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A considerable number of equivalent formulas defining conditional
value-at-risk and expected shortfall are gathered together. Then we pres-
ent a simple method to bound the conditional value-at-risk of compound
Poisson loss distributions under incomplete information about its sever-
ity distribution, which is assumed to have a known finite range, mean,
and variance. This important class of nonnormal loss distributions finds
applications in actuarial science, where it is able to model the aggregate
claims of an insurance-risk business.

1. Introduction

Value-at-risk, or VaR for short, which is defined as the α-quantile of a loss
distribution for some prescribed confidence level α ∈ (0,1), is a popu-
lar measure of risk used to assess capital requirements in the insurance
and finance industry. However, VaR suffers from various shortcomings
pointed out in recent studies. For example, numerical instability and dif-
ficulties occur for nonnormal loss distributions, especially in the pres-
ence of “fat tails” and/or empirical discreteness. Furthermore, VaR is
not a coherent measure of risk in the sense of Artzner et al. [6, 7], and it
does not take into account the severity of an incurred adverse loss event.

A simple alternative measure of risk with some significant advantages
over VaR is conditional value-at-risk or expected shortfall, abbreviated CVaR
and ES, respectively, which is intuitively grasped as “the average of the
100(1 − α)% worst losses.” This measure of risk is able to quantify dan-
gers beyond VaR and it is coherent. Moreover, it provides a numerical ef-
ficient and stable tool in optimization problems under uncertainty. Some
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recent studies presenting these advantages and further desirable proper-
ties include Acerbi [1], Acerbi et al. [2], Acerbi and Tasche [3, 4], Bertsi-
mas et al. [8], Hürlimann [16, 17], Kusuoka [21], Pflug [26], Rockafellar
and Uryasev [28, 29], Testuri and Uryasev [31], Wirch and Hardy [34],
Yamai and Yoshiba [35, 36, 37].

The present paper gathers together a considerable number of equiva-
lent formulas defining CVaR and ES, which are scattered through the re-
cent literature on the subject. Beside this, it provides a simple method to
bound the CVaR of compound Poisson loss distributions under incom-
plete information about its severity distribution. The latter is assumed to
have a known finite range and a given mean and variance. This impor-
tant class of nonnormal loss distributions finds applications in actuarial
practice, where it is able to model the aggregate claims of an insurance
risk business.

In Section 2, CVaR and ES are defined and a lot of their equivalent for-
mulas are summarized. Furthermore, it is recalled that this measure of
risk preserves the stop-loss order or, equivalently, the increasing convex
order. Then, in Section 3, we show how to compute CVaR bounds for
compound Poisson distributions knowing only the finite range, mean,
and variance of the severity distribution. Finally, Section 4 contains a
numerical illustration. It compares the average value of the obtained
bounds with a normal approximation. The approximation turns out to
be useful for large values of the Poisson parameter, where the bounds
are difficult to evaluate numerically due to the underflow and overflow
technical problem inherent in any computer-based quantitative evalua-
tion.

2. Equivalent definitions and the stop-loss order-preserving property

Let (Ω,A,P) be a probability space such that Ω is the sample space, A is
the σ-field of events, and P is the probability measure. For a measurable
real-valued random variable X on this probability space, that is, a map
X : Ω → R, the probability distribution of X is defined and denoted by
FX(x) = P (X ≤ x).

In the present paper, X represents a loss random variable such that
for ω ∈ Ω, the real number X(ω) is the realization of a loss-and-profit
function with X(ω) ≥ 0 for a loss and X(ω) < 0 for a profit. Given X,
consider the VaR to the confidence level α, defined as the lower α-quantile,

VaRα[X] =Qħ
X(α) = inf

{
x : FX(x) ≥ α

}
, (2.1)

and the upper conditional value-at-risk (CVaR+) to the confidence level
α, defined by Rockafellar and Uryasev [29] as the mean excess loss



Werner Hürlimann 143

above VaR,

CVaR+
α[X] = E

[
X |X > VaRα[X]

]
. (2.2)

The VaR quantity represents the maximum possible loss, which is not
exceeded with the probability α (in practice, α = 95%, 99%, 99.75%).
The CVaR+ quantity is the conditional-expected loss given that the loss
strictly exceeds its VaR. Next, consider the α-tail transform Xα of X with
the distribution function

FXα(x) =




0, x < VaRα[X],
FX(x)−α

1−α
, x ≥ VaRα[X].

(2.3)

Rockafellar and Uryasev [29] define CVaR to the confidence level α as
expected value of the α-tail transform, that is, by

CVaRα[X] = E
[
Xα]. (2.4)

The obtained measure is a coherent risk measure in the sense of Artzner
et al. [6, 7] and coincides with CVaR+ only under technical conditions,
for example, in the case of continuous distributions (see Remarks 2.2 and
Corollary 2.3). However, the reader should be warned that in many of
the cited papers, the notion of CVaR is defined as the noncoherent mea-
sure (2.2) and is nevertheless claimed to be coherent. For instance, Pflug
[26] proves the coherence of CVaR using (2.14), but then extends the
proof to the noncoherent expression (2.2). Rockafellar and Uryasev [28]
rely on Pflug’s result and bear the same mistake. Bertsimas et al. [8] de-
fine CVaR as (2.2), but then identify it with (2.5). In fact, all literature
before spring 2001 defines CVaR as (2.2) and claims erroneously that it
is coherent. It is only after the appearance of Acerbi et al. [2, 4] that Rock-
afellar and Uryasev [29] propose a clear distinction between the notions
of CVaR+ and CVaR.

Alternatively, the ES to the confidence level α is defined as

ESα[X] =
1
ε
·
∫1

α

VaRu[X]du (2.5)

and represents the average of the 100ε% worst losses, where ε = 1 − α
denotes the loss probability. The CVaR and ES quantities coincide and
satisfy a lot of equivalent formulas. The alternative expressions are based
on several transforms associated with X, which are of common use in the
fields of reliability, actuarial science, finance, and economics.
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The following standard definitions and notations are used through-
out. The survival function associated with the probability distribution of
X is denoted by FX(x) = 1 − FX(x). For u ∈ (0,1), the upper u-quantile
is the quantity Qu

X(u) = inf{x : FX(x) > u}, and an arbitrary u-quantile
QX(u) denotes an element of the interval �Qħ

X(u),Q
u
X(u)�. The stop-loss

transform of X is the real-valued function defined by πX(x) = E[(X −
x)+] =

∫∞
x FX(t)dt, where x+ = x if x ≥ 0 and x+ = 0, otherwise. The mean

excess function of X is the real-valued function defined by mX(x) = E[X −
x |X > x] = πX(x)/FX(x). Under the right-spread transform of X, we mean
the real-valued function defined by SX(u) = πX[QX(u)], u ∈ [0,1] (e.g.,
Fernandez-Ponce et al. [11] and Shaked and Shanthikumar [30]). The
Lorenz transform of X is defined by LX(u) =

∫u
0 QX(t)dt, u ∈ [0,1], while

the dual Lorenz transform is L∗
X(u) =

∫1
u QX(t)dt. A standard reference for

the Lorenz transform is Arnold [5], while its dual has been considered by
Heilmann [12]. Another important probability transform is the Hardy-
Littlewood transform defined by HLX(u) = L∗

X(u)/(1 − u) if u ∈ [0,1) and
HLX(1) =QX(1), which has been considered in many papers (e.g., Kertz
and Rösler [18, 19, 20], Hürlimann [15], and references therein). We
know that it identifies with the quantile function QXHL(u) = HLX(u), u ∈
[0,1], of a random variable XHL associated with X, which is called here
Hardy-Littlewood random variable and which turns out to be the least majo-
rant with respect to the stochastic dominance of first order among all ran-
dom variables Y preceding X in the increasing convex order (e.g., Meil-
ijson and Nádas [22]). For an increasing concave function g : [0,1] →
[0,1] such that g(0) = 0, g(1) = 1, we consider, in actuarial science, the
distortion transform of X defined by Dg[X] =

∫0
−∞(g[FX(t)] − 1)dt +∫∞

0 g[FX(t)]dt (e.g., Wang et al. [33] and references herein). Finally, the
total-time-on-test or TTT-transform of X is the real-valued function de-
fined by TX(u) =

∫QX(u)
0 FX(t)dt, u ∈ (0,1), and is widely used in reliabil-

ity. We note that many properties of the transforms LX , TX , and their
relationships have been discussed in Pham and Turkkan [27].

Proposition 2.1. Let X be a real-valued random variable defined on the prob-
ability space (Ω,A,P). Then CVaRα[X] = ESα[X], and these quantities can be
represented by the following equivalent formulas:

FX

(
VaRα[X]

)−α

1−α
·VaRα[X] +

1−FX

(
VaRα[X]

)
1−α

·CVaR+
α[X], (2.6)

QX(α) +
1
ε
·SX(α), (2.7)

1
ε
· {E[X]−LX(α)

}
, (2.8)
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1
ε
·L∗

X(α), (2.9)

HLX(α), (2.10)

QXHL(α), (2.11)

Dgε[X], gε(x) = min
{
x

ε
,1
}
, (2.12)

1
ε
· {E[X · 1{X>QX(α)}

]
+QX(α) ·

(
ε−FX

[
QX(α)

])}
, (2.13)

min
ξ

{
ξ +

1
ε
·πX(ξ)

}
. (2.14)

Proof. We first show that CVaRα[X] = ESα[X]. Rearranging and making
a change of variables, we obtain

ESα[X] =Qħ
X(α) +

1
ε
·
∫1

α

(
Qħ

X(u)−Qħ
X(α)

)
du

=Qħ
X(α) +

1
ε
·
∫∞

Qħ
X(α)

(
x −Qħ

X(α)
)
dFX(x)

=Qħ
X(α) +

1
ε
·πX

[
Qħ

X(α)
]
.

(2.15)

On the other hand, by definition of CVaR, we have

CVaRα[X] = E
[
Xα] = ∫∞

0
FXα(x)dx −

∫0

−∞
FXα(x)dx. (2.16)

Using (2.3) and distinguishing between the two cases VaRα[X] ≥ 0 and
VaRα[X] < 0, we, without difficulty, obtain that

CVaRα[X] = VaRα[X] +
1
ε
·πX

[
VaRα[X]

]
= ESα[X]. (2.17)

The weighted average formula (2.6) is Proposition 6 in Rockafellar and
Uryasev [29]. Since the integral in (2.5) does not depend on the choice
of the α-quantile, we, similarly to the above, obtain that

HLX(α) =
1
ε
·
∫1

α

QX(u)du = ESα[X] =QX(α) +
1
ε
·πX

[
QX(α)

]
, (2.18)

which yields (2.7) and (2.10). Now, (2.9) is immediate by the defini-
tion of the Hardy-Littlewood transform, and (2.8) follows immediately
through rearrangement, noting that E[X] =

∫1
0 QX(u)du. The relationship

(2.11) is clear by the definition of Hardy-Littlewood random variable.
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Formula (2.12) is an easy exercise. Formula (2.13), which expressed in
terms of the worth or gain random variable −X is (3.11) in Acerbi and
Tasche [4], is obtained as follows. We have

E
[
X · 1{X>QX(α)}

]
= E

[(
X −QX(α)

) · 1{X>QX(α)}
]

+E
[
QX(α) · 1{X>QX(α)}

]
= E

[(
X −QX(α)

)
+

]
+QX(α) ·FX

[
QX(α)

]
,

(2.19)

which, inserted in (2.13), immediately yields (2.7). Finally, the minimiza-
tion formula (2.14) is found in Rockafellar and Uryasev [29]. �

Remarks 2.2. Up to (2.6), (2.13) and (2.14) and under the assumption of
continuous distributions, these equivalent expressions for CVaR are also
derived in Hürlimann [17]. The many available alternative formulations
for CVaR and ES suggest that, besides most recent ones, several proofs
of the coherence of this measure are known. In particular, the distortion
transform representation (2.12) can be traced back to Denneberg [9, 10],
Wang [32], Wang et al. [33], and Hürlimann [15], which contain proofs
of the coherence of this measure.

Besides the identification of CVaR+ with CVaR in the case of continu-
ous distributions, we note that a huge number of further equivalent for-
mulas could be found. Only two attractive possibilities are mentioned.

Corollary 2.3. Under the assumption of continuous distributions, CVaR+
α[X]

= CVaRα[X] and these quantities are equivalent to the following formulas:

QX(α) +mX

[
QX(α)

]
, (2.20)

1
ε
·E[X]−

∫1−ε

0

TX(x)
(1−x)2

dx. (2.21)

Proof. If the distribution function is continuous, we have that
FX(VaRα[X]) = α and (2.6) coincides with (2.2). Formula (2.20) follows
from (2.7), noting that

mX

[
QX(α)

]
=
πX

[
QX(α)

]
FX

[
QX(α)

] =
1
ε
·SX(α). (2.22)

Finally, (2.21) follows from a result due to Pham and Turkkan [27, Theo-
rem 2 and formula (5)]. We haveTX(u) = LX(u) + (1 − u) · QX(u).
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Since QX(u) is continuous, we have L′
X(u) =QX(u), which yields a linear

differential equation in LX(u). Its solution is

LX(u) = (1−u) ·
∫u

0

TX(x)
(1−x)2

dx. (2.23)

Inserted in (2.8), we obtain (2.21). �

In the special situation of discrete arithmetic loss distributions de-
fined on the nonnegative integers, which will be used to evaluate our
CVaR bounds in Section 3, numerical evaluation proceeds as follows. Let
fk = Pr(X = k) denote the probability that the nonnegative loss takes the
value k, where k = 0,1,2, . . . , and assume that the finite mean µX = E[X]
is known. Determine the unique index kα such that

kα−1∑
k=1

fk < α ≤
kα∑
k=1

fk. (2.24)

Then we have

VaRα[X] =Qħ
X(α) = kα, (2.25)

and we obtain from (2.7) that

CVaRα[X] =QX(α) +
1
ε
· {µX −QX(α) +E

[(
QX(α)−X

)
+

]}

=
1
ε
·
{
µX −α · kα +

kα∑
k=0

(
kα − k

) · fk
}
.

(2.26)

In particular, the loss probabilities must only be evaluated up to the in-
dex kα satisfying inequality (2.24).

It is important to observe that the CVaR functional is preserved un-
der the stop-loss order or equivalently the increasing convex order. This
fact is a main ingredient underlying the construction of CVaR bounds
in Section 3. The next result is a slight generalization of Theorem 1.1 in
Hürlimann [16], which is valid there for continuous distributions only.
Recall that a loss X precedes another one Y in the stop-loss order, written
X ≤sl Y if πX(x) ≤ πY (x) for all x.

Proposition 2.4. Let X and Y be two real-valued random variables defined
on the probability space (Ω,A,P). Then X ≤sl Y if and only if CVaRα[X]
≤ CVaRα[Y ] for all α ∈ [0,1].
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Proof. By (2.11) we have CVaRα[X] =QXHL(α) and CVaRα[Y ] =QYHL(α).
The result follows from the fact that X ≤sl Y if and only if XHL ≤sl Y

HL,
where ≤sl denotes the stochastic dominance of first order (e.g., Kertz and
Rösler [20, Lemma 1.8], or Hürlimann [15, Theorem 2.3]). �

3. CVaR bounds for compound Poisson risks

An important risk management issue of an insurance company is the
construction of more or less accurate bounds on risk measures like CVaR
or ES for compound random sums S = X1 + · · · +XN , where the claim
number N is Poisson (λ), the claim sizes Xi are independent and identi-
cally distributed as X, and Xi is independent from N. By incomplete in-
formation about the claim size, say X belongs to the set D =D([0,b];µ,σ)
of all nonnegative random variables with maximum claim size b,
known mean µ, and standard deviation σ, simple bounds are obtained
as follows.

Following Hürlimann [14, Section 3], consider the stop-loss-ordered
extreme random variables Xmin and Xmax for the set D such that

Xmin ≤sl X ≤sl Xmax, ∀X ∈D. (3.1)

Then replace X by Xmin and Xmax in the compound Poisson random
sums to get random sums Smin and Smax such that

Smin ≤sl S ≤sl Smax, ∀X ∈D. (3.2)

Since CVaR is preserved under stop-loss order by Proposition 2.4, we
obtain the bounds

CVaRα

[
Smin

] ≤ CVaRα[S] ≤ CVaRα

[
Smax

]
, ∀α ∈ [0,1]. (3.3)

For computational reasons, it is more advantageous to evaluate bounds
based on finite atomic claim sizes. Now, the minimum Xmin is already 2-
atomic while the maximum Xmax has a probability distribution of mixed
discrete and continuous type. The latter can be replaced through mass
dispersion by a 4-atomic stop-loss larger discrete approximation Xmax ≤sl

Xd
max such that Smax ≤sl S

d
max and CVaRα[Smax] ≤ CVaRα�Sd

max� for all α ∈
[0,1]. Recall the structure of the finite atomic random variables Xmin

and Xd
max. Let v = (σ/µ)2, the relative variance of the claim size, v0 =

(b − µ)/µ, the maximum relative variance for the set D, and vr = v/v0,
a relative variance ratio. The discrete supports and probabilities of these
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random variables are described for Xmin by

{
x1,x2

}
=
{(

1−vr

)
µ,(1+v)µ

}
,

{
p1,p2

}
=
{

v0

1+v0
,

1
1+v0

}
, (3.4)

and for Xd
max by

{
x0,x1,x2,x3

}
=
{

0,
1
2
(1+v)µ,

[
1+

1
2
(
v0 −vr

)]
µ,
(
1+v0

)
µ

}
,

{
p0,p1,p2,p3

}
=
{

v

1+v
,

v0 −v

(1+v)
(
1+v0

) , v0 −v(
vr +v0

)(
1+v0

) , vr

vr +v0

}
.

(3.5)

In practice, we choose the parameters and fix a unit of money in such a
way that the atoms xi are nonnegative integers. Recall that the probabil-
ities fk, k = 0,1,2, . . . , of a compound Poisson (λ) distribution with non-
negative integer claim sizes x0 = 0 < x1 < · · · < xm, and the corresponding
probabilities p0,p1, . . . ,pm are best numerically evaluated using the fol-
lowing Adelson-Panjer recursive algorithm (e.g., Panjer [23], Hürlimann
[13]):

f0 = e−λ(1−p0), fk =
λ

k

m∑
j=1

δ
(
k −xj

)
xjpjfk−xj , k = 1,2,3, . . . , (3.6)

where δ(x) = 1 if x ≥ 0 and δ(x) = 0 else. Finally, to obtain CVaRα[S], we
use formulas (2.24) and (2.26).

Since computers represent only a finite number of digits, it remains to
discuss the technical problems of round-off errors and underflow/over-
flow. Regarding round-off errors, it has been shown by Panjer and Wang
[24] that the recursive formula (3.6) is strongly stable such that this algo-
rithm works well. However, for large values of λ, underflow/overflow
occurs. In this situation, some methods have been proposed in Panjer
and Willmot [25]. In Section 4, we use exponential scaling/descaling
as follows. Let µS = λµ, σ2

S = λ(µ2 + σ2) be the mean and variance of S.
Choose appropriately M = µS − t ·σS for some t (t = 19,25.5 in our exam-
ple in Section 4 for λ = 2000,3000), and let r = λ(1− p0)/M, m0 = [M], the
greatest integer less than M. Exponential scaling and recursion yields

h0 = 1, hk =
λ

k

m∑
j=1

δ
(
k −xj

)
xjpje

−rxj hk−xj , k = 1,2, . . . ,m0. (3.7)

Then apply exponential descaling setting fk = hke
r(k−M), k = 0, . . . ,m0,

and continue the evaluation of fk for k > m0 with the recursion (3.6).
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4. Bounds on the insurance economic-risk capital

We are interested in the evaluation of economic-risk capital of an insur-
ance portfolio whose compound Poisson aggregate claims S at a future
date are covered by a risk premium P > µS. The future random loss of
the portfolio can be decomposed as follows:

S−P =
(
µS −P

)
+
(
S−µS

)
. (4.1)

The first component, which is the negative of the insurance margin, rep-
resents the future expected insurance gain and belongs to the stakehold-
ers of the insurance company. To protect this expected gain, we require
some economic-risk capital to cover the insurance loss L = S−µS (signed
deviation from the mean aggregate claims). Using CVaR as risk measure,
the future value of this economic-risk capital is equal to

CVaRα[L] = CVaRα[S]−µS, (4.2)

where α is some prescribed confidence level. Note that the equality in
(4.2) follows from the translation invariant property of CVaR, which is
one of the axioms required to define a coherent risk measure.

The following numerical illustration is based on the approximate fig-
ures of a real-life portfolio of grouped life insurance contracts from the
early 1980s. For some unit of money, our choice for the claim-size param-
eters is µ = 12, σ2 = 360, and b = 48; hence v = 5/2, v0 = 3, and vr = 5/6.
According to (3.4) and (3.5), the discrete supports and probabilities are
given for Xmin by

{
x1,x2

}
= {2,42}, {

p1,p2
}
= {0.75,0.25}, (4.3)

and for Xd
min by

{
x0,x1,x2,x3

}
= {0,21,25,48},{

p0,p1,p2,p3
}
= {0.71429,0.03571,0.03261,0.21739}. (4.4)

Table 4.1 displays the values CVaRmin = (1/µS) · CVaRα[Lmin] and
CVaRmax = (1/µS) ·CVaRα[Ld

max] with Lmin = Smin −µS, Ld
max = Sd

max −µS,
which represent bounds on the insurance economic-risk capital per unit
of mean aggregate claims for α = 95%,99%,99.75% by varying the ex-
pected number of claims λ. The average rate

CVaRA =
1
2
(

CVaRmin+CVaRmax
)

(4.5)
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Table 4.1. CVaR bounds and normal approximation as percentages
of µS.

α λ CVaRmin CVaRmax CVaRA CVaRN DN

95% 100 38.123 41.944 40.033 38.590 −1.443
200 26.571 29.232 27.901 27.287 −0.614
300 21.554 23.711 22.632 22.280 −0.352
400 18.593 20.453 19.523 19.295 −0.228
500 16.585 18.244 17.414 17.258 −0.156

1000 11.648 12.812 12.230 12.203 −0.027
2000 8.197 9.015 8.606 8.629 0.023
3000 6.678 7.345 7.011 7.046 0.035

99% 100 50.251 55.297 52.774 49.862 −2.912
200 34.837 38.331 36.584 35.257 −1.327
300 28.189 31.013 29.601 28.788 −0.813
400 24.279 26.711 25.495 24.931 −0.564
500 21.634 23.800 22.717 22.299 −0.418

1000 15.154 16.669 15.912 15.768 −0.144
2000 10.643 11.706 11.174 11.149 −0.025
3000 8.663 9.529 9.096 9.103 0.007

99.75% 100 59.333 65.315 62.342 58.077 −4.265
200 40.987 45.103 43.045 41.067 −1.978
300 33.109 36.430 34.770 33.531 −1.239
400 28.488 31.343 29.916 29.039 −0.877
500 25.366 27.908 26.637 25.973 −0.664

1000 17.735 19.510 18.622 18.366 −0.256
2000 12.439 13.682 13.060 12.986 −0.074
3000 10.119 11.130 10.625 10.603 −0.022

is compared with the normal approximation rate

CVaRN =
1
ε
ϕ
[
Φ−1(α)

] · σS

µS
,

Φ(x) =
1√
2π

∫x

−∞
e−(1/2)t2dt, ϕ(x) = Φ′(x),

(4.6)

which is obtained by approximating S by a normal random variable SN

with a mean µS and a standard deviation σS. The approximation error is
measured here by the signed normal deviation rate

DN = CVaRN −CVaRA . (4.7)

The following observations are noted. By fixed confidence level α, the
normal approximation underestimates the average rate up to some fixed,
rather large, expected number of claims λ, and then overestimates it. The
underestimation increases by increasing the confidence level α. Since
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computational difficulties with the exponential scaling/descaling meth-
od of Section 3 arise for values of λ beyond 3000, the normal approxima-
tion appears useful in this range provided insurers agree to set insurance
economic-risk capital rates at the proposed average rate (4.5).
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