D̂1 × F1 → D̂2 × F2 be a proper holomorphic map. For each

p ∈ F1, f1( · , p) : D̂1 → D̂2 is a proper holomorphic map. By Theorem 1.2, f1( · , p) is a

product map, i.e., we can express f1( · , p) = (f11( · , p), . . . , f1k( · , p)) for some k. Then if

we apply Corollary 2.3 to each f1j( · , p), we obtain that it does not depend on p-variable.

In particular, f1 is a proper holomorphic map from D̂1 to D̂2 and the proof completed.
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