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We study the effects of large diffusivity in all parts of the domain in
a linearly damped wave equation subject to standard zero Robin-type
boundary conditions. In the linear case, we show in a given sense that
the asymptotic behaviour of solutions verifies a second-order ordinary
differential equation. In the semilinear case, under suitable dissipative
assumptions on the nonlinear term, we prove the existence of a global
attractor for fixed diffusion and that the limiting attractor for large dif-
fusion is finite dimensional.

1. Introduction

Let Ω ⊂ R
N , N ≥ 1, be an open bounded convex subset with smooth

boundary ∂Ω = Γ and consider the following semilinear wave equation:

utt + βut +Lεu = f(u),
(
u(0),ut(0)

)
=
(
uε0,u

ε
1

) ∈X1/2
ε ×X0

ε , (1.1)

where u is the unknown, β ≥ 1 is a linear damping term, ε > 0 is a given
parameter, and Lε : H1(Ω) �→H−1(Ω) denotes the canonic spatial second-
order differential isomorphic operator incorporating the boundary con-
ditions 〈dε(x)∇u, �n〉 + bε(x)u = 0 on Γ with �n being the external unit
normal vector to Γ. More precisely, we consider the bilinear form aε :
H1(Ω)×H1(Ω) �→ R given as

aε(u,ϕ) =
∫
Ω
dε(x)∇u∇ϕ+λ

∫
Ω
uϕ+

∫
Γ
bεuϕ (1.2)
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such that, for each u ∈H1(Ω), Lεu ∈H−1(Ω) is defined by

〈
Lεu,ϕ

〉
H−1(Ω),H1(Ω) = a

ε(u,ϕ) ∀ϕ ∈H1(Ω). (1.3)

In (1.2), dε ∈ C(Ω) is a strictly positive diffusion coefficient and bε ∈
Lq0(Γ) with q0 ≥ 1 if N = 1, q0 > 1 if N = 2, and q0 ≥N − 1 if N ≥ 3 is
the boundary potential. Let λ0 : R

+ �→ R
+ be such that λ0(0) = 0 and let

bε− denote the negative part of the potential bε(x). Throughout, we will
consider the constant λ ≥ λ0(‖bε−‖Lq0 (Γ)).

We note that, for simplicity in our exposition, we have chosen the
given situation on the boundary. This will allow us to set off messy tech-
nical hypotheses in our treatment as nonhomogeneous boundary condi-
tions require certain compatibility assumptions to be verified.

Now we make precise the sense in which we will understand the ef-
fect of large diffusion in all parts of the domain Ω of (1.1). This will be
entailed in the hypothesis that

Dε
inf

def= inf
Ω

{
dε(x)

} −→∞ as ε −→ 0. (1.4)

Simultaneously with assumption (1.4) and corresponding to physical
relevant cases (see [2, 12]), we suppose, for the boundary potential and
initial conditions to problem (1.1), that these are uniformly bounded in
norm of the spaces in which they reside for ε > 0 and satisfy L1 conver-
gence as ε→ 0.

In the initial paragraph, we have stated that the operator Lε is a
canonic isomorphism. This follows the fact that Lax-Milgram theorem
[1, 11] is satisfied. Indeed, since other hypotheses to be verified are read-
ily seen, it suffices to note that once (1.4) is assumed, we have coercivity
in H1(Ω), that is,

aε(u,ϕ) ≥ βε1
∫
Ω
|∇u|2 + β0

∫
Ω
|u|2 ≥ C‖u‖2

H1(Ω), (1.5)

where βε1 →∞ as ε→ 0, C > 0 is independent of ε > 0. Thus, throughout,
we will suppose that ε > 0 is sufficiently small so as to yield (1.5) always.

To complete the precision of the data in (1.1), we will consider a non-
linear reaction term f ∈ C1(R) satisfying, for N ≥ 3, polynomial growth
conditions of type

∣∣f(u)− f(v)∣∣ ≤ C(|u|p−1 + |v|p−1 + 1
)|u−v|, for 1 < p ≤ N + 2

N − 2
, (1.6)
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while if N = 2 in (1.6), we assume that p − 1 = 2. Alternatively, we will
suppose that for all η > 0 there exists Cη ≥ 0 such that

∣∣f(u)− f(v)∣∣ ≤ Cη

(
eη|u|

2
+ eη|v|

2
+ 1

)|u−v|. (1.7)

If N = 1, no growth conditions are required.
Finally, we remark that the norm of the extended scale of Hilbert space

X1/2
ε (see [1, 8]) is given by ‖u‖2

X1/2
ε

= aε(u,u), as usual X0
ε = L

2(Ω). We
will employ the notation 〈·, ·〉 to denote the inner product of X0

ε . We will
also use −∫· = (1/| · |) ∫· to denote the spatial average integral operator for
functions defined either in Ω or on its boundary Γ. Finally, all generic
constants independent of ε > 0 will be denoted by C ≥ 0.

Our aim is to investigate the limiting problem for (1.1) in the given hy-
potheses under the effect of (1.4) and the extent to which the long-time
dynamics are related. It is easy to intuitively guess the explicit expres-
sion of the limiting large diffusivity equation for (1.1). However, it is not
trivial to make a precise meaning for this limiting process. On a similar
subject are the paper by Carvalho [3] and sectional conclusions of the
monograph by Hale [6]. Both these references are technically different
from the present paper since they prove an inverse situation to the one
we have outlined at the beginning of the paragraph.

It is worthwhile noting that the pioneer work of Conway et al. [4] im-
plies a fine exponential decay of solutions to a constant function in space
for a system of reaction-diffusion equations subject to zero Neumann
boundary conditions and admitting an invariant region when large dif-
fusivity is assumed in all parts of the domain, consequently a finite-
dimensional asymptotic limiting system of equations.

For a complete review on known results giving the effects of large
diffusion in reaction-diffusion equations, we refer the reader to the in-
troductory chapter of Willie [12]. There we have also provided a bib-
liography of interest in the topic from other natural sciences. From a
mathematical point of view, this asymptotic behaviour of solutions to
infinite-dimensional problems is of intrinsic interest in itself since finite-
dimensional problems turn out to be relatively easier.

We now outline the structure of the paper. In Section 2, we will care-
fully study the convergence as ε→ 0 under assumption (1.4) of solutions
of an associated linear problem with zero damping term and model hy-
potheses to (1.1). This will give us an insight to the limiting problem
for the semilinear case under large diffusivity. In Section 3, we therefore
prove in detail local existence and uniqueness of solutions to problem
(1.1). In addition, if we suppose a dissipative condition on the nonlin-
ear term in Section 3.1, we obtain global existence and boundedness of
solutions to (1.1) in the energy space X1/2

ε ×X0
ε . In particular, we prove
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the existence of a global compact attractor Aε ⊂ X1/2
ε ×X0

ε that captures
the long-time asymptotic behaviour of the solutions to (1.1). Lastly, in
Section 3.2, we study how varies the family of attractor {Aε}ε ⊂ X1/2

ε

×X0
ε as ε→ 0 given that assumption (1.4) is satisfied; here we prove the

existence of a finite-dimensional asymptotic limiting problem of the so-
lutions.

2. The linear evolutionary problem

In this section, we study the convergence of solutions as ε → 0 in the
following linear evolutionary wave equation:

utt +Lεu = fε(t), uε(0) = uε0 ∈X1/2
ε , uεt (0) = u

ε
1 ∈X0

ε , (2.1)

where fε ∈ L1(0,T,L2(Ω)) is well behaved for all ε > 0 and has spatial
average weakly converging in L1(0,T) as ε→ 0. Note that in (2.1), for
simplicity, we have assumed that β = 0. Now, regarding its solvability,
we have the following theorem.

Theorem 2.1. The evolutionary problem (2.1) has a unique weak solution
(uε,uεt ) ∈ YT = C([0,T],X1/2

ε ×X0
ε) and the energy identity

1
2
Eε(t)− 1

2
Eε(s) =

∫ t

s

〈
fε,uεt

〉
dσ, ∀t ≥ s ≥ 0, (2.2)

where Eε(t) = ‖(uε,uεt )‖2
X1/2
ε ×X0

ε

, holds.

Proof. The proof of the first part of the theorem is standard and can be
found in [9, 11]. It remains only to show that the energy identity (2.2)
holds, but this is obtained via a density argument similar to the one used
below in the semilinear case. �

We comment that the proof given in [11] is simple and makes use of
the standard Galerkin technique. This technique consists formally in de-
riving an energy inequality from (2.2), which yields among other things
an a priori estimate for the solution, expressing as well a continuous de-
pendence relation of this with respect to the data of the problem. Then
use an approximation scheme and uniform energy estimate of the ap-
proximating sequence of solutions to associated finite-dimensional prob-
lems, for which existence is known a priori, to obtain a solution to (2.1)
as a weak limit. Since the weak solution obtained by this process de-
pends on the choice of the approximation scheme, the energy estimate
yields uniqueness only if more regularity on the data is assumed.
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Thus, to circumvent this difficulty, Renardy and Rogers [11] derive an
energy equation for time-integrated quantities which, together with the
well-known Gronwall lemma, conclude the desired uniqueness.

We now turn back to our main goal of the section and we have the
following asymptotic behaviour of solutions to (2.1).

Theorem 2.2. Consider the second-order ordinary differential equation

üΩ +
( |Γ|
|Ω| −

∫
Γ
b+λ

)
uΩ = hΩ(t),

(
uΩ(0), u̇Ω(0)

)
=
(
u0
Ω,u

1
Ω

) ∈ R
2,

(2.3)

where hΩ(t) = −∫Ω f dx, and denote QT = Ω× (0,T). Then the weak solutions to
(2.1) satisfy, as ε→ 0,

uε(t) −→ uΩ(t), lim
ε→0

∫
QT

dε(x)
∣∣∇uε∣∣2 = 0, (2.4)

where the first convergence is strong in L2(0,T,X1/2
ε ). If there is in addition a

strong convergence of the data as ε→ 0, then

(
uε,uεt

) −→ (
uΩ, u̇Ω

)
strongly in YT as ε −→ 0. (2.5)

Proof. Consider the energy identity (2.2) for s = 0, that is,

1
2
Eε(t) =

1
2
Eε(0) +

∫ t

0

〈
fε,uεt

〉
dσ ∀t ≥ 0. (2.6)

Then, applying Hölder’s inequality followed by Young’s inequality of
the form

ab ≤ ηa2 +
1
η
b2, a,b ≥ 0, η =

1
4
, (2.7)

in the last term of the right-hand side, we obtain

Eε(t) ≤ 16
(
Eε(0) +

∥∥fε∥∥2
L1(0,T,L2(Ω))

)
. (2.8)

Since, by hypothesis, the right-hand side of this last expression is uni-
formly bounded in ε > 0, we have that (uε,uεt ) is bounded in norm of
L∞(0,T,X1/2

ε ×X0
ε) for all ε > 0. Consequently, passing to subsequences if
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necessary, we conclude

(
uε,uεt

) −→ (
v,vt

)
weak∗ in L∞(0,T,X1/2

ε ×X0
ε

)
, (2.9)

as ε→ 0; and since (1.4) is satisfied, we also have for all t ≥ 0 that

lim
ε→0

∫
Ω

∣∣∇uε∣∣2 = 0. (2.10)

Thus, using the lower semicontinuity of the H1(Ω) norm, we deduce
that the limit v is constant in Ω for all t ∈ (0,T). In particular, the strong
compactness inX0

ε for all t ∈ (0,T) and (2.10) implies uε(t)→v(t) strongly
in L2(0,T,X1/2

ε ) as ε → 0. On the other hand, the Poincaré inequality
yields

∥∥uε −uε∥∥L2(QT )
≤ C∥∥∇uε∥∥L2(QT )

−→ 0, (2.11)

as ε→ 0, where uε = −∫Ωuε. Hence, the standard Sobolev inclusionsH1(Ω)
↪→ Lq

′
0(Γ) with q′0 ≥ 1 satisfying 1/q′0 + 2/q0 = 1 for q0 ≥ 1, as given in

Section 1 and (2.10), imply

lim
ε→0

∥∥uε −uε∥∥
L2(0,T,Lq

′
0 (Γ))

= 0. (2.12)

Now let ψ(t)(1/|Ω|)χΩ(x) with ψ ∈ C∞[0,T] satisfying ψ(T) = 0 and
χΩ, the characteristic function of the domain Ω, be a test function in (2.1),
and integrate by parts to obtain

−
∫T

0
ψ̇ −
∫
Ω
uεt +

∫T

0
ψ

(
λ−
∫
Ω
uε +

1
|Ω|

∫
Γ
bεuε

)

= ψ(0)−
∫
Ω
uε1 +

∫T

0
ψ −
∫
Ω
fε.

(2.13)

Before passing to the limit as ε→ 0 in (2.13), we set ΣT = Γ × (0,T) and
observe that

∣∣∣∣
∫
ΣT
bε
(
uε −uε)

∣∣∣∣ ≤ C
∫T

0

∥∥uε −uε∥∥
L
q′0 (Γ)

−→ 0. (2.14)

Therefore, as ε→ 0, we get

−
∫T

0
vtψ̇ +

∫T

0

( |Γ|
|Ω| −

∫
Γ
b +λ

)
vψ = v1ψ(0) +

∫T

0

(
−
∫
Ω
f

)
ψ, (2.15)
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and it follows in distributional sense that

v̈ +
( |Γ|
|Ω| −

∫
Γ
b+λ

)
v = −

∫
Ω
f on (0,T). (2.16)

Moreover, multiplying (2.16) by ψ ∈ C∞[0,T], verifying ψ(T) = 0, inte-
grating by parts the first term and comparing with (2.15), we conclude
that v̇(0) = v1.

Now returning to (2.13) and repeating the above limiting process for
the identity following a second integration by parts of the first term so
that the second time derivative is passed onto ψ̇ using the hypotheses
on the initial-data condition uε(0) = uε0, we find that v(0) = v0, and, by
uniqueness of the limit, we must have (v,vt) = (uΩ, u̇Ω).

To prove the last assertion, take uε as a test function in (2.1) and inte-
grate in time to find

∫
QT

uεttu
εdxdt+

∫T

0
aε
(
uε,uε

)
dt =

∫
QT

fεuεdxdt. (2.17)

It is easy to see that we can pass to the limit as ε→ 0 and, since (2.16) is
the limit in distributions of (2.1), this yields

∫T

0
vttv +

( |Γ|
|Ω| −

∫
Γ
b+λ

)
|v|2 + lim

ε→0

∫
QT

dε(x)
∣∣∇uε∣∣2 =

∫T

0
v −
∫
Ω
f. (2.18)

Now multiplying (2.16) by v, integrating in time, and comparing with
the above last expression give

lim
ε→0

∫
QT

dε(x)
∣∣∇uε∣∣2 = 0, (2.19)

and the first assertion is proved.
To conclude the proof of the theorem, we find the equation defined by

ϕε = uε −uΩ and use the energy inequality (2.8) to obtain

∥∥(ϕε,ϕεt)∥∥2
X1/2
ε ×X0

ε

≤ C
(∥∥(ϕε0,ϕε1)∥∥2

X1/2
ε ×X0

ε
+
∥∥fε(t)−hΩ(t)∥∥2

L1(0,T,L2(Ω))

)
−→ 0,

(2.20)

as ε→ 0, from which the result follows and the proof of the theorem is
complete. �
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Remark 2.3. We can improve on the second convergence in (2.4), but we
need, in addition to the given hypotheses, to assume that

lim
ε→0

∫
Ω
dε(x)

∣∣∇uε0∣∣2 = 0, (2.21)

with which, using the energy identity (2.2) and (2.9) for passing to the
limit as ε→ 0, then comparing the result with that of multiplying in (2.3)
by u̇Ω and integrating in time, it follows that

lim
ε→0

sup
t≥0

∫
Ω
dε(x)

∣∣∇uε∣∣2 = 0. (2.22)

We note that (2.21) is not a restrictive condition since solving for the
asymptotic behaviour in question in the elliptic case is natural (see [2]).

3. The semilinear evolutionary problem

We are now in a position to study the semilinear problem (1.1). Through-
out this section, we will concentrate only on the case N ≥ 3 and we re-
mark that the argument in the remaining cases is easily adaptable with
minor modifications. Thus, to initiate our study, we introduce the fol-
lowing concept of weak solution to the problem.

Definition 3.1. Let dε,bε ∈ C1. The pair (uε,uεt ) ∈ YT is a weak solution
to problem (1.1) if there exists a sequence of regular data (un0 ,u

n
1), n =

1,2, . . . , such that

(
un0 ,u

n
1

)−→(
uε0,u

ε
1

) ∈X1/2
ε ×X0

ε ,
(
un,unt

) −→ (
uε,uεt

) ∈ YT , as n −→∞,
(3.1)

where (un,unt ), n = 1,2, . . . , is a unique sequence of strong solutions to
(1.1) corresponding to the above regular initial data.

With respect to the solvability of (1.1), we state the following theorem.

Theorem 3.2. The semilinear wave evolutionary problem (1.1) has a unique
solution (uε,uεt ) ∈ YT and the energy identity

1
2
Eε(t)− 1

2
Eε(s) =

∫ t

s

〈
f(u),ut

〉
dσ, ∀t ≥ s ≥ 0, (3.2)

holds, where Eε(t) = ‖(u,ut)‖2
X1/2
ε ×X0

ε

+ β
∫ t
s |ut|2.
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Proof. Assume that (3.2) holds and define a nonlinear mapping F : YT �→
YT such that if (u,ut) ∈ YT , then (v,vt) = F(u,ut) solves the problem

vtt + βvt +Lεv = f(u), vε(0) = vε0 ∈X1/2
ε , vεt (0) = v

ε
1 ∈X0

ε . (3.3)

Next, fix ρ > 0 and consider the bounded subset of YT

U =
{(
ϕ,ϕt

) ∈ YT : sup
0≤t≤T

∥∥(ϕ,ϕt)∥∥X1/2
ε ×X0

ε
≤ ρ

}
. (3.4)

If we set ‖(v0,v1)‖X1/2
ε ×X0

ε
≤ ρ/4, then multiplying by vt in (3.3), we find

1
2
∥∥(v,vt)∥∥2

X1/2
ε ×X0

ε
+ β

∫ t

0

∫
Ω

∣∣vt∣∣2
dxdσ

≤ 1
2
∥∥(v0,v1

)∥∥2
X1/2
ε ×X0

ε
+
∫ t

0

∣∣〈f(u),vt〉∣∣dσ.
(3.5)

Since β
∫ t

0

∫
Ω |vt|2 ≥ 0, it follows, using the growth conditions on the non-

linear term, that

1
2
∥∥(v,vt)∥∥2

X1/2
ε ×X0

ε
≤ ρ

8
+CT |Ω|1/2(ρp + 1

)
sup
0≤t≤T

∥∥vt∥∥X0
ε
, (3.6)

from which the Young’s inequality (2.7) implies

∥∥(v,vt)∥∥2
X1/2
ε ×X0

ε
≤ ρ

2
+ 4

(
CT |Ω|1/2(ρp + 1

))2
. (3.7)

Consequently, if ρ� 1 is sufficiently large and we choose

T ≤ (
2C|Ω|1/2(ρp + 1

))−1 (3.8)

yielding ‖(v,vt)‖X1/2
ε ×X0

ε
≤ ρ, then (v,vt) ∈U and F maps U onto itself.

In continuation, notice that, for (u,ut),(w,wt) ∈U, if we set (v,vt) =
F(u,ut) and (ψ,ψt) = F(w,wt) so that (ϕ,ϕt) = (v −ψ,vt −ψt) solves

ϕtt + βϕt +Lεϕ = f(u)− f(w), (3.9)

and taking the inner product with ϕt, we have

∥∥(ϕ,ϕt)∥∥X1/2
ε ×X0

ε
≤
∫T

0

∣∣〈f(u)− f(w),ϕt
〉∣∣dσ

≤ 3CTρp sup
0≤t≤T

∥∥(ϕ,ϕt)∥∥X1/2
ε ×X0

ε
,

(3.10)
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where again we have used the fact that β
∫ t

0

∫
Ω |vt|2dxdσ ≥ 0. Thus, for

ρ� 1 sufficiently large, if we choose T ≤ (6Cρp)−1, we obtain that F is
a strict contractive mapping and, thanks to the Banach fixed-point theo-
rem, there exists a unique solution (u,ut) = F(u,ut) that solves (1.1).

Now assume that dε,bε ∈ C1 and, for n = 1,2, . . . , let

vn ∈ C((0,T),X1
ε

)∩C1((0,T),X1/2
ε

)∩C2((0,T),X0
ε

)
(3.11)

be a regular sequence of solutions to (3.3) with vn0 → v0 ∈X1/2
ε , vn1 → v1 ∈

X0
ε . Then (vn,vnt ) is Cauchy in C([0,T],X1/2

ε ×X0
ε) and the limit (v,vt)

solves (3.3) in the sense given by

d

dt

〈
vt,ϕ

〉
+ β

〈
vt,ϕ

〉
+
〈
Lεv,ϕ

〉
=
〈
f(u),ϕ

〉
on [0,T] a.e. (3.12)

Thus, (v,vt) = F(u,ut) is a weak solution to (1.1) and, taking ϕ = vt inte-
grating in time for t ≥ s ≥ 0, we conclude that (3.2) holds, with which the
proof is complete. �

Remark 3.3. Note that, under sufficient regularity assumptions on the
data of problem (1.1), it is usual to prove the well-posedness via abstract
semigroup methods. Often in this case one reads the evolutionary prob-
lem in the form

∂tU+AεU = F(U), U0 =
(
uε0,u

ε
1

)�
, (3.13)

where

Aε =
(

0 −I
Lε β

)
, U =

(
u,ut

)�
, F(U) =

(
0,f(u)

)�
. (3.14)

Further, the nonlinear mapping in the proof of Theorem 3.2 is given by
the variation of the constants formula

F(U)(t) = e−A
εtU0 +

∫ t

0
e−A

ε(t−s)F
(
U(s)

)
ds (3.15)

in appropriate functional spaces.

3.1. Global existence and boundedness of solutions

We now study the global existence and boundedness of solutions to
(1.1). Here our arguments use the same technique as that found in [7].
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We would like to point out that we were not able to extend the method
to cover the case of zero damping, that is, β = 0 in (1.1).

In what follows, we assume that the dissipative condition

limsup
|u|→∞

f(u)
u

< 0 (3.16)

holds, with which we state the following theorem.

Theorem 3.4. Consider the evolutionary equation (1.1) and suppose in (1.6)
that p < 1 + 2/N. Then there exists a nonnegative constant C ≥ 0 such that
if ‖(uε0,uε1)‖X1/2

ε ×X0
ε
≤ ρ for some ρ > 0, then ‖(uε(t),uεt (t))‖X1/2

ε ×X0
ε
≤ C for all

t ≥ t0(ρ). In other words, the semilinear problem is bounded dissipative and also

∫∞

0

∥∥uεt∥∥2
L2(Ω) ≤ C. (3.17)

Proof. Consider, for all t ≥ 0, the functional

Jε
(
ψ,ψt

)
=

1
2
∥∥(ψ,ψt)∥∥2

X1/2
ε ×X0

ε
+
b

2

∫
Ω
ψψt −

∫
Ω
F(ψ), for 0 < b < 1,

(3.18)

where F(ψ) =
∫ψ

0 f(s)ds. Finding the time derivative of Jε for (ψ,ψt) =
(uε,uεt ) a solution to (1.1), we have

dJε
(
uε,uεt

)
dt

=
d

2dt
∥∥(uε,uεt)∥∥2

X1/2
ε ×X0

ε
+
b

2

∫
Ω

∣∣uεt ∣∣2

+
b

2

∫
Ω
uεuεtt −

∫
Ω
f
(
uε
)
uεt

= −β
∫
Ω

∣∣uεt ∣∣2 +
b

2

∫
Ω

∣∣uεt ∣∣2 − bβ
2

∫
Ω
uεuεt

− b
2
∥∥uε∥∥2

X1/2
ε

+
b

2

∫
Ω
f
(
uε
)
uε

≤ −β
2

∫
Ω

∣∣uεt ∣∣2 − b
2

∫
Ω
uεuεt −

b

2
∥∥uε∥∥2

X1/2
ε

+
b

2

∫
Ω
f
(
uε
)
uε

= −b
(

1
2

∫
Ω

∣∣uεt ∣∣2 +
1
2

∫
Ω
uεuεt +

1
2
∥∥uε∥∥2

X1/2
ε

)

+
b

2

∫
Ω
f
(
uε
)
uε,

(3.19)
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for any t ≥ 0, after noticing the result of multiplying by uεt in (1.1) and, in
the third term of the first line, substituting the expression by its equiv-
alent following a multiplication in (1.1) by uε, in both cases taking the
integral by parts on Ω.

Proceed to observe that [7, Lemma 2.1] implies

1
2

∫
Ω

∣∣uεt ∣∣2 +
1
2

∫
Ω
uεuεt +

1
2
∥∥uε∥∥2

X1/2
ε

≥ 1
4

∫
Ω

∣∣uεt ∣∣2 +
1
4
∥∥uε∥∥2

X1/2
ε
. (3.20)

Hence, we have in (3.19), for t ≥ 0, that

dJε
(
uε,uεt

)
dt

≤ −b
4

(∫
Ω

∣∣uεt ∣∣2 +
∥∥uε∥∥2

X1/2
ε

)
+
b

2

∫
Ω
f
(
uε
)
uε. (3.21)

Thanks to the dissipative hypothesis (3.16), we have for all η > 0 that
there exists Cη ≥ 0 such that

f(ϕ)ϕ ≤ ηϕ2 +Cη, ∀ϕ ∈ R. (3.22)

Therefore, with η = b/8, we have

dJε
(
uε,uεt

)
dt

≤ −b
8
∥∥(uε,uεt)∥∥2

X1/2
ε ×X0

ε
+C ∀t ≥ 0. (3.23)

On the other hand, following the same assumption leading to (3.22), we
notice that

F(ϕ) ≤ ηϕ2 +Cη, ∀ϕ ∈ R. (3.24)

Hence,

Jε
(
uε,uεt

) ≥ 1
2
∥∥(uε,uεt)∥∥2

X1/2
ε ×X0

ε

− b
2
∥∥uε∥∥L2(Ω)

∥∥uεt∥∥L2(Ω) −
1
8

∫
Ω

∣∣uε∣∣2 −C

≥ 1
8
∥∥(uε,uεt)∥∥2

X1/2
ε ×X0

ε
−C

(3.25)
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for any t ≥ 0. Analogously, we can estimate the functional Jε above to
obtain

Jε
(
uε,uεt

) ≤ 1
2
∥∥(uε,uεt)∥∥2

X1/2
ε ×X0

ε
+
b

2
∥∥uε∥∥L2(Ω)

∥∥uεt∥∥L2(Ω) −
∫
Ω
F
(
uε
)

≤ 3
4
∥∥(uε,uεt)∥∥2

X1/2
ε ×X0

ε
+C

∫
Ω

(∣∣uε∣∣p+1 +
∣∣uε∣∣2 +

∣∣uε∣∣) (3.26)

≤ C∥∥(uε,uεt)∥∥2
X1/2
ε ×X0

ε
+C ∀t ≥ 0. (3.27)

This will follow easily after an application of Hölder’s inequality, an
adequent Young’s inequality, and the Nirenberg-Gagliardo’s inequality
[1, 8]

‖u‖Lp+1(Ω) ≤ C‖u‖αH1(Ω)‖u‖
(1−α)
L2(Ω) for α =

N

2
− N

p+ 1
. (3.28)

In fact, since p < 1 + 2/N, this implies α(p + 1) < 1. Hence raising both
sides of the above inequality (3.28) to the power p + 1 and using the
Young inequality ab ≤ (1/s)as + (1/s′)bs

′
with a,b ≥ 0, s = 2/α(p+ 1) > 1

such that 1/s+ 1/s′ = 1, we estimate the first term of the second sum in
(3.26). But since this is not as immediate because

s′
(1−α)(p+ 1)

2
�= 1, (3.29)

we have to choose some ϑ > 1 such that

α(p+ 1)
2

+
(1−α)(p+ 1)

2ϑ
= 1,

(1−α)(p+ 1)
2ϑ

s′ = 1, (3.30)

which yields ϑ = (1−α)(p+ 1)/(2−α(p+ 1)). Thus, after expressing

∫
Ω
|u|p+1 ≤ C

(∫
Ω
|∇u|2 +

∫
Ω
|u|2

)α(p+1)/2(∫
Ω
|u|2/ϑ

)(1−α)(p+1)ϑ/2

,

(3.31)

it is possible to apply Young’s inequality successively to furnish

∫
Ω
|u|p+1 ≤ 2

(∫
Ω
|∇u|2 +

∫
Ω
|u|2

)
+C. (3.32)
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The following term of the sum in (3.26) needs not be estimated, while
the last estimates easily as

∫
Ω

∣∣uε∣∣ ≤ |Ω|1/2∥∥uε∥∥L2(Ω) ≤
1
2
∥∥uε∥∥2

L2(Ω) +
|Ω|
2

(3.33)

by virtue of Hölder and Young inequalities. Finally, in the last estimate
(3.27), the constant C ≥ 0 is the maximum of the resulting constants of
the computations following from (3.26).

Now, with (3.27) in (3.23), we obtain

dJε
(
uε,uεt

)
dt

≤ −bC
8
Jε
(
uε,uεt

)
+C. (3.34)

Consequently, solving this differential inequality, we find for t ≥ 0 that

Jε
(
uε,uεt

) ≤ e−(bC/8)tJε
(
uε0,u

ε
1

)
+C

(
1− e−(bC/8)t). (3.35)

It follows again, by (3.27) and the hypotheses on the initial data, taking
(3.25) into account, that

limsup
t→∞

∥∥(uε,uεt)∥∥2
X1/2
ε ×X0

ε

≤ limsup
t→∞

{
e−(bC/8)tJε

(
uε0,u

ε
1

)
+C

(
1− e−(bC/8)t)}+C ≤ C

(3.36)

and the first assertion is proved.
To complete the proof, we observe in (3.18) that when b = 0 we have

the classical Lyapunov functional. Moreover, from the second estimate
in (3.19), we readily see for any solution (uε,uεt ) of (1.1) through (uε0,u

ε
1)

that

dJε
(
uε,uεt

)
dt

= −β
∫
Ω

∣∣uεt ∣∣2 ≤ 0 =⇒ Jε
(
uε,uεt

) ≤ Jε(uε0,uε1) (3.37)

for all t ≥ 0. Next, using (3.27), we find

∫∞

0

∥∥uεt∥∥2
L2(Ω) ≤ 2Jε

(
uε0,u

ε
1

) ≤ Cρ+C, (3.38)

and the proof of the theorem is concluded. �

Following results in [5, 6, 7] and references therein, it is easy to deduce
the following corollary from the foregoing theorem (Theorem 3.4).
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Corollary 3.5. There exists a global compact attractor Aε ⊂ X1/2
ε ×X0

ε of
(1.1).

The proof we give below is similar to the one found in [5]. Its advan-
tage lies in that we can obtain compactness of the attractor by a density
argument. Moreover, in (1.1) we are considering an even much simpler
linear damping term.

Proof. Our argument runs as follows. Consider problem (1.1) for suffi-
ciently regular data dε,bε ∈ C1, (uε0,u

ε
1) ∈ D = C∞

0 (Ω), and let uε = vε +wε

be the unique strong solution such that

vεtt + βv
ε
t +L

εvε = 0, vε(0) = uε0, vεt (0) = u
ε
1,

wε
tt + βw

ε
t +L

εwε = f
(
uε
)
, wε(0) =wε

t (0) = 0.
(3.39)

Then, in the setting of Theorem 3.4, if we consider the equation in wε

and let p = r/q > 1 for some r ≥ (2N + 4)/N fixed, since the inclusions
H1(Ω) ↪→ Ls(Ω) are compact, for s ≥ 1 satisfying in N ≥ 3 the condition
given below, we have from [9, Chapter I.5] that the imbeddings

L∞(0,T,H1(Ω)
)∩W1,∞(0,T,L2(Ω)

)
Lm

(
0,T,Ls(Ω)

)
(3.40)

are also compact for any 1 < m <∞, 1 ≤ s < 2N/(N − 2). Thus, the non-
linearity

f : Lr
(
QT

) �→ Lq
(
QT

)
(3.41)

is well defined and compact in LNr/(N+2)(QT). Further, it is easy to see
from the energy associated that the mapping

LNr/(N+2)(QT

) � f(uε) �−→ (
wε,wε

t

) ∈X1/2
ε ×X0

ε (3.42)

is continuous. On the other hand, using the semigroup (vε(t),vεt (t)) =
Tε(t)(vε0,v

ε
1), t ≥ 0, we have

∥∥(vε,vεt )∥∥X1/2
ε ×X0

ε
≤Me−(β/2)t∥∥(vε0,vε1)∥∥X1/2

ε ×X0
ε
, ∀t ≥ 0, (3.43)

with

β

2
= Re


β±

√
β2 −µε1
2


 , (3.44)
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where µε1 ∈ σ(Lε) is the first eigenvalue to the problem Lεψ = µψ, ψ ∈
H1(Ω).

Next, set Aε = ∩t≥0Tε(t)D with Tε(t)D def= (uε(t),uεt (t)) being the strong
solution of (1.1) for regular data (uε0,u

ε
1) ∈ D. Then, clearly Aε is a closed

set in X1/2
ε ×X0

ε and, from the above, is compact. Thus, by density we
have a global compact attractor Aε = ∩t≥0Tε(t)B in X1/2

ε ×X0
ε , where B

denotes an absorbing set for (1.1), and the proof of the corollary is com-
plete. �

3.2. Large diffusivity limiting problem.

We will now complete our study of the large diffusivity asymptotic be-
haviour of the solutions to (1.1).

Theorem 3.6. Let (uε,uεt ) denote the solution to (1.1) and let (uΩ, u̇Ω) be such
that

üΩ + βu̇Ω +
( |Γ|
|Ω| −

∫
Γ
b+λ

)
uΩ = hΩ(u),

(
u0
Ω,u

1
Ω

) ∈ R
2, (3.45)

where hΩ(u) = −∫Ω f(u). Assume that the hypotheses in Theorem 3.4 hold and
that uε1 → u1

Ω strongly in L2(Ω) as ε→ 0. Then for all t ≥ 0,

(
uε,uεt

) −→ (
uΩ, u̇Ω

)
strongly in X1/2

ε ×X0
ε , (3.46)

as ε → 0. In particular, the family of attractors {Aε ∪A}ε>0, where A is a
global attractor for (3.45), verifies

lim
ε→0

sup
(uε,uεt )∈Aε

inf
(uΩ,u̇Ω)∈A

∥∥(uε,uεt)− (
uΩ, u̇Ω

)∥∥
X1/2
ε ×X0

ε
= 0; (3.47)

in other words, it is upper semicontinuous in ε = 0.

Proof. Consider the energy identity

1
2
∥∥(uε,uεt)∥∥2

X1/2
ε ×X0

ε
+ β

∫
QT

∣∣uεt ∣∣2

=
∫
QT

f
(
uε
)
uεt +

1
2
∥∥(uε0,uε1)∥∥2

X1/2
ε ×X0

ε
.

(3.48)
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Since f(uε)∈ Lq(QT) and uεt ∈ L∞(0,T,L2(Ω)) ⊂ L∞(0,T,Lq
′
(Ω)), we have,

using the Hölder’s inequality and Young’s inequality (2.7), that

∣∣∣∣
∫
QT

f
(
uε
)
uεt

∣∣∣∣ ≤ 4C
∥∥f(uε)∥∥2

Lq(QT )
+

1
4
∥∥uεt∥∥2

L∞(0,T,L2(Ω)). (3.49)

Consequently, in (3.48), we obtain

∥∥(uε,uεt)∣∣2
X1/2
ε ×X0

ε
+ β

∫
QT

∣∣uεt ∣∣2

≤ C(∥∥f(uε)∥∥2
Lq(QT )

+
∥∥(uε0,uε1)∥∥2

X1/2
ε ×X0

ε

)
.

(3.50)

On the other hand, the Nirenberg-Gagliardo’s inequality (3.28), with
r ≥ (2N + 4)/N, implies that f(uε) ∈ Lq(QT) is bounded in norm for all
ε > 0 since, using the coercive estimate (1.5), we have ‖uε‖2

X1/2
ε

→ ∞ as
ε→ 0. Therefore, from (3.50), we have the convergence including (2.10).
Moreover, using (3.40) yields

f
(
uε
) −→ f(v) strongly in LNr/(N+2)(QT

)
, (3.51)

as ε→ 0.
It now suffices to observe that, by the uniform boundedness in norm

for ε > 0 of the initial data, we have uε0 → u0
Ω strongly in X1/2

ε , as ε →
0, and we can apply the second part of Theorem 2.2 to obtain that the
limit (v, v̇) = (uΩ, u̇Ω) is strong in YT and verifies (3.45) in the sense of
distributions for all t ≥ 0, which proves (3.46).

We proceed to observe that (3.16) also holds in (3.45). Hence, the
finite-dimensional equation has a compact attractor A ⊂ R

2, and since
the above limiting process remains true on the family of attractors {Aε ∪
A}ε, we have, using [6, Section 4.10.2, page 165], that the orbits on these
attractors satisfy (3.47) and the proof is complete. �

Finally, in retrospect, in the given framework to (1.1), it is evident that
(3.47) implies the long-time dynamics of the semilinear wave equation
(1.1) with large diffusion taking place in all parts of the spatial domain
Ω, and it is essentially close to the one described by the second-order
ordinary differential equation (3.45).

Although it is clear that under the additional hypothesis on the data
in Remark 2.3 we have

lim
ε→0

∫
Ω
dε(x)

∣∣∇uε∣∣2 = 0, ∀t ≥ 0, (3.52)
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the regularity of the data to (1.1) does not allow one to obtain a fine ex-
ponential decay estimate of the above quantity as in the parabolic case
studied in [4]. This quantity (3.52) tells us that in the given model (1.1)
spatial homogenization of solutions to a constant function in space oc-
curs sufficiently rapid when (1.4) is experienced. In other words, if we
view the energy functional

Eε(t) =
∥∥(uε,uεt)∥∥2

X1/2
ε ×X0

ε
+ β

∫
QT

∣∣uεt ∣∣2 (3.53)

as expressing spatial heterogeneities of the solutions to problem (1.1)
(see, e.g., [10]), then (1.4) implies that these are eliminated sufficiently
rapid.
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