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We consider the quasistatic Signorini’s contact problem with damage
for elastic-viscoplastic bodies. The mechanical damage of the material,
caused by excessive stress or strain, is described by a damage function
whose evolution is modeled by an inclusion of parabolic type. We pro-
vide a variational formulation for the mechanical problem and sketch a
proof of the existence of a unique weak solution of the model. We then in-
troduce and study a fully discrete scheme for the numerical solutions of
the problem. An optimal order error estimate is derived for the approx-
imate solutions under suitable solution regularity. Numerical examples
are presented to show the performance of the method.

1. Introduction

We consider a mathematical model for a quasistatic process of friction-
less contact between an elastic-viscoplastic body and an obstacle within
the framework of small deformation theory. The contact is modeled with
the classical Signorini’s conditions in a form with a gap function. The
effect of damage due to mechanical stress or strain is included in the
model. Such situations are common in many engineering applications
where the forces acting on the system vary periodically, leading to the
appearance and growth of microcracks which may deteriorate the mech-
anism of the system. Because of the importance of the safety issue of me-
chanical equipments, considerable effort has been devoted to modeling
and numerically simulating damage.

Early models for mechanical damage derived from thermomechan-
ical considerations appeared in [15, 16], where numerical simulations
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were included. One-dimensional damage problems have been studied
in [13, 14]. Recently, the existence of weak solutions of viscoelastic prob-
lems with friction and damage have been provided in [20, 27]. A qua-
sistatic frictionless contact problem for elastic-viscoplastic materials with
normal compliance and damage was studied in [4].

In the present paper, we consider a rate-type elastic-viscoplastic ma-
terial with constitutive relation

σ̇ = Eε(u̇) +G
(
σ,ε(u),β

)
, (1.1)

where σ represents the stress tensor field, u denotes the displacement
field, and ε(u) is the linearized strain tensor field. Here, E is a fourth-
order tensor, G is a nonlinear constitutive function, and β is the damage
field. The latter is related to the inelastic part of the stress and its values
are restricted to the interval [0,1]. When β = 1, the material is undam-
aged, while the value β = 0 indicates the stage of complete damage, and
for 0 < β < 1, there is partial damage. In (1.1) and everywhere in what fol-
lows, the dot above a variable represents the time derivative. Note that
for particular forms of the function G, the constitutive law (1.1) may de-
scribe a viscoelastic behavior.

Rate-type viscoplastic constitutive laws of the form (1.1) in which the
function G does not depend on β were considered by many authors, see
for instance, [8, 23] and the references therein. Frictionless contact prob-
lems for such kind of materials were studied in [10, 12, 22, 28]. A fric-
tionless contact problem for materials of the form (1.1) in which β is an
internal state variable whose evolution is described by an ordinary dif-
ferential equation has been recently considered in [11].

One of the traits of novelty of this paper consists in the fact that, fol-
lowing [15, 16], the evolution of the microscopic cracks responsible for
the damage is modeled by the following differential inclusion:

β̇−κ�β + ∂ψK(β) � φ
(
σ,ε(u),β

)
. (1.2)

In (1.2) and below, κ > 0 is a constant, ∂ψK denotes the subdifferential
of the indicator function ψK of K, which represents the set of admissible
damage functions satisfying 0 ≤ β ≤ 1, and φ is a given constitutive func-
tion which describes damage sources in the system. In [13, 14, 15, 16],
the damage was assumed irreversible and therefore the condition β̇ ≤ 0
was imposed. In this paper, we assume that the material may recover
from damage and cracks may close, and thus, we do not impose this
restriction. In [15, 16], the damage-source function was chosen to be un-
bounded when β→ 0, a condition which is not allowed under our as-
sumptions on φ. Therefore, we may consider the global solution, which
we establish below for our problem as local solution of a problem with
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the damage source used in [15, 16], valid as long as an inequality of the
form β ≥ β∗ > 0 holds.

Our purpose of this paper is threefolds. First, we provide a variational
analysis of the mechanical problem and briefly show the existence of a
unique weak solution for the model. We then introduce a fully discrete
scheme and derive error estimates. Finally, we report some numerical re-
sults on the performance of the numerical method considered. Literature
on the study of variational inequalities is rather extensive, see, for exam-
ple, the monographs [1, 18, 24]. In particular, some results on numerical
analysis of variational inequalities we use here can be found in [19, 21].

The rest of the paper is organized as follows. In Section 2, we present
the mechanical problem and provide its variational analysis including
an existence and uniqueness result, Theorem 2.3. The proof of Theo-
rem 2.3 is based on classical results of elliptic and parabolic variational
inequalities and Banach fixed point theorem. In Section 3, we analyze a
fully discrete scheme for the problem. We use the finite-element method
to discretize the spatial domain and a backward Euler finite difference
to discretize the time derivative. We obtain an optimal order error es-
timate under appropriate regularity assumptions on the exact solution
and data. Finally, in Section 4, we give some numerical examples to show
the performance of the scheme.

2. Mechanical problem and variational formulation

The physical setting is as follows. A viscoplastic body occupies the do-
main Ω ⊂ R

d (d = 1,2,3 in applications) with outer Lipschitz surface Γ
that is divided into three disjoint measurable parts Γ1, Γ2, and Γ3 such
that meas(Γ1) > 0. Let [0,T] be the time interval of interest. The body
is clamped on Γ1, a volume force of density f0 acts in Ω and surface
tractions of density f2 act on Γ2. The functions f0 and f2 can depend on
the time variable. The body may come in frictionless contact on Γ3 with
an obstacle, the so-called foundation. We assume that the foundation is
rigid and therefore we model the contact with the classical Signorini’s
conditions in a form with a gap function. Finally, we use (1.1) and (1.2)
to describe the viscoplastic behaviour of the material. Then, the classical
form of the mechanical problem is as follows.

Problem 2.1. Find a displacement field u : Ω × [0,T] → R
d, a stress field

σ : Ω× [0,T]→ Sd, and a damage field β : Ω× [0,T]→ R such that

σ̇ = Eε(u̇) +G
(
σ,ε(u),β

)
in Ω× (0,T), (2.1)

β̇−κ�β + ∂ψK(β) � φ
(
σ,ε(u),β

)
in Ω× (0,T), (2.2)

Divσ + f0 = 0 in Ω× (0,T), (2.3)
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u = 0 on Γ1 × (0,T), (2.4)

σν = f2 on Γ2 × (0,T), (2.5)

uν ≤ g, σν ≤ 0, σν
(
uν − g

)
= 0, στ = 0 on Γ3 × (0,T), (2.6)

∂β

∂ν
= 0 on Γ× (0,T), (2.7)

u(0) = u0, σ(0) = σ0, β(0) = β0 in Ω. (2.8)

Here, Sd denotes the space of second-order symmetric tensors on R
d,

(2.3) represents the equilibrium equation in which Div σ denotes the
divergence of the stress, while (2.4) and (2.5) are the displacement and
traction boundary conditions, respectively. In contact conditions (2.6),
we used uν, σν, and στ to denote the normal displacement, the normal
stress, and the tangential stress, respectively, and g represents the initial
gap between the potential contact surface Γ3 and the foundation, mea-
sured along the outward normal vector ν to Γ. The fourth relation in
(2.6) indicates that the friction force on the contact surface vanishes, that
is, the contact is frictionless. Equation (2.7) describes the homogeneous
Neumann boundary condition for the damage field which we use here
for simplicity, according to [20, 27]. Finally, in (2.8), u0, σ0, and β0 are the
initial data for the displacement, stress, and damage field, respectively.

We introduce the notation to be used in the rest of the paper. Further
details can be found in [23, 24, 26]. In the sequel, “·” and | · | represent the
inner product and the Euclidean norm on both Sd and R

d, respectively,
and we use the following spaces:

H =
[
L2(Ω)

]d
, Q =

{
σ =
(
σ ij

)
| σ ij = σji ∈ L2(Ω)

}
,

H1 =
[
H1(Ω)

]d
, Q1 =

{
σ ∈Q | σ ij,j ∈H

}
.

(2.9)

Here and below, i, j = 1, . . . ,d, summation over repeated indices is im-
plied, and the index that follows a comma indicates a partial derivative
while H, Q, H1, and Q1 are real Hilbert spaces endowed with the inner
products given by

(u,v)H =
∫
Ω
uivi dx, (σ,τ)Q =

∫
Ω
σijτij dx,

(u,v)H1 = (u,v)H +
(
ε(u),ε(v)

)
Q,

(σ,τ)Q1 = (σ,τ)Q + (Divσ,Divτ)H,

(2.10)



J. R. Fernández and M. Sofonea 91

respectively. Here ε : H1 →Q and Div : Q1 →H are the deformation and
divergence operators

ε(v) =
(
εij(v)

)
, εij(v) =

1
2
(
vi,j +vj,i

)
, Divσ =

(
σ ij,j

)
. (2.11)

The associated norms on the spaces H, Q, H1, and Q1 are denoted by
| · |H , | · |Q, | · |H1 , and | · |Q1 , respectively.

Since the boundary Γ is Lipschitz continuous, the unit outward nor-
mal vector ν is defined a.e. on Γ. For v ∈H1, we again write v for the
trace γv of v on Γ, and we denote by vν and vτ the normal and tangential
components of v on the boundary given by vν = v · ν and vτ = v − vνν.
For a regular (say C1) tensor field σ : Ω→ Sd, we define its normal and
tangential components by σν = (σν) · ν and στ = σν − σνν and we recall
that the following Green’s formula holds:

(
σ,ε(v)

)
Q + (Divσ,v)H =

∫
Γ
σν · vda, ∀v ∈H1. (2.12)

Let V denote the closed subspace of H1 defined by

V =
{

v ∈H1 | v = 0 on Γ1
}
. (2.13)

Since meas(Γ1) > 0, Korn’s inequality holds that there exists CK > 0 de-
pending only on Ω and Γ1 such that

∣∣ε(v)∣∣Q ≥ CK|v|H1 , ∀v ∈ V. (2.14)

A proof of Korn’s inequality may be found in [25, page 79]. On V , we
consider the inner product given by

(u,v)V =
(
ε(u),ε(v)

)
Q, ∀u,v ∈ V, (2.15)

and let | · |V be the associated norm, that is, |v|V = |ε(v)|Q for v ∈ V . It
follows that | · |H1 and | · |V are equivalent norms on V and therefore (V, | ·
|V ) is a real Hilbert space.

Denote by U the convex subset of admissible displacements defined
by

U =
{

v ∈ V | vν ≤ g on Γ3
}
. (2.16)

If X1 and X2 are real Hilbert spaces, then X1 ×X2 denotes the product
space which is endowed with the canonical inner product (·, ·)X1×X2 . Fi-
nally, if X is a real Hilbert space, we denote by | · |X the norm on X. For
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T > 0, we use the standard notation for Lp(0,T ;X) and Sobolev spaces
Wk,p(0,T ;X), k ∈ N, 1 ≤ p ≤∞.

In the study of the mechanical Problem 2.1, we assume that the elas-
ticity tensor E = (Eijkh) : Ω×Sd → Sd satisfies

Eijkh ∈ L∞(Ω),

Eσ · τ = σ · Eτ , ∀σ,τ ∈ Sd, a.e. in Ω,

Eσ ·σ ≥ α|σ|2, ∀σ ∈ Sd, for some α > 0.

(2.17)

The viscoplastic function G : Ω×Sd ×Sd ×R → Sd satisfies

(a) There exists L > 0 such that∣∣G(x,σ1,ε1,β1
)
−G
(
x,σ2,ε2,β2

)∣∣ ≤ L(∣∣σ1 −σ2
∣∣+ ∣∣ε1 − ε2

∣∣+ ∣∣β1 − β2
∣∣),

∀σ1,σ2,ε1,ε2 ∈ Sd, β1,β2 ∈ R, a.e. x ∈Ω,

(b) x �−→G(x,σ,ε,β) is a Lebesgue measurable function on Ω,

∀σ,ε ∈ Sd, β ∈ R,

(c) x �−→G(x,0,0,0) ∈Q.
(2.18)

The damage source function φ : Ω×Sd ×Sd ×R → R satisfies

(a) There exists L̃ > 0 such that∣∣φ(x,σ1,ε1,β1
)
−φ
(
x,σ2,ε2,β2

)∣∣ ≤ L̃(∣∣σ1 −σ2
∣∣+ ∣∣ε1 − ε2

∣∣+ ∣∣β1 − β2
∣∣),

∀σ1,σ2,ε1,ε2 ∈ Sd, β1,β2 ∈ R, a.e. x ∈Ω,

(b) x �−→ φ(x,σ,ε,β) is a Lebesgue measurable function on Ω,

∀σ,ε ∈ Sd, β ∈ R,

(c) x �−→ φ(x,0,0,0) ∈ L2(Ω).
(2.19)

The body forces and surface tractions have the regularity

f0 ∈W1,2(0,T ;H), f2 ∈W1,2
(

0,T ;
[
L2(Γ2

)]d)
. (2.20)

The gap function g is such that

g ∈ L2(Γ3
)
, g(x) ≥ 0, a.e. x ∈ Γ3, (2.21)
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and the initial data satisfy

u0 ∈ V, σ0 ∈Q1, (2.22)(
σ0,ε

(
v−u0

))
Q ≥
(
f(0),v−u0

)
V , ∀v ∈U, (2.23)

β0 ∈H1(Ω), 0 < β∗ ≤ β0 ≤ 1, a.e. in Ω. (2.24)

Here, f : [0,T]→ V is the function defined by

(
f(t),v

)
V =
(
f0(t),v

)
H +
(
f2(t),v

)
[L2(Γ2)]d

, ∀v ∈ V, ∀t ∈ [0,T]. (2.25)

Notice that conditions (2.20) imply

f ∈W1,2(0,T ;V ). (2.26)

Let a : H1(Ω)×H1(Ω)→ R be the bilinear form

a(ξ,ψ) = κ
∫
Ω
∇ξ · ∇ψdx, ∀ξ,ψ ∈H1(Ω), (2.27)

and let K denote the set of admissible damage functions

K =
{
ξ ∈H1(Ω) | 0 ≤ ξ ≤ 1 in Ω

}
. (2.28)

By a standard procedure, we can derive the following variational for-
mulation of the mechanical Problem 2.1.

Problem 2.2. Find a displacement field u : [0,T]→V , a stress field σ :
[0,T]→Q1, and a damage field β : [0,T]→H1(Ω) such that

σ̇(t) = Eε
(
u̇(t)
)
+G
(
σ(t),ε

(
u(t)
)
,β(t)

)
, a.e. t ∈ (0,T), (2.29)

u(t) ∈U,
(
σ(t),ε

(
v−u(t)

))
Q ≥
(
f(t),v−u(t)

)
V ,

∀v ∈U, ∀t ∈ [0,T],
(2.30)

β(t) ∈K, a.e. t ∈ (0,T), (2.31)(
β̇(t), ξ − β(t)

)
L2(Ω) +a

(
β(t), ξ − β(t)

)
≥
(
φ
(
σ(t),ε

(
u(t)
)
,β(t)

)
, ξ − β(t)

)
L2(Ω),

∀ξ ∈K, a.e. t ∈ (0,T),

(2.32)

u(0) = u0, σ(0) = σ0, β(0) = β0 in Ω. (2.33)
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Concerning the well-posedness of Problem 2.2, we have the following
result.

Theorem 2.3. Assume (2.17), (2.18), (2.19), (2.20), (2.21), (2.22), (2.23), and
(2.24). Then there exists a unique solution (u,σ,β) of Problem 2.2 with the
regularity

u ∈W1,2(0,T ;V ), σ ∈W1,2(0,T ;Q1
)
,

β ∈W1,2(0,T ;L2(Ω)
)
∩L2(0,T ;H1(Ω)

)
.

(2.34)

Proof. The proof or Theorem 2.3 is based on fixed-point type arguments
similar to those used in [4] but with a different choice of the opera-
tors. Since the modifications are straightforward, we omit the details.
The main steps of the proof are stated as follows.

(i) For any η = (η1,η2) ∈ L2(0,T ;Q×L2(Ω)), let

z1
η(t) =

∫ t
0
η1(s)ds+σ0 −Eε

(
u0
)
. (2.35)

Then, z1
η ∈W1,2(0,T ;Q) and there exists a unique solution (uη,ση) of the

problem

ση(t) = Eε
(
uη(t)

)
+ z1

η(t), ∀t ∈ [0,T], (2.36)

u(t) ∈U,
(
ση(t),ε

(
v−u(t)

))
Q ≥
(
f(t),v−u(t)

)
V ,

∀v ∈U, ∀t ∈ [0,T],
(2.37)

uη(0) = u0, ση(0) = σ0. (2.38)

Moreover, the solution satisfies uη ∈W1,2(0,T ;V ) and ση ∈W1,2(0,T ;Q1).
(ii) For any η = (η1,η2) ∈ L2(0,T ;Q ×L2(Ω)), there exists a unique so-

lution βη of the problem

βη(t) ∈K, a.e. t ∈ (0,T), (2.39)(
β̇η(t), ξ − β(t)

)
L2(Ω) +a

(
βη(t), ξ − βη(t)

)
≥
(
η2(t), ξ − βη(t)

)
L2(Ω),

∀ξ ∈K, a.e. t ∈ (0,T),
(2.40)

βη(0) = β0. (2.41)

Moreover, the solution satisfies βη ∈W1,2(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)).
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(iii) Consider the Banach space X = L2(0,T ;Q×L2(Ω)) with the norm
| · |X given by

|η|2X =
∫T

0

(∣∣η1(s)
∣∣2
Q +
∣∣η2(s)

∣∣2
L2(Ω)

)
ds, ∀η =

(
η1,η2) ∈X, (2.42)

and define the operator Λ : X→X by

Λη(t) =
(
G
(
ση(t),ε

(
uη(t)

)
,βη(t)

)
,φ
(
ση(t),ε

(
uη(t)

)
,βη(t)

))
, (2.43)

for any η ∈ X, t ∈ [0,T]. Then, the operator Λ has a unique fixed point
η∗ ∈X.

(iv) Let η∗ = (η∗1,η∗2) ∈ X be the fixed point of Λ and denote u = uη∗ ,
σ = ση∗ , and β = βη∗ , where (uη∗ ,ση∗) is the solution of problem (2.36),
(2.37), and (2.38) for η = η∗ and βη∗ is the solution of problem (2.39),
(2.40), and (2.41) for η = η∗. Then, (u,σ,β) is the unique solution of Prob-
lem 2.2 which satisfies (2.34). �

We conclude by Theorem 2.3 that, under assumptions (2.17), (2.18),
(2.19), (2.20), (2.21), (2.22), (2.23), and (2.24), the mechanical problem
(2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), and (2.8) has a unique weak
solution (u,σ,β), with regularity (2.34).

3. Numerical approximation

We analyze in this section a fully discrete approximation scheme for
Problem 2.2. To this end, we suppose in the sequel that conditions (2.17),
(2.18), (2.19), (2.20), (2.21), (2.22), (2.23), and (2.24) hold. We consider
arbitrary finite-dimensional spaces V h ⊂ V and Qh ⊂Q, and let Kh ⊂ K
be a nonempty, finite-dimensional closed convex set. Here h > 0 is a dis-
cretization parameter and we assume that ε(V h) ⊂Qh. This assumption
is not a restriction for actual implementation of the method since, usu-
ally, V h and Qh are constructed to be finite-element spaces and V h con-
sists of continuous piecewise polynomials of a degree one higher than
that of Qh. Finally, denote by Uh ⊂ V h an approximation for the convex
set U for which we assume the following conformity condition:

Uh ⊂U. (3.1)

Let PQh :Q→Qh be the orthogonal projection operator defined through
the relation

(
PQhq,qh)

Q =
(
q,qh)

Q, ∀q ∈Q, qh ∈Qh. (3.2)
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The orthogonal projection operator is nonexpansive, that is,

∣∣PQhq
∣∣
Q ≤ |q|Q, ∀q ∈Q. (3.3)

This property will be used on several occasions.
We use a uniform partition of time interval [0,T] with the step-size k =

T/N and the nodes tn = nk for n = 0,1, . . . ,N. The extension of the discus-
sion here to the case of nonuniform partition does not present any diffi-
culty. For a continuous function z(t), we use the notation zn = z(tn). For
a sequence {zn}Nn=0, we denote δzn = (zn − zn−1)/k for the corresponding
divided difference. No summation is implied over the repeated index n.
In the rest of this section, c will denote positive constants which are in-
dependent of the discretization parameters h and k.

Let uh
0 ∈Uh, σh

0 ∈Qh, and βh0 ∈Kh be chosen to approximate the initial
values u0, σ0, and β0. A fully discrete approximation scheme for Prob-
lem 2.2 is the following problem.

Problem 3.1. Find uhk = {uhk
n }Nn=0 ⊂ Uh, σhk = {σhk

n }Nn=0 ⊂ Qh, and βhk =
{βhkn }Nn=0 ⊂Kh such that

uhk
0 = uh

0 , σhk
0 = σh

0 , βhk0 = βh0 , (3.4)

and for n = 1,2, . . . ,N,

δσhk
n = PQhEε

(
δuhk

n

)
+PQhG

(
σhk
n−1,ε

(
uhk
n−1

)
,βhkn−1

)
,(

σhk
n ,ε
(
vh −uhk

n

))
Q ≥
(
fn,vh −uhk

n

)
V , ∀vh ∈Uh,(

δβhkn ,ξ
h − βhkn

)
L2(Ω) +a

(
βhkn ,ξ

h − βhkn
)

≥
(
φ
(
σhk
n−1,ε

(
uhk
n−1

)
,βhkn−1

)
, ξh − βhkn

)
L2(Ω), ∀ξh ∈Kh.

(3.5)

By induction, we obtain that this problem is equivalent to

σhk
n = σhk

0 −PQhEε
(
uh

0

)
+PQhEε

(
uhk
n

)
+k

n∑
j=1

PQhG
(
σhk
j−1,ε

(
uhk
j−1

)
,βhkj−1

)
,

(3.6)

(
σhk
n ,ε
(
vh −uhk

n

))
Q ≥
(
fn,vh −uhk

n

)
V , ∀vh ∈Uh, (3.7)(

δβhkn ,ξ
h − βhkn

)
L2(Ω) +a

(
βhkn ,ξ

h − βhkn
)

≥
(
φ
(
σhk
n−1,ε

(
uhk
n−1

)
,βhkn−1

)
, ξh − βhkn

)
L2(Ω), ∀ξh ∈Kh.

(3.8)
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For given σhk
j−1, ε(uhk

j−1), β
hk
j−1, 1 ≤ j ≤ n, we can first determine βhkn from

(3.8) which has a unique solution by a classical result on elliptic varia-
tional inequalities. Combining (3.6) and (3.7), we have

(
Eε
(
uhk
n

)
,ε
(
vh −uhk

n

))
Q ≥
(
fn,vh −uhk

n

)
V −
(
σh

0 −Eε
(
uh

0

)
,ε
(
vh −uhk

n

))
Q

− k
n∑
j=1

(
G
(
σhk
j−1,ε

(
uhk
j−1

)
,βhkj−1

)
,ε
(
vh −uhk

n

))
Q,

∀vh ∈Uh.
(3.9)

By using classical results on variational inequalities (see, for instance,
[17, Chapter IV]), we see that (3.9) has a unique solution uhk

n ∈Uh. To
solve variational inequality (3.9) for uhk

n and variational inequality (3.8)
for βhkn , a penalty-duality algorithm can be used (see [2, 3]). Once uhk

n

is known, we can determine σhk
n from (3.6). So, an induction argument

shows that the fully discrete scheme has a unique solution. In the same
way, we obtain that variational inequality (3.8) has a unique solution
βhkn ∈Kh. We summarize this result as follows.

Theorem 3.2. Assume (2.17), (2.18), (2.19), (2.20), (2.21), (2.22), (2.23), and
(2.24). Then there exists a unique solution (uhk, σhk,βhk) of Problem 3.1.

Now, we proceed to derive error estimates for the discrete solution.
Integrating (2.29) at time t = tn, we obtain the following relations for the
solution of Problem 2.2 (n = 1, . . . ,N):

σn = σ0 −Eε
(
u0
)
+Eε

(
un

)
+
∫ tn

0
G
(
σ(s),ε

(
u(s)

)
,β(s)

)
ds, (3.10)(

σn,ε
(
v−un

))
Q ≥
(
fn,v−un

)
V , ∀v ∈U, (3.11)(

β̇n, ξ − βn
)
L2(Ω)+a

(
βn,ξ − βn

)
≥
(
φ
(
σn,ε

(
un

)
,βn
)
, ξ − βn

)
L2(Ω), ∀ξ∈K.

(3.12)

Subtracting (3.10) and (3.6), we find

σn −σhk
n = σ0 −σh

0 −
(
I −PQh

)
Eε
(
un −u0

)
−PQhEε

(
u0 −uh

0

)
+DG,n+PQhEε

(
un−uhk

n

)
+k

n∑
j=1

(
I−PQh

)
G
(
σj−1,ε

(
uj−1
)
,βj−1

)

+ kPQh

n∑
j=1

[
G
(
σj−1,ε

(
uj−1
)
,βj−1

)
−G
(
σhk
j−1,ε

(
uhk
j−1

)
,βhkj−1

)]
,

(3.13)
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where

DG,n =
∫ tn

0
G
(
σ(s),ε

(
u(s)

)
,β(s)

)
ds− k

n∑
j=1

G
(
σj−1,ε

(
uj−1
)
,βj−1

)
(3.14)

and I is the identity operator on Q. It can be verified that (cf. [5])

max
1≤n≤N

∣∣DG,n

∣∣
Q ≤ ck

(
|σ̇|L∞(0,T ;Q) + |u̇|L∞(0,T ;V ) + |β̇|L∞(0,T ;L2(Ω))

)
. (3.15)

Denote

ehkn =
∣∣un −uhk

n

∣∣2
V +
∣∣σn −σhk

n

∣∣2
Q +
∣∣βn − βhkn ∣∣2L2(Ω), n = 0,1, . . . ,N. (3.16)

From (3.13), we obtain

∣∣σn −σhk
n

∣∣
Q

≤ c
(∣∣σ0 −σh

0

∣∣
Q +
∣∣(I −PQh

)
Eε
(
un −u0

)∣∣
Q +
∣∣u0 −uh

0

∣∣
V +
∣∣DG,n

∣∣
Q

+ k
n∑
j=1

∣∣(I −PQh

)
G
(
σj−1,ε

(
uj−1
)
,βj−1

)∣∣
Q +
∣∣un −uhk

n

∣∣
V

+
n∑
j=1

k
[∣∣uj −uhk

j

∣∣
V +
∣∣σj −σhk

j

∣∣
Q +
∣∣βj − βhkj ∣∣L2(Ω)

])
,

(3.17)

where properties (2.17) and (2.18) have been used.
Taking now v = uhk

n in (3.11), we obtain

(
σn,ε

(
uhk
n −un

))
Q ≥
(
fn,uhk

n −un

)
V . (3.18)

Rewriting (3.7) in the following form:

(
σhk
n ,ε
(
vn −uhk

n

))
Q ≥
(
fn,vh −uhk

n

)
V +
(
σhk
n ,ε
(
un −vh

))
Q, ∀vh ∈Uh,

(3.19)

and subtracting the above two variational inequalities, we get

(
σn −σhk

n ,ε
(
un −uhk

n

))
Q ≤
(
fn,un − vh

)
V +
(
σn,ε

(
vh −un

))
Q

+
(
σhk
n −σn,ε

(
vh −un

))
Q, ∀vh ∈Uh.

(3.20)
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Since
(
PQhEε

(
un −uhk

n

)
,ε
(
un −uhk

n

))
Q

=
(
Eε
(
un −uhk

n

)
,ε
(
un −uhk

n

))
Q

+
((
PQh − I

)
Eε
(
un −uhk

n

)
,ε
(
un −uhk

n

))
Q

=
(
Eε
(
un −uhk

n

)
,ε
(
un −uhk

n

))
Q

+
((
PQh − I

)
Eε
(
un −uhk

n

)
,ε
(
un − vh

))
Q, ∀vh ∈ V h,

(3.21)

introducing (3.10) and (3.6) into (3.20), we obtain

(
Eε
(
un −uhk

n

)
,ε
(
un −uhk

n

))
Q

≤
(
fn,un − vh

)
V +
(
σn,ε

(
vh −un

))
Q

−
(
σn −σhk

n ,ε
(
vh −un

))
Q + c

∣∣un −uhk
n

∣∣
V

∣∣un − vh
∣∣
V

−
((
I −PQh

)
Eε
(
un −u0

)
,ε
(
un −uhk

n

))
Q −
(
σ0 −σh

0 ,ε
(
un −uhk

n

))
Q

−
(
DG,n −PQhEε

(
u0 −uh

0

)
,ε
(
un −uhk

n

))
Q

+ k
n∑
j=1

(
PQh

[
G
(
σj−1,ε

(
uj−1
)
,βj−1

)

−G
(
σhk
j−1,ε

(
uhk
j−1

)
,βhkj−1

)]
,ε
(
un −uhk

n

))
Q

+ k
n∑
j=1

((
I −PQh

)
G
(
σj−1,ε

(
uj−1
)
,βj−1

)
,ε
(
un −uhk

n

))
Q, ∀vh ∈Uh.

(3.22)

Thus, taking norms in the above inequality and using properties (2.17)
and (2.18), we obtain the following estimate:

∣∣un −uhk
n

∣∣2
V

≤ c
(∣∣un −vh

∣∣
V +
∣∣σn −σhk

n

∣∣
Q

∣∣un −vh
∣∣
V +
∣∣un −uhk

n

∣∣
V

∣∣un − vh
∣∣
V

+
∣∣σ0 −σh

0

∣∣
Q

∣∣un −uhk
n

∣∣
V +
∣∣DG,n

∣∣
Q

∣∣un −uhk
n

∣∣
V

+
∣∣u0 −uh

0

∣∣
V

∣∣un −uhk
n

∣∣
V

+

[
k

n∑
j=1

(∣∣uj −uhk
j

∣∣
V +
∣∣σj −σhk

j

∣∣
Q+
∣∣βj−βhkj ∣∣L2(Ω)

)]∣∣un −uhk
n

∣∣
V
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+
∣∣(I −PQh

)
Eε
(
un −u0

)∣∣
Q

∣∣un −uhk
n

∣∣
V

+

(
k

n∑
j=1

∣∣(I −PQh

)
G
(
σj−1,ε

(
uj−1
)
,βj−1

)∣∣
Q

)∣∣un −uhk
n

∣∣
V

)
.

(3.23)

Then, applying the inequality

ab ≤ δa2 +
1

4δ
b2, δ,a,b ∈ R, δ > 0 (3.24)

to (3.23), we obtain

∣∣un −uhk
n

∣∣2
V ≤ c

(∣∣un − vh
∣∣
V + δ0

∣∣σn −σhk
n

∣∣2
Q +
∣∣un − vh

∣∣2
V +
∣∣σ0 −σh

0

∣∣2
Q

+
∣∣DG,n

∣∣2
Q +
∣∣u0 −uh

0

∣∣2
V +
∣∣(I −PQh

)
Eε
(
un −u0

)∣∣2
Q

+ k2
n∑
j=1

ehkj +
n∑
j=1

k2∣∣(I −PQh

)
G
(
σj−1,ε

(
uj−1
)
,βj−1

)∣∣2
Q

)
,

(3.25)

where δ0 is a constant parameter assumed to be small enough.
Now using (3.8) and (3.12) with ξ = βhkn and ξh = ξhn, we have

(
δ
(
βn − βhkn

)
,βn − βhkn

)
L2(Ω)

+a
(
βn − βhkn ,βn − βhkn

)
≤
(
δβn − β̇n,βn − βhkn

)
L2(Ω)

+
(
δ
(
βn − βhkn

)
,βn − ξhn

)
L2(Ω) −

(
δβn,βn − ξhn

)
L2(Ω) −a

(
βn,βn − ξhn

)
+
(
φ
(
σn,ε

(
un

)
,βn
)
,βn − ξhn

)
L2(Ω) +a

(
βn − βhkn ,βn − ξhn

)
+
(
φ
(
σn,ε

(
un

)
,βn
)
−φ
(
σhk
n−1,ε

(
uhk
n−1

)
,βhkn−1

)
, ξhn − βhkn

)
L2(Ω).

(3.26)

Then, we bound the first term from below by

(
δ
(
βn − βhkn

)
,βn − βhkn

)
L2(Ω)

≥ 1
2k

(∣∣βn − βhkn ∣∣2L2(Ω) −
∣∣βn−1 − βhkn−1

∣∣2
L2(Ω)

)
.

(3.27)
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Using this bound, replacing n by j, and making the summation over
j = 1,2, . . . ,n, after some algebraic manipulations, we obtain

∣∣βn − βhkn ∣∣2L2(Ω) + k
n∑
j=1

∣∣∇(βj − βhkj )∣∣2[L2(Ω)]d

≤ c
{∣∣u0 −uh

0

∣∣2
V +
∣∣σ0 −σh

0

∣∣2
Q +
∣∣β0 − βh0

∣∣2
L2(Ω) +

∣∣β1 − ξh1
∣∣2
L2(Ω)

+ k
n∑
j=1

∣∣βj − βhkj ∣∣2L2(Ω) + k
n−1∑
j=1

(∣∣uj −uhk
j

∣∣2
V +
∣∣σj −σhk

j

∣∣2
Q

)

+ k2 + k
n∑
j=1

∣∣δβj − β̇j∣∣2L2(Ω) + k
n∑
j=1

∣∣∇(βj − ξhj )∣∣2[L2(Ω)]d

+ k
n∑
j=1

∣∣βj − ξhj ∣∣2L2(Ω) +
∣∣βn − ξhn∣∣2L2(Ω)

+
1
k

n−1∑
j=1

∣∣(βj+1 − ξhj+1

)
−
(
βj − ξhj

)∣∣2
L2(Ω)

+ k
n∑
j=1

∣∣φ(σj ,ε
(
uj

)
,βj
)
− δβj +κ∆βj

∣∣
L2(Ω) ·

∣∣βj − ξhj ∣∣L2(Ω)

}
.

(3.28)

We now combine estimates (3.17), (3.25), (3.28), and (3.15). Using in-
equality (3.24), after some calculus, we obtain

∣∣un −uhk
n

∣∣2
V +
∣∣σn −σhk

n

∣∣2
Q +
∣∣βn − βhkn ∣∣2L2(Ω) + k

n∑
j=1

∣∣∇(βj − βhkj )∣∣2[L2(Ω)]d

≤ c
{∣∣u0 −uh

0

∣∣2
V +
∣∣σ0 −σh

0

∣∣2
Q +
∣∣β0 − βh0

∣∣2
L2(Ω) +

∣∣β1 − ξh1
∣∣2
L2(Ω)

+
n∑
j=1

k2ehkj−1 +
∣∣un −vh

∣∣2
V +
∣∣un − vh

∣∣
V + k2 + k

+
n∑
j=1

k2∣∣(I −PQh

)
G
(
σj−1,ε

(
uj−1
)
,βj−1

)∣∣2
Q + k

n∑
j=1

∣∣δβj − β̇j∣∣2L2(Ω)

+ k
n∑
j=1

∣∣∇(βj − ξhj )∣∣2[L2(Ω)]d + k
n∑
j=1

∣∣βj − ξhj ∣∣2L2(Ω) +
∣∣βn − ξhn∣∣2L2(Ω)
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+
1
k

n−1∑
j=1

∣∣(βj+1 − ξhj+1

)
−
(
βj − ξhj

)∣∣2
L2(Ω) +

∣∣(I −PQh

)
Eε
(
un −u0

)∣∣2
Q

+ k
n∑
j=1

∣∣φ(σj ,ε
(
uj

)
,βj
)
− δβj +κ∆βj

∣∣
L2(Ω) ·

∣∣βj − ξhj ∣∣L2(Ω)

}
.

(3.29)

We will now use the following Gronwall’s inequality (see [21]).

Lemma 3.3. Assume that {gn}Nn=0 and {en}Nn=0 are two sequences of nonnega-
tive numbers satisfying

en ≤ cgn + ck
n−1∑
j=1

ej . (3.30)

Then

max
1≤n≤N

en ≤ c max
0≤n≤N

gn. (3.31)

Applying Lemma 3.3 to inequality (3.29), we derive the following
result.

Theorem 3.4. Assume that the hypothesis of Theorem 2.3 hold and let (u,σ,β)
and (uhk,σhk,βhk) be the solutions of Problems 2.2 and 3.1, respectively. Then,
we have the following error estimate:

max
1≤n≤N

{∣∣un −uhk
n

∣∣2
V +
∣∣σn −σhk

n

∣∣2
Q +
∣∣βn − βhkn ∣∣2L2(Ω)

}

+ k
N∑
j=1

∣∣∇(βj − βhkj )∣∣2[L2(Ω)]d

≤ c
{
e0 +

∣∣β1 − ξh1
∣∣2
L2(Ω) + k

2 + max
1≤n≤N

∣∣(I −PQh

)
Eε
(
un −u0

)∣∣2
Q

+
N∑
j=1

k2∣∣(I −PQh

)
G
(
σj−1,ε

(
uj−1
)
,βj−1

)∣∣2
Q

+ max
1≤n≤N

[
inf

vh∈Uh

{∣∣un − vh
∣∣2
V +
∣∣un − vh

∣∣
V

}
+En

(
ξhn
)]}

,

(3.32)
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for any ξhn ∈Kh, n = 0,1, . . . ,N where

e0 =
∣∣u0 −uh

0

∣∣2
V +
∣∣σ0 −σh

0

∣∣2
Q +
∣∣β0 − βh0

∣∣2
L2(Ω),

En
(
ξhn
)
=
∣∣βn − ξhn∣∣2L2(Ω)

+ k
n∑
j=1

(∣∣δβj − β̇j∣∣2L2(Ω) +
∣∣∇(βj − ξhj )∣∣2[L2(Ω)]d +

∣∣βj − ξhj ∣∣2L2(Ω)

)

+
1
k

n−1∑
j=1

∣∣(βj+1 − ξhj+1

)
−
(
βj − ξhj

)∣∣2
L2(Ω)

+ k
n∑
j=1

∣∣φ(σj ,ε
(
uj

)
,βj
)
− δβj +κ∆βj

∣∣
L2(Ω) ·

∣∣βj − ξhj ∣∣L2(Ω).

(3.33)

Inequality (3.32) is the basis for deriving error estimates. For instance,
consider an approximation by using the finite-element method. We as-
sume the following solution regularity:

u ∈W1,∞(0,T ;V )∩C
(
[0,T];

[
H2(Ω)

]d)
,

uν ∈ L∞(0,T ;H2(Γ3
))
,

(3.34)

σν ∈ L∞(0,T ;L2(Γ3
))
, (3.35)

β ∈ C
(
[0,T];H2(Ω)

)
∩H2(0,T ;L2(Ω)

)
,

β̇ ∈ L2(0,T ;H1(Ω)
)
.

(3.36)

For simplicity, suppose that Ω is a polyhedral domain and let Th be a
regular finite-element partition of the domain Ω, compatible with the
boundary splitting Γ = Γ1 ∪ Γ2 ∪ Γ3. Let Xh

1 and Xh
0 be the correspond-

ing finite-element spaces of continuous piecewise linear functions and
piecewise constants, respectively. Then, we define V h = [Xh

1 ]
d ∩V , Qh =

[Xh
0 ]

d×d, and Kh = Xh
1 ∩K. We use the same symbol Πh for either the

standard finite-element interpolation operator (see [6]) when the func-
tion to be interpolated is continuous, or the Clément’s interpolation op-
erator (see [7]) when the function to be interpolated is not continuous.
We choose the initial values for the fully discrete scheme to be

uh
0 = Πhu0, σh

0 = Πhσ0, βh0 = Πhβ0, (3.37)
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and moreover, we consider the following approximation for the convex
subset Uh:

Uh =
{

vh ∈ V h; vhν ≤ gh on Γ3
}
. (3.38)

Here, gh is the piecewise Lagrange interpolation function of the gap
function g, assumed to be concave in order to verify (3.1).

Then, using arguments similar to those in [20], we obtain the follow-
ing result.

Theorem 3.5. Assume that the conditions stated in Theorem 2.3 hold and the
solution regularity (3.34), (3.35), and (3.36). Then, choosing the initial data for
the fully discrete scheme by (3.37), we have the following optimal order error
estimate:

max
0≤n≤N

{∣∣un −uhk
n

∣∣
V +
∣∣σn −σhk

n

∣∣
Q +
∣∣βn − βhkn ∣∣L2(Ω)

}

+
[
k

N∑
j=1

∣∣∇(βj − βhkj )∣∣2[L2(Ω)]d

]1/2

≤ c
(
k +h

)
.

(3.39)

Finally, we remark that error estimate (3.39) is only a sample result,
obtained under the above regularity conditions. If the regularity condi-
tions are different, the error estimate needs to be changed accordingly.

4. Numerical results

In order to verify the performance of the numerical method described in
Section 3, some numerical experiences have been done in test examples
including simulations in one and two dimensions. In this section, we
resume some of these numerical simulations.

4.1. A one-dimensional test example

We consider a viscoplastic rod Ω = (0,L) clamped at its left end x = 0
and submitted to the action of a body force of density f0(x,t) in the x-
direction (see Figure 4.1 ). A gap g exists between the right end x = L of
the rod and a rigid foundation. That is, we consider Problem 2.1 with the
data Ω = (0,L), Γ1 = {0}, Γ2 = ∅, and Γ3 = {L}. The viscoplastic constitu-
tive law (2.1) has the form

σ̇ = Eε(u̇) +G
(
σ,ε(u),β

)
, (4.1)
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gL

Γ3Ω

f0

Γ1

Figure 4.1. Contact problem between a bar and a rigid obstacle.

where E > 0 is the Young’s modulus of the material. We assume that the
function G is a version of the Perzyna’s law (see [9]), that is,

G
(
σ,ε(u),β

)
= − E

2λ
(
σ −PR(β)σ

)
, (4.2)

where λ > 0 is a viscosity constant and PR(β) is the projection operator
over the convex set R(β) defined as

R(β) =
{
τ ∈ R; |τ | ≤ βσ2

Y

}
. (4.3)

Here, σY is the uniaxial stress yield and β represents the damage func-
tion. Note that function (4.2) does not depend on the strain field and
satisfies condition (2.18) (see, e.g., [23, page 92]). When σ ∈ R(β), G(σ,
ε(u),β) = 0 and therefore (4.1) implies that only elastic deformations oc-
cur in the rod. When σ �∈ R(β), G(σ,ε(u),β) �= 0 and therefore plastic de-
formations occur in the rod. Thus, the rod Ω = (0,L) is divided at each
moment into two zones: the elastic zone (characterized by the condition
σ ∈ R(β)) and the plastic zone (characterized by the condition σ �∈ R(β)).
The boundaries of these zones are unknown a priori and depend on the
damage field β. From (4.3), it follows that the elastic zones decrease with
β since β1 ≤ β2 implyR(β1) ⊂ R(β2). This property models the effect of the
damage of the material. In particular, if β = 0, then R(β) = {0} and plastic
deformations occur for any stress σ �= 0.

We use in (2.2) the damage function

φ
(
σ,ε(u),β

)
= −2ε(u) (4.4)

which satisfies condition (2.19).
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A complete description of this problem is the following.

Problem 4.1. Find a displacement field u : [0,L]× [0,T]→ R, a stress field
σ : [0,L]× [0,T]→ R, and a damage field β : [0,L]× [0,T]→ R such that

σ̇ = Eε(u̇)− E

2λ
(
σ −PR(β)σ

)
in (0,L)× (0,T),

Divσ + f0 = 0 in (0,L)× (0,T),

β̇− k�β + ∂ψK(β) � −2ε(u) in (0,L)× (0,T),

u(0, t) = 0 for t ∈ (0,T),

σ(L,t) ≤ 0, u(L,t) ≤ g, σ(L,t)
(
u(L,t)− g

)
= 0 for t ∈ (0,T),

∂β

∂x
(L,t) = 0 for t ∈ (0,T),

u(0) = u0, σ(0) = σ0, β(0) = β0 in (0,L).

(4.5)

For the numerical computation, the following data have been consid-
ered:

L = 1m, T = 1s, E = 1N/m, λ = 100N · s/m,

σY = 1N/m, f0(x,t) = tN/m, g = 0.25m,

u0(x) = 0m, σ0(x) = 0N/m, β0(x) = 1.
(4.6)

The fully discrete scheme introduced in Section 3 was implemented
by using continuous piecewise linear elements for the space V h and the
set Kh, and piecewise constant functions for the space Qh. We used the
discretization parameters h = k = 0.01.

Our numerical results are plotted in Figures 4.2, 4.3, and 4.4. In Fig-
ure 4.2, the displacement and stress fields at several times (t = 0.2,0.4,0.6,
0.8,1 second) are shown. In Figure 4.3, the displacements and the stress
field at points x = 0.25,0.5,1 are drawn through the time. Finally, the
damage function at times t = 0.2,0.4,0.6,0.8,1 second as well as its evolu-
tion in time at points x = 0.25,0.5,1 are plotted in Figure 4.4.

4.2. A two-dimensional test problem

As a two-dimensional example of Problem 2.1, we consider the physical
situation described in Figure 4.5 during one second (i.e., T = 1second).
We assume the plane stress hypothesis and therefore Ω = (0,2)× (0,2) is
the cross section of a deformable three-dimensional body submitted to
the action of vertical body forces (assumed to be linearly increasing in
time). The body is clamped on Γ1 = (0,2)× {2} and it is in unilateral con-
tact with a rigid foundation on Γ3 = [0.8,1.2] × {0}. Finally, we suppose
that on Γ2 = Γ− (Γ1 ∪Γ3), the body is traction free.
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(a) Displacement fields at several times.
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(b) Stress fields at several times.

Figure 4.2. Problem 4.1: displacement and stress fields for different
time values.
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(a) Evolution of the displacement fields.
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(b) Evolution of the stress fields.

Figure 4.3. Problem 4.1: evolution in time of displacement and
stress fields for several points and elements.
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(a) Damage function at several times.
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(b) Evolution of the damage function.

Figure 4.4. Problem 4.1: damage function at different times and its
evolution in time for several points.
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f0

Rigid
body

Figure 4.5. Contact problem of a 2D viscoplastic body.

Figure 4.6. Deformed mesh at final time and initial boundary.

We use a constitutive law of the form (2.1). The plane stress hypothe-
sis allows us to define the elasticity tensor E by

(Eτ)αβ =
Eκ

1−κ2

(
τ11 + τ22

)
δαβ +

E

1+κ
ταβ, 1 ≤ α, β ≤ 2, (4.7)
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(b)

Figure 4.7. Von Mises stress norm and damage field at final time in
the deformed configuration.

where E is the Young’s modulus and κ the Poisson’s ratio of the material.
We take

G
(
σ,ε(u),β

)
= (β− 1)σ, (4.8)
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which leads to the following model for the damage of the material: if β =
1 (undamaged material), the body is linearly elastic; if 0 ≤ β < 1 (partial
damaged material), the body has a Maxwellian viscoelastic behavior and
therefore irreversible strains occur. Here, the coefficient of relaxation r =
1− β increases when β decreases. The maximum value r = 1 is obtained
for β = 0, that is, in the case of completely damaged material.

The damage function φ is defined as

φ
(
σ,ε(u),β

)
= − 1

100
|σ|VM , (4.9)

where | · |VM is the two-dimensional Von Mises norm for stress,

|τ |2
VM

= τ2
11 + τ

2
22 − τ11τ22 + 3τ2

12, ∀τ ∈ S2. (4.10)

The following data are used in the numerical test:

f0 = (0,−10t)N/m3, f2 = (0,0)N/m2, g = 0m,

σ0 = 0N/m2, u0 = 0m, β0 = 1sec−1,

E = 1000N/m2, κ = 0.3.

(4.11)

Again, we used continuous piecewise linear elements for the space V h

and the set Kh, and piecewise constant functions for the space Qh. Also,
the value k = 0.01 for the time discretization parameter was considered.

The deformed mesh at final time and the initial boundary are shown
in Figure 4.6. The Von Mises stress norm in the deformed configuration
and the damage field at final time T = 1second are plotted in Figure 4.7
(left side and right side, respectively).
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