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We prove the theoretical convergence of a short-step, approximate path-
following, interior-point primal-dual algorithm for semidefinite progr-
ams based on the Gauss-Newton direction obtained from minimizing
the norm of the perturbed optimality conditions. This is the first proof of
convergence for the Gauss-Newton direction in this context. It assumes
strict complementarity and uniqueness of the optimal solution as well as
an estimate of the smallest singular value of the Jacobian.

1. The Gauss-Newton direction

The purpose of this paper is to develop a convergence proof for an in-
feasible interior-point algorithm based on the Gauss-Newton direction
introduced in [3]. This is the first proof of convergence for this direction
although an algorithm based on a projected and scaled Gauss-Newton
direction was demonstrated in [1]. The approach is novel in that the
proof relies only on classical results of nonlinear optimization. As a re-
sult, the iterates are not explicitly maintained feasible, nor even positive
definite; we rather maintain the weaker condition that the Jacobian of
the optimality conditions is full rank. Moreover, our measure of distance
to the central path combines feasibility and complementarity. The main
result appears in Theorem 3.3.

The problem of interest is the semidefinite program pair

Primal min
{〈C,X〉 | A(X) = b, X ∈ S

n
+
}
, (1.1)

Dual max
{〈b,y〉 | A∗(y) +Z = C, Z ∈ S

n
+
}
, (1.2)

Copyright c© 2003 Hindawi Publishing Corporation
Journal of Applied Mathematics 2003:10 (2003) 517–534
2000 Mathematics Subject Classification: 65K05, 90C51, 90C22
URL: http://dx.doi.org/10.1155/S1110757X03301081

http://dx.doi.org/10.1155/S1110757X03301081


518 Convergence of a Gauss-Newton interior-point algorithm

where b ∈ R
m and S

n ⊂ R
n×n is the vector space of symmetric matrices

of order n equipped with the inner product 〈X,Y〉 := trace(XY ). For
M,N ∈ R

m×n, the inner product is 〈M,N〉 := trace(MtN), and the
corresponding (Frobenius) matrix norm is denoted by ‖M‖ = ‖M‖F =√

trace(MtM). The operatorA is linear and defined as

A(X) :=



〈A1,X〉

...
〈Am,X〉


 (1.3)

for matrices A1, . . . ,Am ∈ S
n. Finally, S

n
+ represents the cone of positive

semidefinite matrices and S
n
++ the cone of positive definite matrices.

We assume the existence of a point (X0,y0,Z0) such that

X0 ∈ S
n
++,

Z0 ∈ S
n
++,

A(X0
)
= b,

A∗(y0
)
+Z0 = C.

(1.4)

If such a point exists, it is well known that both the primal and dual
problems have optimal solutions and that the optimal values are equal.
We write the perturbed optimality conditions for the primal-dual pair
(1.1) and (1.2) as a function of a continuation parameter µ ≥ 0:

A∗(y) +Z −C = 0,

A(X)− b = 0,

ZX −µI = 0,

X,Z ∈ S
n
+.

(1.5)

To simplify the statements of the algorithm and of the following re-
sults, we define the following central path defining function and merit
function, respectively:

Fµ(X,y,Z) :=


A∗(y) +Z −C
A(X)− b
ZX −µI


 , (1.6a)

Fτµ(X,y,Z) :=


A∗(y) +Z −C
A(X)− b
ZX − τµI


 , 0 < τ < 1. (1.6b)
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Assumption 1.1. The following assumptions hold throughout the paper.

(i) There is a point (X0,y0,Z0) satisfying conditions (1.4).
(ii) The operatorA is surjective.
(iii) The optimal solution to the primal-dual pair (1.1) and (1.2) is

unique and satisfies strict complementarity (i.e., Z +X ∈ S
n
++).

Under Assumption 1.1, for every µ > 0, there is a unique solution in
S
n
++ ×R

m × S
n
++ to Fµ(X,y,Z) = 0, which we denote by (Xµ,yµ,Zµ). This

set of solutions is called the central path. The limit point of the central
path corresponding to µ→ 0 is the solution of the semidefinite pair (1.1)
and (1.2).

The algorithm described in this paper approximately follows the cen-
tral path by attempting to solve Fµ(X,y,Z) = 0 for decreasing values of
µ. This is common to all path-following algorithms. The novelty of the
approach described here is to treat this approximation subproblem as a
nonlinear equation and to apply classical tools.

One major difference from standard practice resulting from this point
of view is the relation between the iterates and the barrier parameter. The
scalar µ is not updated using the iterates as the case (µ = τ(〈Z,X〉/n))
usually is, but it is rather reduced by a factor τ < 1 at every step (µ← τµ).
In consequence, the initial point (X0,y0,Z0) depends on µ0 rather than
the reverse. Another important difference is that no attempt is made to
dampen the step to maintain the iterates within the cone of positive def-
inite matrices. The algorithm only maintains the weaker full-rank condi-
tion on the Jacobian.

The function Fµ is nonlinear. We can find its zeroes by transforming
the problem into minimizing the Frobenius norm, namely,

min
∥∥Fµ(X,y,Z)

∥∥2 =
∥∥A∗(y) +Z −C∥∥2

F +
∥∥A(X)− b∥∥2 + ‖ZX −µI‖2

F,
(1.7)

to which we apply the Gauss-Newton method: from a well-centered
point (X,y,Z) with initial µ > 0, we fix a target τµ, for some τ ∈ (0,1),
and reduce ‖Fτµ(X,y,Z)‖ by finding the least squares solution of the
Gauss-Newton equation, namely, the least squares solution of

F ′τµ(X,y,Z)


dX

dy
dZ


 =


A∗(dy) +dZ

A(dX)
ZdX +dZX


 = −Fτµ(X,y,Z) (1.8)

for a direction (dX,dy,dZ). We use this direction as the step to obtain
the next iterate. For more details, see Algorithm 1.1. We explain later the
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Given µ0 > 0 (initial barrier parameter)
Given ε > 0 (merit function tolerance)
Find X0, y0, Z0 (must satisfy (3.16))
X =X0, y = y0, Z = Z0 (initial iterate)
µ = µ0 (initial barrier parameter)
Choose 0 < τ < 1 (chosen according to (3.10))
while max{τµ,‖Fτµ(s)‖} > ε do

Find least squares solution of
[F ′τµ(s)]ds = −Fτµ(s) (Gauss-Newton direction)
X =X +dX, y = y +dy, Z = Z +dZ (update iterate)
Recompute µ← τµ (update target)

end while

Algorithm 1.1 Gauss-Newton infeasible short step.

requirement on the initial point and the choice of τ . We denote the Jaco-
bian F ′µ(X,y,Z) : S

n ×R
m × S

n → S
n ×R

m ×R
n×n, and ‖F ′µ(X,y,Z)‖ is the

operator norm on the underlying vector space.
The following result, shown in [3], is stated here for convenience.

Lemma 1.2. Under Assumption 1.1, the Jacobian F ′µ(X,y,Z) has full column
rank for all X, Z ∈ S

n
++. Moreover, it has full column rank at the optimal solution

of (1.1) and (1.2). �

For the sake of simplifying the expressions throughout, we define, for
any subscript ξ,

sξ :=
(
Xξ,yξ,Zξ

)
, ds := (dX,dy,dZ). (1.9)

We also define canonical central path points sµ and sτµ such that

Fµ

(
sµ
)
= 0, Fτµ

(
sτµ
)
= 0. (1.10)

2. Merit function and central path

This section describes some relations between the value of our chosen
merit function ‖Fτµ‖ and the distance of the iterate to the central path.
Note that we do not assume that the iterates are primal or dual feasi-
ble. Our measure of distance to the central path combines estimates of
both infeasibility and complementarity. The section also describes the
progress of the Gauss-Newton direction in minimizing ‖Fτµ‖. The results
are of a technical nature and used as building blocks of the convergence
proof given in Section 3.
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We begin this section with a well-known result about approximations
of inverses, often referred to as the Banach lemma. For a proof see [2].

Lemma 2.1. Suppose that M ∈ R
n×n and ‖M‖ < 1. Then I −M is nonsingular

and

∥∥(I −M)−1∥∥ ≤ 1
1− ‖M‖ . (2.1)

�

Since the Gauss-Newton direction is obtained from an overdeter-
mined system of equations, pseudoinverses allow succinct expressions
of the solution. Namely, the least squares solution to [F ′τµ(s)]ds = −Fτµ(s)
is ds = −[F ′τµ(s)]†Fτµ(s), where (·)† indicates the Moore-Penrose inverse.

To generalize to Gauss-Newton’s method some well-known results
about Newton’s method, we require a bound on the norm of the pseu-
doinverse.

Lemma 2.2. Suppose that A ∈ R
m×n and B ∈ R

n×m, where m ≥ n, and assume
that BA is nonsingular. Then

∥∥A†∥∥ ≤ ∥∥(BA)−1B
∥∥. (2.2)

Proof. Define the singular value decompositions A = UAΣAV
t
A and B =

UBΣBV
t
B, and let ΣA and ΣB be the nonzero diagonal blocks of ΣA and

ΣB, respectively. Then

∥∥(BA)−1B
∥∥ =

∥∥(UBΣBV
t
BUAΣAV

t
A

)−1
UBΣBV

t
B

∥∥
=

∥∥∥∥∥
(
UB

[
ΣB0

]
V t
BUA

[
ΣA

0

]
V t
A

)−1

UB

[
ΣB0

]
V t
B

∥∥∥∥∥
=

∥∥∥∥∥
(
UB

[
ΣB0

][Q1 Q2

Q3 Q4

][
ΣA

0

]
V t
A

)−1

UB

[
ΣB0

]
V t
B

∥∥∥∥∥
=
∥∥VAΣ

−1
A Q−1

1 Σ
−1
B Ut

BUBΣB

∥∥
=
∥∥Σ−1

A Q−1
1 Σ

−1
B ΣB

∥∥
=
∥∥Σ−1

A Q−1
1

∥∥.

(2.3)

Since V t
BUA :=

[Q1 Q2
Q3 Q4

]
is orthogonal, we have Qt

1Q1 + Qt
3Q3 = I, and

therefore I 
 Qt
1Q1. This implies that all the singular values of Q1 are
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at most 1 and all the singular values of Q−1
1 are at least 1. Therefore,

∥∥Σ−1
A Q−1

1

∥∥ ≥ ∥∥Σ−1
A

∥∥ =
∥∥A†∥∥, (2.4)

the required bound on the norm of the Moore-Penrose inverse. �

From Lemmas 2.1 and 2.2, we can obtain the following result about
approximation of pseudoinverses.

Lemma 2.3. Suppose that A is an approximation to the pseudoinverse of A in
the sense that ‖I −AA‖ < 1. Then

∥∥A†∥∥ ≤
∥∥A∥∥

1−∥∥I −AA
∥∥ . (2.5)

Proof. Consider that ‖I −AA‖ < 1 is the required condition of Lemma 2.1.
Therefore, we can write

∥∥A†∥∥ ≤ ∥∥(AA
)−1

A
∥∥ ≤ ∥∥(AA

)−1∥∥∥∥A∥∥ ≤
∥∥A∥∥

1−∥∥I −AA
∥∥ , (2.6)

where the first inequality is obtained from Lemma 2.2. �
Essentially, from this bound on the norm of approximate pseudoin-

verses, we can establish a relation between the distance to the central
path of an iterate (X,y,Z) and the current value of our merit function
‖Fτµ(X,y,Z)‖. To simplify the result, we first establish Lipschitz conti-
nuity of the first derivative.

Lemma 2.4. The operator F ′τµ(s) is Lipschitz continuous with a constant 1.

Proof. Direct calculations yield

∥∥F ′τµ(s+ds)−F ′τµ(s)
∥∥ =

∥∥∥∥∥∥

 0 0 0

0 0 0
dZ 0 dX



∥∥∥∥∥∥

= max
‖s‖=1

{∥∥dZsx +dXsz
∥∥}

≤max
‖s‖=1

{∥∥dZsx∥∥+∥∥dXsz
∥∥}

≤max
‖s‖=1

{‖dZ‖∥∥sx∥∥+∥∥sz∥∥‖dX‖}
≤ ‖dZ‖+ ‖dX‖
≤ ‖ds‖.

(2.7)

Hence, a constant 1 will suffice. �
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Lemma 2.5. Under Assumption 1.1, there is a δ > 0 so that for all s such that
‖s− sτµ‖ < δ,

∥∥F ′τµ(s)∥∥ ≤ 2
∥∥F ′τµ(sτµ)∥∥, (2.8a)∥∥F ′τµ(s)†∥∥ ≤ 2
∥∥F ′τµ(sτµ)†∥∥, (2.8b)∥∥s− sτµ∥∥

2
∥∥F ′τµ(sτµ)†∥∥ ≤

∥∥Fτµ(s)
∥∥, (2.8c)

∥∥Fτµ(s)
∥∥ ≤ 2

∥∥F ′τµ(sτµ)∥∥∥∥s− sτµ∥∥. (2.8d)

Moreover, we can choose any δ satisfying

δ <
σmin

2
, (2.9)

where σmin denotes the smallest singular value of F ′τµ(sτµ).

Proof. Since F ′τµ is Lipschitz continuous with a constant 1,

∥∥F ′τµ(s)∥∥ ≤ ∥∥F ′τµ(sτµ)∥∥+∥∥s− sτµ∥∥. (2.10)

Take δ small enough so that

δ <
∥∥F ′τµ(sτµ)∥∥ (2.11)

to obtain (2.8a). For the second result (2.8b), take δ small enough so that

δ <
1

2
∥∥F ′τµ(sτµ)†∥∥ , (2.12)

which implies ‖s−sτµ‖≤1/2‖F ′τµ(sτµ)†‖. Now, since [F ′τµ(sτµ)]
†F ′τµ(sτµ)=

I, we can write
∥∥I −F ′τµ(sτµ)†F ′τµ(s)∥∥ =

∥∥F ′τµ(sτµ)†[F ′τµ(sτµ)−F ′τµ(s)]∥∥
≤ ∥∥F ′τµ(sτµ)†∥∥∥∥F ′τµ(sτµ)−F ′τµ(s)∥∥
≤ ∥∥F ′τµ(sτµ)†∥∥∥∥sτµ − s∥∥
≤
∥∥F ′τµ(sτµ)†∥∥

2
∥∥F ′τµ(sτµ)†∥∥ .

(2.13)

From the last inequality, we get

∥∥I −F ′τµ(sτµ)†F ′τµ(s)∥∥ ≤ 1
2
. (2.14)
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Then, from Lemma 2.3 with the identification A = F ′τµ(s) and A =
F ′τµ(sτµ)

†, and from (2.14), we obtain

∥∥F ′τµ(s)†∥∥ ≤
∥∥F ′τµ(sτµ)†∥∥

1−∥∥I −F ′τµ(sτµ)†Fτµ(s)
∥∥ ≤ 2

∥∥F ′τµ(sτµ)†∥∥, (2.15)

our second required inequality. For the third inequality (2.8c), we use
the fundamental theorem of calculus to express

F ′τµ
(
sτµ
)†
Fτµ(s) = F ′τµ

(
sτµ
)†∫1

0
F ′τµ

(
sτµ + t

(
s− sτµ

))(
s− sτµ

)
dt. (2.16)

Take norms on both sides to get

∥∥F ′τµ(sτµ)†Fτµ(s)
∥∥

=
∥∥∥∥F ′τµ(sτµ)†

∫1

0
F ′τµ

(
sτµ + t

(
s− sτµ

))(
s− sτµ

)
dt

∥∥∥∥
=
∥∥∥∥(s− sτµ)−

∫1

0

[
I −F ′τµ

(
sτµ
)†
F ′τµ

(
sτµ + t

(
s− sτµ

))](
s− sτµ

)
dt

∥∥∥∥
≥ ∥∥s− sτµ∥∥−

∫1

0

∥∥I −F ′τµ(sτµ)†F ′τµ(sτµ + t
(
s− sτµ

))∥∥∥∥s− sτµ∥∥dt
≥ ∥∥s− sτµ∥∥−∥∥s− sτµ∥∥1

2

=
∥∥s− sτµ∥∥1

2
.

(2.17)

Therefore,
∥∥s− sτµ∥∥

2
≤ ∥∥F ′τµ(sτµ)†Fτµ(s)

∥∥ ≤ ∥∥F ′τµ(sτµ)†∥∥∥∥Fτµ(s)
∥∥. (2.18)

The fourth inequality (2.8d) is obtained similarly. We use the assumption
Fτµ(sτµ) = 0 and the bound (2.8a) to get

∥∥Fτµ(s)
∥∥ ≤ ∫1

0

∥∥F ′τµ(sτµ + t
(
s− sτµ

))∥∥∥∥s− sτµ∥∥dt
≤
∫1

0
2
∥∥F ′τµ(sτµ)∥∥∥∥s− sτµ∥∥dt

= 2
∥∥F ′τµ(sτµ)∥∥∥∥s− sτµ∥∥.

(2.19)
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Now, we need to restrict δ using (2.11) and (2.12). Take

δ = min

{
1

2
∥∥F ′τµ(sτµ)†∥∥ ,

∥∥F ′τµ(sτµ)∥∥
}
=
σmin

2
(2.20)

to complete the result. �

Corollary 2.6. Suppose that the hypotheses of Lemma 2.5 hold. Then, for all
s defined as in the lemma, F ′τµ(s) is full column rank.

Proof. From (2.8b), we see that the smallest nonzero singular value of
F ′τµ(s) is bounded below on the entire neighbourhood about sτµ. There-
fore, no nonzero singular value can approach 0. �

From these relations between the central path and our merit function,
we obtain a radius of quadratic convergence to a point on the central
path as well as a decrease of the merit function.

Theorem 2.7. Let σmin and σmax be, respectively, the smallest and largest sin-
gular values of F ′τµ(sτµ). Under Assumption 1.1, there is a δ > 0 such that, for
all sc such that ‖sc − sτµ‖ < δ, the Gauss-Newton step

s+ = sc −F ′τµ
(
sc
)†
Fτµ

(
sc
)

(2.21)

is well defined and converges to sτµ at a rate such that

∥∥s+ − sτµ∥∥ ≤ 1
σmin

∥∥sc − sτµ∥∥2
. (2.22)

Moreover, we can choose δ as long as δ < σmin/2.

Proof. Let δ be small enough so that the hypothesis (2.9) of Lemma 2.5
holds, that is, δ<σmin/2. First, we express the error on the iterate both be-
fore and after the step, then, by the fundamental theorem of calculus and
the fact that F ′τµ(sc) is full column rank (and hence, that [F ′τµ(sc)]

†F ′τµ(sc)
= I),

(
s+ − sτµ

)
=
(
sc − sτµ

)−F ′τµ(sc)†Fτµ

(
sc
)

= F ′τµ
(
sc
)†∫1

0

(
F ′τµ

(
sc
)−F ′τµ(sτµ + t

(
sc − sτµ

)))(
sc − sτµ

)
dt.

(2.23)
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Take norms on both sides and use the Lipschitz continuity of F ′τµ to get

∥∥s+ − sτµ∥∥ ≤ 1
2
∥∥F ′τµ(sc)†∥∥∥∥sc − sτµ∥∥2

. (2.24)

Now, use inequality (2.8b) to get

∥∥s+ − sτµ∥∥ ≤ ∥∥F ′τµ(sτµ)†∥∥∥∥sc − sτµ∥∥2
, (2.25)

the required reduction of the error. �

The next result relates the reduction in the error to the reduction in
the merit function.

Corollary 2.8. Let σmin and σmax be, respectively, the smallest and largest
singular values of F ′τµ(sτµ). Under Assumption 1.1, there is a δ > 0, where, for
all sc such that ‖sc − sτµ‖ < δ,

∥∥Fτµ

(
s+
)∥∥ ≤ 1

2
∥∥Fτµ

(
sc
)∥∥. (2.26)

Moreover, we can choose any δ such that

δ <
σ2

min

8σmax
. (2.27)

Proof. Consider inequality (2.8d) at the point s+ to obtain

∥∥Fτµ

(
s+
)∥∥ ≤ 2σmax

∥∥s+ − sτµ∥∥. (2.28)

Now, assume that δ satisfies the condition of Theorem 2.7 and apply the
result as well as inequality (2.8c) at the point sc to get

∥∥Fτµ

(
s+
)∥∥ ≤ 2

σmax

σmin

∥∥sc − sτµ∥∥2

≤ 2
σmax

σmin

∥∥sc − sτµ∥∥ 2
σmin

∥∥Fτµ

(
sc
)∥∥

= 4
σmax

σ2
min

∥∥Fτµ

(
sc
)∥∥∥∥sc − sτµ∥∥.

(2.29)

Therefore, we need ‖(sc − sτµ)‖ < δ, with δ as defined in (2.27), to obtain
the required decrease. �
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s

sµ s+

sτµ

Figure 3.1

3. Convergence of the algorithm

At this point, we have established all the necessary relations between our
merit function and the distance between an iterate and the central path.
The current section describes the convergence of Algorithm 1.1. For easy
reference, we repeat the definitions of the two canonical points sµ and
sτµ on the central path. They satisfy

Fµ

(
sµ
)
= 0, Fτµ

(
sτµ
)
= 0. (3.1)

The general idea of the algorithm is that from an iterate sk, close enough
to sµ, we can choose a target on the central path sτµ in such a way that
the next iterate sk+1, obtained from the Gauss-Newton direction, is now
close enough to sτµ for the process to be repeated (see Figure 3.1).

The proof is in three parts. First, we estimate the distance between
two points on the central paths in terms of the required radius of con-
vergence.

Lemma 3.1. Let σmin and σmax be, respectively, the smallest and largest singu-
lar values of F ′τµ(sτµ). Let sµ and sτµ satisfy (3.1).

(1) If we choose 0 < τ < 1 such that

1− τ ≤ σ2
min

8
√
nµ

, (3.2)

then

∥∥sµ − sτµ∥∥ ≤ 1
2

(
σmin

2

)
, (3.3)

which implies that sµ is within half the radius of quadratic convergence of sτµ.
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(2) If we choose 0 < τ < 1 such that

1− τ ≤ σ3
min

32
√
nµσmax

, (3.4)

then

∥∥sµ − sτµ∥∥ ≤ 1
2

(
σ2

min

8σmax

)
. (3.5)

In this case, sµ is within half the radius of guaranteed constant decrease of the
merit function in (2.27).

Proof. First, note that a straightforward calculation based on the defini-
tion of sµ in (3.1) yields

∥∥Fτµ

(
sµ
)∥∥ =

√
n(1− τ)µ. (3.6)

By inequality (2.8d),

∥∥sµ − sτµ∥∥ ≤ 2
∥∥F ′τµ(sτµ)†∥∥∥∥Fτµ

(
sµ
)∥∥

= 2
∥∥F ′τµ(sτµ)†∥∥(1− τ)√nµ. (3.7)

Let τ satisfy (3.2) to get

∥∥sµ − sτµ∥∥ ≤ σmin

4
, (3.8)

which, by Theorem 2.7, yields one half of the quadratic radius of conver-
gence. The proof of part (2) of the lemma is similar. �

We now estimate the distance to the new target after a Gauss-Newton
step.

Lemma 3.2. Let σmin and σmax be, respectively, the smallest and largest singu-
lar values of F ′τµ(sτµ). Let sµ and sτµ satisfy (3.1). Suppose that the point sc is
well centered in the sense that

∥∥sµ − sc∥∥ ≤min
{
σmin

4
,

σ2
min

16σmax

}
, (3.9)

and choose τ to satisfy

0 < τ < 1, 1− τ ≤min
{

σ2
min

8
√
nµ

,
σ3

min

32
√
nµ

}
, (3.10)
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as in Lemma 3.1. Then, after one Gauss-Newton step, the new point s+ will be
within half the radius of convergence of sτµ, that is,

∥∥sτµ − s+∥∥ ≤ σmin

4
. (3.11)

Moreover, the merit function is reduced to

∥∥Fτµ

(
s+
)∥∥ ≤ 1

2
∥∥Fτµ

(
sc
)∥∥. (3.12)

Proof. By hypothesis and by Lemma 3.1,

∥∥sc − sµ∥∥ ≤ σmin

4
,

∥∥sµ − sτµ∥∥ ≤ σmin

4
. (3.13)

Therefore,

∥∥sc − sτµ∥∥ =
∥∥sc − sµ + sµ − sτµ

∥∥
≤ ∥∥sc − sµ∥∥+∥∥sµ − sτµ∥∥
≤ σmin

2
,

(3.14)

which is within the radius of quadratic convergence of sτµ. After one
Gauss-Newton step, by Theorem 2.7, we get

∥∥s+ − sτµ∥∥ ≤ 1
σmin

∥∥sc − sτµ∥∥2

≤ 1
σmin

(
σmin

2

)2

=
σmin

4
.

(3.15)

Therefore, the new point is within half the radius of convergence of sτµ,
and the procedure can be repeated.

The constant reduction of the merit function follows from Corollary
2.8. �

We now present the main result of the paper, the convergence proof
for Algorithm 1.1.

Theorem 3.3. Suppose there exist a tolerance ε > 0, an initial barrier parameter
µ0 > ε, and Z0,X0 ∈ S

n
++ such that s0 = (X0,y0,Z0) is a well-centered starting
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point within half the quadratic convergence radius of sµ0 in Theorem 2.7:

∥∥sµ0 − s0
∥∥ ≤ 1

2

(
σmin

2

)
. (3.16)

Suppose, moreover, that s0 is within half the radius of guaranteed constant de-
crease of the merit function given in Corollary 2.8:

∥∥sµ0 − s0
∥∥ ≤ 1

2

(
σ2

min

8σmax

)
, (3.17)

where 0 < σmin (resp., σmax) is smaller than the smallest (resp., larger than the
largest) singular value of F ′ωµ0

(sωµ0), for all ε/µ0 < ω < 1.
If τ (small) is chosen satisfying (3.10), that is,

α = min
{

σ2
min

8
√
nµ0

,
σ3

min

32
√
nµ0

}
, (3.18)

and τ ≥max{0,1 − α}, 0 < τ < 1, then Algorithm 1.1 produces a sequence sk
converging to s̄, which is ε-optimal in the following sense:

τkµ0 ≤ ε,
∥∥Fτkµ0(s̄)

∥∥ ≤ ε, ∥∥s̄− sτkµ0

∥∥ ≤ 2
ε

σmin
; (3.19)

and the number of iterations k depends on τ :

(1) if 0 < τ ≤ 1/2, the number of iterations is

O
(

max

{
log

(∥∥Fτµ0

(
s0
)∥∥

ε

)
, log

(
µ0
√
n

ε

)})
; (3.20)

(2) if 1/2 < τ < 1, the number of iterations is

O
(

max

{
log

(∥∥Fτµ0

(
s0
)∥∥

ε

)
,

( log
(
(2τ − 1)ε/(1− τ)2µ0

√
n
)

logτ

)
,

( log
(
ε/µ0

)
logτ

)})
.

(3.21)
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Proof. First, we note, by Corollary 2.6, that the required constant σmin

exists. By Lemma 2.5,

∥∥sk − sτkµ0

∥∥ ≤ 2
∥∥F ′

τkµ0

(
sτkµ0

)†∥∥∥∥Fτkµ0

(
sk
)∥∥, (3.22)

which results in the desired bound on ‖sk − sτkµ0‖ if ‖Fτkµ0(sk)‖ ≤ ε. From
the constant decrease guarantee, we get (by adding and subtracting the
multiple of the identity in the third term in the norm)

∥∥Fτkµ0

(
sk
)∥∥ ≤ 1

2
∥∥Fτkµ0

(
sk−1

)∥∥
≤ 1

2
∥∥Fτk−1µ0

(
sk−1

)∥∥+ 1
2
τk−1(1− τ)µ0

√
n

≤ 1
22

∥∥Fτk−2µ0

(
sk−2

)∥∥
+

1
22

{
τk−2(1− τ)µ0

√
n+ 2τk−1(1− τ)µ0

√
n
}

≤
{

1
2k
∥∥Fτµ0

(
s0
)∥∥}

+
{
(1− τ)µ0

√
n

(
τ0

2k
+

τ

2k−1
+

τ2

2k−2
+ · · ·+ τk−1

2

)}

(3.23)

=
1
2k
∥∥Fτµ0

(
s0
)∥∥

+ (1− τ)µ0
√
nτk

(
τ0−k

2k
+
τ1−k

2k−1
+
τ2−k

2k−2
+ · · ·+ τ−1

2

)

=
1
2k
∥∥Fτµ0

(
s0
)∥∥

+ (1− τ)µ0
√
nτk

((
1

2τ

)k

+
(

1
2τ

)k−1

+
(

1
2τ

)k−2

+ · · ·+ 1
2τ

)

=
{

1
2k
∥∥Fτµ0

(
s0
)∥∥}+

{
(1− τ)µ0

√
nτk

(
1− (1/2τ)k

2τ − 1

)}
.

(3.24)

We will bound each of the two terms in brackets in the last line above by
ε/2. From here onward, log will indicate log2. For the first term, we get

k ≥
⌈

log

(
2
∥∥Fτµ0

(
s0
)∥∥

ε

)⌉
, (3.25)

where �x� is the ceiling operator. It produces the smallest integer larger
than or equal to x. For the second term in the brackets, we use the form
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in (3.23) while considering the case τ ≤ 1/2. We get

(1− τ)µ0
√
n

(
τ0

2k
+

τ

2k−1
+

τ2

2k−2
+ · · ·+ τk−1

2

)
≤ µ0
√
n

1
2k

k ≤ ε

2
, (3.26)

or equivalently,

log
(

2µ0
√
n

ε

)
≤ k − logk ≤ k. (3.27)

Thus, the case τ ≤ 1/2 for the second term is bounded by ε/2 if

k ≥
⌈

log
(

2µ0
√
n

ε

)⌉
. (3.28)

For the case τ > 1/2, we use the form (3.24) to get

(1− τ)µ0
√
nτk

(
1− (1/2τ)k

2τ − 1

)
≤ (1− τ)

2τ − 1
µ0
√
nτk ≤ ε

2
(3.29)

implied by

k ≥
⌈

log
(
(2τ − 1)ε/(1− τ)2µ0

√
n
)

logτ

⌉
, (3.30)

where the direction of the inequality changed since τ < 1.
Therefore, we can obtain ‖Fτkµ0(sk)‖ ≤ ε by choosing k using each of

the lower bounds given in (3.25), (3.28), and (3.30). This guarantees that
we are close to the central path.

We finally need to be close to optimality, µ0τ
k ≤ ε. This is equivalent

to

k ≥ log
(
ε/µ0

)
logτ

. (3.31)

The dependence on τ can be eliminated, in the case 0 < τ < 1/2, by

k ≥ − log
ε

µ0
, (3.32)

which is implied by (3.28). The final O expression bounding the number
of iterations is a simplification of (3.25), (3.28), (3.30), and (3.31). �
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4. Towards a long-step algorithm

The algorithm, as presented, is not practical. The assumptions that the
initial iterate satisfies the conditions of Theorem 3.3 and that we need an
estimate of the smallest singular values are significant. But the singular
values are used, throughout the paper, only to show the existence of a
radius of convergence. A practical version of the algorithm would more
likely try some value for τ , compute the step and the value of the merit
function, then reduce τ if the merit function reduction is not sufficient.
Since we have shown the existence of a radius where the merit function
is halved, (3.12), such a scheme will necessarily converge. We presented
the algorithm without these practical encumbrances to clarify the pre-
sentation.

The Gauss-Newton direction for solving semidefinite programs was
introduced in [3] without a proof of convergence, but with experimental
results that warranted more research. Then, in [1], a scaled version of the
direction was used in an algorithm shown to be polynomially conver-
gent. The algorithm and the convergence proof presented in this paper
are new in that the direction is used without any scaling and the algo-
rithm never explicitly forces the iterates to remain within the positive
definite cone. Moreover, the measure used to quantify the distance of
the iterates to the central path (1.6b) estimates both the infeasibility and
the complementarity and seems perfectly adapted to infeasible interior-
point algorithms. It would be interesting to see how this measure can be
used for different directions.

The dependence on the smallest singular value of the Jacobian for
choosing τ , though unsurprising in the context, should be relaxed to
some other more easily estimated function of the data (possibly some
condition measure [4]). But the ultimate goal of this avenue of research
is to establish polynomial convergence of an infeasible algorithm using
long steps, that is, not restricted to a narrow neighbourhood of the cen-
tral path. Both experimental data and preliminary results suggest the
possibility of such an algorithm.
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