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We consider the integral equation arising as a result of heat radiation
exchange in both convex and nonconvex enclosures of diffuse grey sur-
faces. For nonconvex geometries, the visibility function must be taken
into consideration. Therefore, a geometrical algorithm has been devel-
oped to provide an efficient detection of the shadow zones. For the nu-
merical realization of the Fredholm integral equation, a boundary ele-
ment method based on Galerkin-Bubnov discretization scheme is imple-
mented. Consequently, multigrid iteration methods, which are closely
related to two-grid methods, are used to solve the system of linear equa-
tions. To demonstrate the high efficiency of these iterations, we construct
some numerical experiments for different enclosure geometries.

1. Introduction

Radiative heat exchange plays a very important role in many physical
situations. The physical principles of heat radiation are very well under-
stood, and there exists a number of engineering and physics textbooks
where a whole hierarchy of different radiation models have been pre-
sented (see, e.g., [2, 4, 7, 9]). On the other hand, papers dealing with
questions related to heat radiation equation or its numerical realization
tend to focus mostly on the simplest possible case of heat radiation ex-
change in convex enclosures [1, 3, 8]. In fact, one of the most interesting
features about transport of heat radiative energy between two points in
both convex and nonconvex enclosures of diffuse grey surfaces is its for-
mulation as an integral equation. One of the consequences of this fact is
that the pencil of rays emitted at one point can impinge another point
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only if these two points can “see” each other, that is, the line segment
connecting these points does not intersect any surface. The presence of
the visibility zones should be taken into consideration in heat radiation
analysis whenever the domain, where the heat radiation transfer is tak-
ing place, is not convex.

The computation of these visibility zones is not easy, but we were
able to develop an efficient algorithm for this purpose and implement
it in our computer programme. In dealing with the numerical aspect of
this problem, we use the boundary element method based on Galerkin-
Bubnov discretization of the boundary integral equation. This leads to
a system of linear equations that will be solved iteratively using multi-
grid methods, which are closely related to two-grid methods. In fact,
multigrid methods are among the most efficient methods for solving the
linear systems associated with the numerical solution of the heat inte-
gral equation. The characteristic feature of the multigrid iteration is its
fast convergence. The convergence speed does not deteriorate when the
discretization is refined, whereas classical iterative methods slow down
for decreasing grid size. As a consequence, one obtains an acceptable
approximation of the discrete problem at the expense of the computa-
tional work proportional to the number of unknowns, which is also the
number of equations of the system. It is not only the complexity which
is optimal but also the constant of proportionality is so small that other
methods can hardly surpass the multigrid efficiency. Numerical exam-
ples are considered here to demonstrate the high performance of these
iterations.

2. Radiation on diffuse grey surfaces

We consider an enclosure Ω ⊂ R
2 with boundary Γ equivalent to the sit-

uation of Figure 2.1, where Ω is a conducting body. We assume, for sim-
plicity, that the temperature on Γ is known.

The heat balance on Γ reads as

Q = q− J, (2.1)

where Q is the heat brought to the surface by conduction, q denotes the
radiation emitted by the surface Γ, and J is the energy of incoming ir-
radiation on Γ. For surfaces that are diffuse and grey as emitters and
reflectors, the intensity of emitted radiation has the representation (see,
e.g., [7])

q = εσT4 + ρJ, (2.2)

where ε is the emissivity coefficient (0 < ε < 1), σ is the Stefan-Boltzmann
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Γ

Ω

Figure 2.1

constant which has the value 5.6696× 10−8(W/m2K4), and ρ is the reflec-
tion coefficient with the relation ρ = (1− ε) used for grey surfaces. Equa-
tion (2.2) can then be written as

q = εσT4 + (1− ε)J. (2.3)

In the geometry of Figure 2.1, the irradiation on Γ depends only on
the radiation emitted by different parts of Γ itself. Hence, for any point
x ∈ Γ, we can write

J(x) =
∫
Γ
F(x,y)q(y)dΓy. (2.4)

The substitution of (2.4) into (2.3) yields the integral equation

q(x) = εσT4(x) + (1− ε)
∫
Γ
F(x,y)q(y)dΓy for x ∈ Γ, (2.5)

where the kernel F(x,y) denotes the view factor between the points x
and y of Γ. For convex two-dimensional enclosure geometries, F(x,y)
has the representation [10]

F(x,y) = F∗(x,y), (2.6)

with

F∗(x,y) =

[
n(y) · (y −x)

] · [n(x) · (x−y)
]

2|x −y|3 . (2.7)
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If the enclosure is nonconvex (Figure 2.1), then we have to take into ac-
count the visibility function

v(x,y) =

{
1 if x and y can see each other

(
�xy ∩ Γ = ∅),

0 otherwise.
(2.8)

In this case, the kernel F(x,y) in (2.6) takes the form

F(x,y) = F∗(x,y) ·v(x,y). (2.9)

Definition (2.8) implies that v(x,y) = v(y,x). Since F∗(x,y) is symmetric,
then F(x,y) is also symmetric.

Equation (2.5) is a Fredholm integral equation of the second kind. We
introduce the integral operator

K̃ : L∞(Γ) −→ L∞(Γ), (2.10)

with

K̃q(x) =
∫
Γ
F(x,y)q(y)dΓy for x ∈ Γ, q ∈ L∞(Γ). (2.11)

Some properties of the integral operator (2.11), along with the solvability
of (2.5), have been investigated in [10, 11].

3. Numerical realization of (2.5)

3.1. Construction of the system of equations

The Fredholm integral equation (2.5) can be expressed as

q = g +Kq, (3.1)

where Kq = (1− ε)K̃q and

K̃q(x) =
∫
Γ
F(x,y)q(y)dΓy for x ∈ Γ, q ∈ L∞(Γ). (3.2)

For the numerical simulation of our integral equation, we use the bound-
ary element method. We consider a Galerkin-Bubnov formulation and
choose the basis trial functions Φk(t) with local support Γk ⊂ Γ. The ap-
proximation solution has the general form

qh(t) =
n∑

k=1

qkΦk,n(t). (3.3)
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We let

〈u,w〉Γ =
∫1

0
u(t)w(t)

∣∣x′(t)
∣∣dt. (3.4)

Inserting the ansatz function (3.3) into (3.1) gives

n∑
k=1

qk
〈
Φk,n,Φl,n

〉
Γ =

〈
g,Φl,n

〉
Γ +

n∑
k=1

qk
〈
KΦk,n,Φl,n

〉
Γ. (3.5)

By introducing the vectors a = (qk)k=1,...,n and b = 〈g,Φl,n〉Γ, l = 1, . . . ,n,
the matrices M = (Ml,k)l,k=1,...,n, with

Ml,k =
〈
Φk,n,Φl,k

〉
Γ =

∫1

0
Φl,n(t)Φk,n(t)

∣∣x′(t)
∣∣dt, (3.6)

and S = (Sl,k)l,k=1,...,n, with

Sl,k =
〈
KΦk,n,Φl,n

〉
Γ =

∫1

0

∫1

0
(1− ε)Φl,n(t)F(t,τ)Φk,n(τ)

∣∣x′(t)
∣∣∣∣x′(τ)

∣∣dtdτ,
(3.7)

then (3.5) can be rewritten as

(
Mn −Sn

)
an = bn. (3.8)

The mass matrix M in (3.8) is symmetric, positive definite, and diago-
nal dominant. Hence it is invertible. Consequently, (3.8) can always be
written in the form

(
I −M−1

n Sn

)
an =M−1

n bn. (3.9)

To express the fact that the discrete equation (3.9) corresponds to the
continuous equation (3.1), we write (3.9) as

qn = gn +Knqn, (3.10)

where qn = an, gn =Mn
−1bn, and Kn =M−1

n Sn.

3.2. The hierarchy of discrete problem

In general, the discretization parameter n in (3.10) determines the di-
mension of the matrix system. For the two and multigrid methods, we
use the hierarchy in multilevels. Let n0 be a fixed discretization parame-
ter and h0 the corresponding step size. By successive halving, we obtain



310 Use of the multigrid methods for heat radiation problem

the step sizes

hl =
h0

2l
, l = 0,1,2, . . . . (3.11)

More generally, one can consider an arbitrary step size hierarchy

h0 > h1 > · · · > hl−1 > hl > · · · , with limhl = 0. (3.12)

The index l is called the level or level number. The step size hl is associ-
ated with the dimension parameter nl. Hence, (3.10) at level l is

qnl = gnl +Knlqnl . (3.13)

To avoid a double indexing, we write (3.13) as

ql = gl +Klql (l = 0,1, . . .). (3.14)

3.3. Iteration schemes for (3.14)

In this section, we try to show how multigrid methods can be imple-
mented to solve the linear system (3.14).

3.3.1. Picard iteration

One can solve the system of equations (3.14) iteratively. The simplest
iteration is the Picard iteration. The (i + 1)st iterate qi+1

l is obtained by
inserting the ith iterate qi

l
into the right-hand side of (3.14):

qi+1
l = gl +Klq

i
l, (i = 0,1,2, . . .). (3.15)

The Picard iteration (3.15) converges if and only if the spectral radius

�
(
Kl

)
< 1. (3.16)

A sufficient convergence condition is the matrix norm estimate

∥∥Kl

∥∥ < 1. (3.17)

3.3.2. Two-grid iteration

This method consists of two major steps. The Picard step (the so-called
smoothing step since the error is smoothed) and the coarse-grid cor-
rection q̃l �→ q̃l − Pδl−1. In fact the usual procedure of the two-grid it-
eration of level l for one iteration step qil → qi+1

l can be illustrated in
Algorithm 3.1.
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Picard step:

qi+1
l = gl +Klq

i
l , l ≥ 0, i = 1, . . . ,ν, ν ≥ 2. (3.18)

Residuals:

rl
ν+1 =

(
qν+1
l − gl −Klq

ν+1
l

)
. (3.19)

Stopping criterion:

ρl
ν+1 =

∥∥rν+1
l

∥∥
2,

ρν+1
l

ρ0
< ε stop. (3.20)

Coarse grid correction:

dl = r
(
qν+1
l − gl −Klq

ν+1
l

)
, (3.21)

δl−1 =
(
I −Kl−1

)−1
dl−1, (3.22)

ql+1
0 = qν+1

l −Pδl−1. (3.23)

Here r is nl ×nl−1 restriction matrix and P is nl−1 ×nl prolongation
matrix. The indices l− 1 and l are used for the coarse grid and fine
grid, respectively.

Algorithm 3.1

Convergence of the two-grid method

Since the mapping qil �→ qi+1
l of the two-grid algorithm is affine, it has the

representation [5, 6]

qi+1
l =Al

TGMqil +Cl, (3.24)

where ATGM
l is the two-grid iteration matrix that has the representation

ATGM
l =

[
I −P

(
I −Kl−1

)−1
r
(
I −Kl

)]
Kl. (3.25)

A sufficient condition for the convergence of the two-grid method is the
matrix norm estimate

∥∥ATGM
l

∥∥ < 1. (3.26)
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3.3.3. Multigrid iteration

Even though the two-grid iteration reduces the amount of computational
work drastically, the solution of the coarse-grid equation (3.22) still takes
the major part of the work. The problem to be solved in (3.22) reads

(
I −Kl−1

)
δl−1 = dl−1 or δl−1 = dl−1 +Kl−1δl−1, (3.27)

respectively. Obviously, (3.27) has the same form as the original equation
(3.15) which is solved by the two-grid method at levels l − 1 and l − 2.
Then it becomes necessary to solve an auxiliary equation (I −Kl−2)δl−2 =
dl−2 at level l − 2. Again, the two-grid algorithm can be applied to levels
l − 2, l − 3, and so forth . The resulting algorithm known as the multi-
grid iteration uses all discretization levels. Such iteration is given by
Algorithm 3.2.

Picard step:

qi+1
l = gl +Klq

i
l , l ≥ 0, i = 1, . . . ,ν, ν ≥ 2. (3.28)

Residuals:

rν+1
l =

(
qν+1
l − gl −Klq

ν+1
l

)
. (3.29)

Stopping criterion:

ρν+1
l =

∥∥rν+1
l

∥∥
2,

ρν+1
l

ρ0
< ε stop. (3.30)

Coarse grid correction:

dl−1 = r
(
qν+1
l − gl −Klq

ν+1
l

)
,

δl−1 = dl−1 +Kl−1δl−1,

q0
l+1 = qν+1

l −Pδl−1.

(3.31)

Algorithm 3.2

Convergence of the multigrid method

By analogy with (3.24), we write one step qil �→ qi+1
l of the multigrid al-

gorithm in the form

qi+1
l =AMGM

l qil +Cl, (3.32)



Naji A. Qatanani 313

where AMGM
l is the multigrid iteration matrix that is recursively defined

by (see [5, 6])

AMGM
1 =ATGM

1 for l = 1, (3.33)

AMGM
l =ATGM

l +P
(
AMGM

l−1

)2(
I −Kl−1

)−1
r
(
I −Kl

)
Kl, l > 1. (3.34)

An alternative representation of (3.34) is

AMGM
l =ATGM

l +P
(
AMGM

l−1

)2[
r − (

I −Kl−1
)−1(

rK −Kl−1r
)]
Kl, l > 1.

(3.35)
A sufficient convergence condition is the matrix norm estimate

∥∥AMGM
l

∥∥ < 1. (3.36)

4. Realization of the visibility function v(x,y)

We represent here an efficient algorithm for the computation of the visi-
bility function v(x,y) given in (2.8).

(i) We define (see Figure 4.1)
G: the straight segment between the points x and y
G := {z ∈ R

2 : z = x+φ(x−y), φ ∈ [0,1]}.
Question (1): Is G ⊂Ω?

(ii) Next we define
G̃: the set of all points such that
G̃ := {zi : zi = x+φi(x−y), φi = (i− 1)/|x− 1|, i = 1, . . . ,m, m ∈ N}
G̃ is then an approximation of the line G.
Question (2): Is G̃ ⊂Ω?
For all z ∈ G̃

(iii) We require the point o to be always located in the region Ω
(iv) Next we determine zΓ, and then
(v) Prove if |zΓ| < |z|.

If this is the case, then it follows immediately that v(x,y) = 0.
Question (3): How can zΓ be determined?
We first set zΓ = αz, α ∈ R.
The determination of α is necessary, therefore we require

(a) zΓ ∈ Γ (see Figure 4.2)
(b) argzΓ = argz.

Algorithm 4.1
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To satisfy the first requirement, we set x =X(t0) and define

Γ =
{
x =X(t), t ∈ [0,1]

}
. (4.1)

Next, determine t1 = t0 + ε. When zΓ =X(t1), the assertion follows imme-
diately.

5. Numerical experiments and results

Since the convergence requirements (regularity, consistency, and stabil-
ity) for the two-grid and multigrid iterations are satisfied [10], we can
now apply these algorithms to solve the linear system of equations
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Table 5.1

nl
Two-grid method Multigrid method

No. of iteration steps second No. of iteration steps second

32 4 < 1 2 < 1

64 4 < 1 2 < 1

128 4 < 1 2 < 1

256 4 1.01 2 < 1

512 4 3.90 2 1.03

1024 4 14.8 2 4.14

(3.14). For the numerical application, we choose the emissivity coeffi-
cient as ε = 0.2, the Stefan-Boltzmann constant has the value σ = 5.6696×
10−8(W/m2K4), and the surface temperature will be given by the func-
tion

T(t) =
1
2
(
T1 + T2

)− 1
2
(
T2 − T1

)
cos2πt, (5.1)

with T1 = 1000K and T2 = 1800K. The mass matrix M = (Ml,k)l,k=1,...,n and
the right-hand side bn = 〈g,Φl,n〉Γ, with g(t) = εσT4(t), either can be cal-
culated analytically exact for special geometries or numerical integra-
tion is applied. The computation of the stiffness matrix S = (Sl,k)l,k=1,...,n =
〈KΦk,n,Φl,n〉Γ has been performed numerically using Gauss quadrature.
Theoretically, Galerkin method requires a time-consuming double inte-
gral over Γ for the calculation of every element of this stiffness matrix.
Due to this fact, we have used the Gauss quadrature with respect to fast
computation, that is, by evaluating the kernel of the integral equation
as seldom as possible. Theoretical and numerical error estimates for this
problem have been presented in [10].

Moreover, in the case of a nonconvex enclosures, the main problem
is the efficient detection of the shadow zones to calculate the visibility
function v(x,y) appearing as a part of the stiffness matrix S. Thus, a ge-
ometrical algorithm was developed (see Section 4) to determine the visi-
bility function in two dimensions. To this end, we consider the following
examples.

5.1. Convex enclosure

Example 5.1. Let Ω be the domain of a unit square. Table 5.1 shows the
numerical results for solving (3.14) by the two-grid and multigrid meth-
ods. It contains both the number of iteration steps and the CPU time in
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t = 0.25

t = 0.5

t = 0.75

Figure 5.1

Table 5.2

nl
Two-grid method Multigrid method

No. of iteration steps second No. of iteration steps second

32 5 < 1 3 < 1

64 5 < 1 3 < 1

128 5 < 1 3 < 1

256 5 1.04 3 < 1

512 5 4.07 3 1.09

1024 5 15.10 3 4.34

seconds. Note that the step size hl is associated with the dimension pa-
rameter nl, where hl = 1/nl with nl = 2l and l is called the level number.
One sees clearly in Table 5.1 the efficient performance of the two-grid
and multigrid techniques for solving this problem in regards to the num-
ber of iteration steps and CPU time required to achieve fast convergence.

5.2. Nonconvex enclosure

Example 5.2. As an example of the nonconvex enclosure, we consider
the curve shown in Figure 5.1. In this case, the visibility function v(x,y)
must be taken into consideration and consequently its geometrical algo-
rithm is implemented in our computer programme. Computation of this
visibility function has been presented in Section 4. Table 5.2 shows the
numerical results for this nonconvex case. In fact, one concludes similar
remarks to those reported in Table 5.1.
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