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Abstract. We consider a model for diffusive phase transitions, for instance,
the component separation in a binary mixture. Our model is described by
two functions, the absolutete temperature θ := θ(t, x) and the order pa-
rameter w := w(t, x), which are governed by a system of two nonlinear
parabolic PDEs. The order parameter w is constrained to have double ob-
stacles σ∗ ≤ w ≤ σ∗ (i.e., σ∗ and σ∗ are the threshold values of w). The
objective of this paper is to discuss the semigroup {S(t)} associated with
the phase separation model, and construct its global attractor.

1. Introduction

This paper is concerned with a system of nonlinear parabolic PDEs of the
form, referred to as (PSC),

(1.1) [ρ(u) + λ(w)]t − ∆u + νρ(u) = f(x) in Q := (0,+∞) × Ω,

(1.2) wt − ∆{−κ∆w + ξ + g(w) − λ′(w)u} = 0 in Q,

(1.3) ξ ∈ β(w) in Q,

(1.4)
∂u

∂n
+ nou = h(x) on Σ := (0,+∞) × Γ,

(1.5)
∂w

∂n
= 0,

∂

∂n
{−κ∆w + ξ + g(w) − λ′(w)u} = 0 on Σ,

(1.6) u(0, ·) = uo, w(0, ·) = wo in Ω.

Here Ω is a bounded domain in RN (1 ≤ N ≤ 3) with smooth boundary
Γ := ∂Ω; ρ is an increasing function such as ρ(u) = − 1

u for −∞ < u < 0;
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λ, g are smooth functions on R and λ′ is the derivative of λ; β is a maximal
monotone graph in R×R with bounded domain D(β) in R; κ > 0, no > 0
and ν ≥ 0 are constants; f, h, uo, wo are prescribed data.

This system arises in the non-isothermal diffusive phase separation in a
binary mixture. In such a context, θ := ρ(u) is the (absolute) temperature
and w is the local concentration of one of the components; physically, (1.1)
is the energy balance equation, where ρ(u) + λ(w) is the internal energy,
and (1.2) is the mass balance equation with constraint (1.3) for w, where
−κ∆w + ξ + g(w) − λ′(w)u can be interpreted as the (generalized) chemical
potential difference. The details of modeling are referred, for instance, to [1,
2, 7, 10, 12].

In the one-dimensional case, i.e. N = 1, the existence and uniqueness of a
global solution of (PSC) was proved in [10], and in [14] for the case without
constraint (1.3). In the higher dimensional case (N = 2 or 3), any uniqueness
result has not been noticed in the general setting; for a model in which the
mass balance equation includes a viscosity term −µ∆wt, the uniqueness was
obtained in [10]. Recently, in [6] a uniqueness result was established in a
very wide space of distributions under the additional assumption that

(1.7) λ is convex on D(β) and D(ρ) ⊂ (−∞, 0].

So far as the large time behaviour of solutions is concerned, we have noticed
a few papers (e.g. [5, 9, 10, 14]) including some results about the ω-limit
set of each single solution as time t goes to +∞, but no results, except
[12], on attractors so far for non-isothermal phase separation models; in [12]
the regular case of ρ was treated, so this result is not applicable to (PSC)
including a singular function ρ.

In this paper, assuming (1.7), we shall give a new existence result for
problem (PSC) with initial data [uo, wo] in a larger class than that in [10].
Also, based on our existence result, we shall consider a semigroup {S(t)}t≥0
consisting of operators S(t) which assign to each initial data [uo, wo] the
element [u(t), w(t)], {u,w} being the solution. Moreover we shall construct
the global attractor for {S(t)} in the product space L2(Ω) × H1(Ω). Un-
fortunately, the mapping t → S(t)[uo, wo] lacks the continuity at t = 0 in
L2(Ω)×H1(Ω) for bad initial data [uo, wo], which comes from the singularity
of ρ(u). Therefore the general theory on attractors (cf. [4, 17]) cannot be di-
rectly applied to our case. However, the construction of the global attractor
will be done by introducing a Lyapunov-like functional and by appropriately
modified versions of some results in [4, 17]. Especially, the term νρ(u) with
positive ν in (1.1) is very important in order to find an absorbing set.
Notation. In general, for a (real) Banach space W we denote by | · |W
the norm and by W ∗ its dual space endowed with the dual norm. For any
compact time interval [to, t1] we denote by Cw([to, t1];W ) the space of all
weakly continuous functions from [to, t1] into W , and mean by “un → u in
Cw([to, t1];W ) as n → +∞” that for each z∗ ∈ W ∗, 〈z∗, un(t)−u(t)〉W ∗,W →
0 uniformly on [to, t1] as n → +∞, where 〈·, ·〉W ∗,W stands for the duality
pairing between W ∗ and W .



ATTRACTORS OF SEMIGROUPS 171

For two real valued functions u, v we define

u ∧ v := min{u, v}, u ∨ v := max{u, v}.
Throughout this paper, let Ω be a bounded domain in RN (1 ≤ N ≤ 3)

with smooth boundary Γ := ∂Ω, and for simplicity fix some notation as
follows:

H := L2(Ω), Ho :=
{
z ∈ L2(Ω);

∫
Ω
zdx = 0

}
.

V := H1(Ω), Vo :=
{
z ∈ H1(Ω);

∫
Ω
zdx = 0

}
.

(·, ·) : inner product in H.

〈·, ·〉 : duality pairing between V ∗ and V.

〈·, ·〉o : duality pairing between V ∗
o and Vo.

(·, ·)Γ : inner product in L2(Γ).

a(v, w) :=
∫
Ω

∇v · ∇wdx for v, w ∈ V.

πo : projection from H onto Ho, i.e. [πoz](x) := z(x) − 1
|Ω|

∫
Ω
z(y)dy,

z ∈ H.

Also, we define | · |V and | · |Vo by

|v|V :=
{∫

Ω
|∇v|2dx + no

∫
Γ
v2dΓ

} 1
2
, v ∈ V,

and

|v|Vo :=
{∫

Ω
|∇v|2dx

} 1
2
, v ∈ Vo;

clearly we have standard relations

V ⊂ H ⊂ V ∗, Vo ⊂ Ho ⊂ V ∗
o ,

in which all the injections are compact and densely defined. Associated with
the above norms, the duality mappings F : V → V ∗ and Fo : Vo → V ∗

o are
defined in the following manner:

(1.8) 〈Fv, z〉 = a(v, z) + no(v, z)Γ for v, z ∈ V,

(1.9) 〈Fov, z〉o = a(v, z) for v, z ∈ Vo.

Clearly, if ) := Fv ∈ H, then v ∈ H2(Ω) and it is a unique solution of



−∆v = ) in Ω,

∂v

∂n
+ nov = 0 on Γ;
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if ) := Fov ∈ Ho, then v ∈ H2(Ω) and it is a unique solution of


−∆v = ) in Ω,

∂v

∂n
= 0 on Γ,

∫
Ω
vdx = 0.

2. Existence and Uniqueness Result for (PSC)

Throughout this paper we suppose that ρ, β, λ, g, κ, no and ν satisfy
the following hypotheses (H1) - (H5):
: (H1) ρ is a single-valued maximal monotone graph in R × R, its do-

main D(ρ) and range R(ρ) are open in R and it is locally bi-Lipschitz
continuous as a function from D(ρ) onto R(ρ); we denote by ρ−1 the
inverse of ρ and by ˆρ−1 a proper l.s.c. convex function on R whose
subdifferential coincides with ρ−1 in R.

: (H2) β is a maximal monotone graph in R × R which is the subdif-
ferential of a non-negative proper l.s.c. convex function β̂ on R such
that

D(β̂) = [σ∗, σ∗]

for finite numbers σ∗, σ∗ with σ∗ < σ∗.
: (H3) λ : R→ R is of C2-class, convex on [σ∗, σ∗] and

(2.1) λ
′′
(w)u ≤ 0 for all w ∈ [σ∗, σ∗] and u ∈ D(ρ).

: (H4) g : R → R is of C2-class; we denote a primitive of g, which is
non-negative on [σ∗, σ∗], by ĝ.

: (H5) κ > 0, no > 0 and ν ≥ 0 are constants.
Now we give a variational formulation for (PSC).

Definition 2.1. Let f ∈ H, h ∈ L2(Γ), uo be a measurable function on Ω
with ρ(uo) ∈ H and wo ∈ V with β̂(wo) ∈ L1(Ω). Then, for any finite T > 0,
a couple {u,w} of functions u : [0, T ] → V and w : [0, T ] → H2(Ω) is called
a (weak) solution of (PSC):=(PSC;f, h, uo, wo) on [0, T ], if the following
conditions (w1) - (w4) are satisfied.
: (w1) u ∈ L2(0, T ;V ), ρ(u) ∈ Cw([0, T ];H), ρ(u)′ ∈ L1(0, T ;V ∗),

w ∈ L2(0, T ;H2(Ω))∩Cw([0, T ];V ) with β̂(w) ∈ L∞(0, T ;L1(Ω)), w′ ∈
L2(0, T ;V ∗) and λ(w)′ ∈ L1(0, T ;V ∗).

: (w2) ρ(u)(0) = ρ(uo) and w(0) = wo.
: (w3) For a.e. t ∈ [0, T ] and all z ∈ V ,

(2.2)

d

dt
(ρ(u(t)) + λ(w(t)), z) + a(u(t), z)

+ (nou(t) − h, z)Γ + ν(ρ(u(t)), z)

= (f, z).

: (w4) ∂w(t)
∂n = 0 a.e. on Γ for a.e. t ∈ [0, T ], and there is a function

ξ ∈ L2(0, T ;H) such that ξ(t) ∈ β(w(t)) a.e. on Ω for a.e. t ∈ [0, T ]
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and

(2.3)
d

dt
(w(t), η) + κ(∆w(t),∆η) − (g(w(t)) + ξ(t) − λ′(w(t))u(t),∆η) = 0

for all η ∈ H2(Ω) with ∂η
∂n = 0 a.e. on Γ and for a.e. t ∈ [0, T ].

A couple {u,w} of functions u : R+ → V and w : R+ → H2(Ω) is called
a global solution of (PSC) (or a solution of (PSC) on R+), if it is a solution
of (PSC) on [0, T ] for every finite T > 0.

As easily understood from the above definition, since σ∗ ≤ w ≤ σ∗ for any
solution {u,w} of (PSC), the behaviour of g, λ on the outside of [σ∗, σ∗] gives
no influence to the solution and we may assume without loss of generality
that
(2.4)
the support of g is compact in R and λ is linear on the outside of [σ∗, σ∗].

Remark 2.1. From the above definition we easily observe (1)-(3) below.
: (1) For any solution {u,w} of (PSC) on [0, T ] we see that

d

dt

∫
Ω
w(t)dx = 0 for a.e. t ∈ [0, T ],

so that
1

|Ω|
∫
Ω
w(t)dx =

1
|Ω|

∫
Ω
wodx =: mo for all t ∈ [0, T ].

This implies that w − mo ∈ Cw([0, T ];Vo) and w′ ∈ L2(0, T ;V ∗
o ).

: (2) In terms of the duality mapping F : V → V ∗ the variational identity
(2.2) is written in the form

(2.5)
d

dt
(ρ(u(t)) + λ(w(t))) + Fu(t) + νρ(u(t)) = f∗ in V ∗

for a.e. t ∈ [0, T ], where f∗ ∈ V ∗ is given by

〈f∗, z〉 = (f, z) + (h, z)Γ for all z ∈ V.

: (3) In terms of the duality mapping Fo : Vo → V ∗
o variational identity

(2.3) is written in the form

(2.6) F−1
o w′(t) + κFo(πow(t)) + πo[ξ(t) + g(w(t)) − λ′(w(t))u(t)] = 0 in Ho

for a.e. t ∈ [0, T ].

We now introduce some functions and spaces in order to formulate an
existence-uniqueness result. Let u∞ be the unique solution of

(2.7)




u∞ ∈ V ;

a(u∞, z) + (nou
∞ − h, z)Γ + ν(ρ(u∞), z) = (f, z) for all z ∈ V ;

clearly (2.7) has one and only one solution u∞ ∈ V for given f ∈ H and
h ∈ L2(Γ). If ν > 0, then

(2.8) ρ(u∞) ∈ H.

In case of ν = 0 we suppose (2.8) holds.
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Next we define a functional J(·, ·) on the set ρ−1(H)×V := {[z, v]; ρ(z) ∈
H, v ∈ V }, by putting

J(z, v) := Jo(z, v) + J1(z, v)

with
Jo(z, v) := εo|ρ(z) + λ(v)|2H

and

(2.9)
J1(z, v) :=

∫
Ω

ˆρ−1(ρ(z))dx − (ρ(z) + λ(v), u∞)

+
κ

2
|∇v|2H +

∫
Ω

(β̂(v) + ĝ(v))dx + Co,

where εo is a (small) positive number determined later and Co is a constant
so that J1(·, ·) is non-negative; in fact, such a constant Co exists, since

(2.10) ˆρ−1(r) − ru∞(x) ≥ ˆρ−1(ρ(u∞(x))) − ρ(u∞(x))u∞(x)

for all r ∈ R and a.e. x ∈ Ω. With the functional J1 and a number mo with
σ∗ ≤ mo ≤ σ∗, we put

(2.11) D(mo) :=
{

[z, v] ∈ ρ−1(H) × V ;J1(z, v) < +∞,
1

|Ω|
∫
Ω
vdx = mo

}

and

(2.12) DM (mo) := {[z, v] ∈ D(mo);J1(z, v) ≤ M} for each M > 0.

Also, for a number mo with σ∗ ≤ mo ≤ σ∗, we put
(2.13)

Do(mo) :=




z ∈ V, ρ(z) ∈ H, v ∈ H2(Ω), v − mo ∈ Vo,

[z, v] ;
∂v

∂n
= 0 a.e. on Γ, there is ξ ∈ H such that

ξ ∈ β(v) a.e. on Ω, −κ∆v + ξ ∈ V




,

(2.14) DM
o (mo) := {[z, v] ∈ Do(mo);J1(z, v) ≤ M} for each M > 0.

Clearly, DM
o (mo) ⊂ DM (mo), D(mo) = ∪M>0D

M (mo) and Do(mo) =
∪M>0D

M
o (mo).

First we recall the following theorem which guarantees the uniqueness of
the solution of (PSC).

Theorem 2.1. ([5; Theorem 2.1]) Assume that (H1)-(H5) hold, and let f ∈
H, h ∈ L2(Γ) and mo be a number with σ∗ ≤ mo ≤ σ∗. Let [uoi, woi], i =
1, 2, be initial data in D(mo), and {ui, wi} be any solution of (PSC)i :=
(PSC; f, h, uoi, woi) on [0, T ], T > 0, for i = 1, 2. Then, with notation
ei(t) := ρ(ui(t)) + λ(wi(t)) for t ∈ [0, T ], and for all s, t ∈ [0, T ], s ≤ t,

(2.15)
|e1(t) − e2(t)|2V ∗ + |w1(t) − w2(t)|2V ∗

o

≤ eRo(t−s)(|e1(s) − e2(s)|2V ∗ + |w1(s) − w2(s)|2V ∗
o

),

where Ro := Ro(κ, no, λ, g) is a positive constant dependent only on κ, no

and the Lipschitz constants of λ and g.
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Hypothesis (2.1) of (H3) is essential for the proof of inequality (2.15).
An existence result is stated as follows.

Theorem 2.2. Assume that (H1)-(H5) hold as well as (2.8), and let mo be
any number with σ∗ < mo < σ∗. Also, let f ∈ H and h ∈ L∞(Γ). Assume
that

(2.16) no supD(ρ) ≥ h(x) ≥ no inf D(ρ) for a.e. x ∈ Γ

and there are constants A1, A
′
1 such that

(2.17) ρ(r)(nor − h(x)) ≥ −A1|r| − A′
1 for a.e. x ∈ Γ and all r ∈ D(ρ).

Then, for each [uo, wo] ∈ D(mo), problem (PSC) admits a (unique) global
solution {u,w}. Moreover, the following inequalities (2.18) - (2.20) hold.

(2.18) J1(u(t), w(t))+
∫ t

s
|u(τ)−u∞|2V dτ +

∫ t

s
|w′(τ)|2V ∗

o
dτ ≤ J1(u(s), w(s))

for 0 ≤ s ≤ t;

(2.19)
|ρ(u(t)) + λ(w(t))|2H ≤ M1(T ){|ρ(u(s)) + λ(w(s))|2H

+ J1(u(s), w(s)) + 1}
for 0 ≤ s ≤ t ≤ s + T, where M1(T ) is an increasing function of T ∈ R+,
independent of initial data [uo, wo] ∈ D(mo);

(2.20)

(t − s)
{|u(t) − u∞|2V + |w′(t)|2V ∗

o
+ ν|

∫
Ω
ρ̂(u(t))dx|}

+ κ

∫ t

s
(τ − s)|w′(τ)|2Vo

dτ

≤ M2(T ){J1(u(s), w(s))

+ |ρ(u(s)) + λ(w(s)) − ρ(u∞)|2V ∗ + 1}
for all s ≥ 0 and a.e. t ∈ [s, s + T ], where M2(T ) is an increasing function
of T ∈ R+ independent of initial data [uo, wo] ∈ D(mo).

Remark 2.2. From (2.18) and (2.20) of Theorem 2.2 we further derive an
estimate of the form

(2.21)
(t − s){|w(t)|2H2(Ω) + |ξ(t)|2H}

≤ M3(T ){J1(u(s), w(s)) + |ρ(u(s)) + λ(w(s)) − ρ(u∞)|2V ∗ + 1}
for 0 ≤ s < t ≤ s + T, where ξ ∈ L2

loc(R+;H) is the function as in condition
(w4) of Definition 2.1 and M3(·) is a function having the same properties as
Mi(·), i = 1, 2. In fact, since

κFo(πow(t)) + πoξ(t) = −F−1
o w′(t) + πo[λ′(w(t))u(t) − g(w(t))] =: )(t),

it follows from a regularity result in [3] that

(2.22) |w(t)|2H2(Ω) + |ξ(t)|2H ≤ C1(|)(t)|2H + 1) for a.e. t ≥ 0

with a constant C1 independent of initial data [uo, wo] ∈ D(mo) and ). Com-
bining the above inequality with (2.18) and (2.20) we conclude an estimate
of the form (2.21) for all 0 ≤ s < t ≤ s + T.
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Remark 2.3. Let {u,w} be the global solution of (PSC) which is given by
Theorem 2.2. Then, we have by estimates (2.18) - (2.21) that
: (i) u is a bounded and weakly continuous function from [δ,+∞) into V

for each δ > 0;
: (ii) w is a bounded and weakly continuous function from [δ,+∞) into

H2(Ω) for each δ > 0;
: (iii) ξ is a bounded function from [δ,+∞) into H for each δ > 0, and

satisfies that

ξ(t) ∈ β(w(t)) a.e. on Ω for all t > 0.

Also, we have

(2.23) [u(t), w(t)] ∈ Do(mo) for all t > 0,

which is nothing else but the smoothing effect for solutions.

Remark 2.4. In case mo = σ∗ (resp. mo = σ∗), it follows that w ≡ mo for
any solution {u,w} of (PSC) on [0, T ], since w ≥ mo (resp. w ≤ mo) and∫
Ωw(t)dx = |Ω|mo, and moreover u satisfies

〈ρ(u)′(t), z〉 + a(u(t), z) + (nou(t) − h(t), z)Γ + ν(ρ(u(t)), z) = (f(t), z)

for all z ∈ H1(Ω) and a.e. t ∈ [0, T ]

and u(0) = uo.

3. Approximate Problems and Estimates for Their Solutions

The solution of (PSC) will be constructed as a limit of solutions
{uµεη, wµεη} of approximate problems (PSC)µεη, defined below, as µ, ε, η →
0; parameters ε, η concern with approximation ρεη of function ρ, while pa-
rameter µ concerns with the coefficient of viscosity term, i.e. −µ∆wt, added
in the mass balance equation.

The main idea for approximation is found in [7, 10, 15], and uniform
estimates for approximate solutions with respect to parameters are quite
similar to those in the above cited papers. Therefore, we mention very
briefly some estimates for approximate solutions. In the rest of this section,
we make all the assumptions of Theorem 2.2 as well as (2.4).

If λ is linear, i.e. λ′′ = 0, on [σ∗, σ∗], then the proof of Theorem 2.2 is
very simple. Therefore, in the rest of this section, we assume that

(3.1) λ′′ > 0 somewhere on [σ∗, σ∗], D(ρ) ⊂ (−∞, 0).

Given real parameters ε, η ∈ (0, 1], we consider approximations ρε and ρεη
of ρ as follows. Putting

D(ρ) = (r∗, r∗) for − ∞ ≤ r∗ < r∗ ≤ 0,

choose two families of numbers {aε; 0 ≤ ε ≤ 1} with ao = r∗ and {bη; 0 ≤
η ≤ 1} with bo = r∗ such that

r∗ < aε < aε′ < a1 < ro < b1 < bη < bη′ < r∗



ATTRACTORS OF SEMIGROUPS 177

if 0 < ε < ε′ < 1 and 0 < η′ < η < 1, where ro is a fixed number in D(ρ),
and

aε ↓ r∗ as ε → 0, bη ↑ r∗ as η → 0.

For each ε and η we define

ρε(r) =




ρ(r) for r ≥ aε,

ρ(aε) + r − aε for r < aε,

and

ρεη(r) =




ρ(bη) + r − bη for r > bη,

ρ(r) for aε ≤ r ≤ bη,

ρ(aε) + r − aε for r < aε.

Note that ρεη is bi-Lipschitz continuous on R and

ρεη → ρε in the graph sense as η → 0 for each fixed ε,

ρε → ρ in the graph sense as ε → 0,

and moreover there is a positive constant C(ε) for each ε ∈ (0, 1] such that

(3.2)
d

dr
ρεη(r) ≥ C(ε),

d

dr
ρε(r) ≥ C(ε).

We write sometimes ρo or ρoo for ρ and ρεo for ρε.
Besides, for ε, η ∈ [0, 1], let u∞

εη be the solution of


u∞
εη ∈ V ;

a(u∞
εη, z) + (nou

∞
εη − h, z)Γ + ν(ρεη(u∞

εη), z) = (f, z) for all z ∈ V.

Clearly, {u∞
εη} is bounded in V, {ρεη(u∞

εη)} is bounded in H,

u∞
εη → u∞

ε0 in V as η → 0 for each fixed ε ∈ [0, 1],

and

ρεη(u∞
εη) → ρ(u∞

ε0) weakly in H as η → 0 for each fixed ε ∈ [0, 1], if ν > 0.

Also, we define functionals J1εη(·, ·) by

(3.3)
J1εη(z, v) :=

∫
Ω

ˆρ−1
εη (ρεη(z))dx − (ρεη(z) + λ(v), u∞

εη)

+
κ

2
|∇v|2H +

∫
Ω
{β̂(v) + ĝ(v)}dx + Co

for [z.v] ∈ H × V, where ˆρ−1
εη is the primitive of ρ−1

εη with ˆρ−1
εη (ro) = ˆρ−1(ro)

and Co is a sufficiently large positive constant so that J1εη ≥ 0 on H ×V for
all ε, η ∈ [0, 1]; of course, J1oo = J1, u∞

00 = u∞ and Co is supposed to be the
same constant as in expression (2.9) of J1.

Now, let us consider approximate problems including ρεη, 0 < ε ≤ 1, 0 ≤
η ≤ 1, and the viscosity term −µ∆wt, 0 < µ ≤ 1, which is formulated below
and referred as (PSC)µεη.
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Definition 3.1. For 0 < T < +∞ we say that a couple of functions u :=
uµεη : [0, T ] → V and w := wµεη : [0, T ] → H2(Ω) is a “solution” of (PSC)µεη
on [0, T ], if the following properties (w1)µεη − (w4)µεη are fulfilled:
: (w1)µεη u ∈ W 1,2(0, T ;H) ∩ Cw([0, T ];V ),

w ∈ W 1,2(0, T ;H) ∩ C([0, T ];V ) ∩ L2(0, T ;H2(Ω));
: (w2)µεη u(0) = uoεη := {uo ∨ aε} ∧ bη and w(0) = wo;
: (w3)µεη for a.e. t ∈ [0, T ] and z ∈ V ,

(3.4)
(ρεη(u)′(t) + λ(w)′(t), z) + a(u(t), z)

+ (nou(t) − h, z)Γ + ν(ρεη(u(t)), z) = (f(t), z);

: (w4)µεη
∂w(t)
∂n

= 0 a.e. on Γ for a.e. t ∈ [0, T ], and there is a function

ξ =: ξµεη ∈ L2(0, T ;H) such that

ξ(t) ∈ β(w(t)) a.e. in Ω for a.e. t ∈ [0, T ]

and

(3.5)
(w′(t), z − µ∆z) + κ(∆w(t),∆z)

− (ξ(t) + g(w(t)) − λ′(w(t))u(t),∆z) = 0

for a.e. t ∈ [0, T ] and all z ∈ H2(Ω) with
∂z

∂n
= 0 a.e. on Γ.

Clearly, (3.4) and (3.5) are respectively written in the forms (cf. (2.5),
(2.6) in Remark 2.1)

(3.6) ρεη(u)′(t) + λ(w)′(t) + Fu(t) + νρεη(u(t)) = f∗(t) in V ∗

for a.e. t ∈ [0, T ], and

(3.7) (F−1
o +µI)w′(t) +κFo(πow(t)) +πo[ξ(t) + g(w(t))−λ′(w(t))u(t)] = 0

in Ho for a.e. t ∈ [0, T ].
With functions u∞

εη, (3.6) is also written in the form

(3.8) ρεη(u)′(t) + λ(w)′(t) + F (u(t) − u∞
εη) + ν(ρεη(u(t)) − ρεη(u∞

εη)) = 0

in V ∗ for a.e. t ∈ [0, T ].
According to an existence-uniqueness result in [8, Theorem 2.2], for each

µ, ε, η ∈ (0, 1] problem (PSC)µεη has one and only one solution {uµεη, wµεη}
on [0, T ], if the initial data uo and wo are given so that [uo, wo] ∈ Do(mo)
(hence [uoεη, wo] ∈ Do(mo) for every ε, η ∈ (0, 1]); moreover, wµεη has regu-
larity properties (cf. [10; Lemmas 5.2, 6.2])

(3.9)




wµεη ∈ Cw([0, T ];H2(Ω)), w′
µεη ∈ L∞(0, T ;H) ∩ L2(0, T ;V ),

ξµεη ∈ L∞(0, T ;H).

Now we give some estimates for {uµεη, wµεη}.

Estimate (I)
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By regularity (3.9) we can compute rigorously

(3.8) × (uµεη − u∞
εη) + (3.7) × w′

µεη

to get

(3.10)

d

dτ
J1εη(uµεη(τ), wµεη(τ)) + |uµεη(τ) − u∞

εη|2V
+ |w′

µεη(τ)|2V ∗
o

+ µ|w′
µεη(τ)|2H

≤ 0

for a.e. τ ∈ [0, T ]. For details, see [10, Lemma 5.1]. The integration of (3.10)
over [0, t] yields

(3.11)

J1εη(uµεη(t), wµεη(t)) +
∫ t

0
|uµεη − u∞

εη|2V dτ

+
∫ t

0
(|w′

µεη|2V ∗
o

+ µ|w′
µεη|2H)dτ

≤ J1εη(uoεη, wo) for all t ∈ [0, T ].

Estimates (II)

We observe from hypothesis (2.17) that (cf. [7; Lemma 3.1])

ρεη(r)(nor − h(x)) ≥ −A2|r| − A′
2 for all r ∈ R and a.e. x ∈ Γ,

where A2, A′
2 are positive constants independent of ε, η ∈ (0, 1]. By using

this inequality we compute

(3.6) × {ρεη(uµεη) + λ(wµεη)}
to get

(3.12)

d

dτ
|ρεη(uµεη(τ)) + λ(wµεη(τ))|2H

+ (ν − ν1)|ρεη(uµεη(τ)) + λ(wµεη(τ))|2H
≤ k1(ν1){|uµεη(τ)|2V + |wµεη(τ)|2V + 1}

for a.e. τ ∈ [0, T ], where ν1 is an arbitrary positive number and k1(ν1) is a
positive constant depending on ν1 but neither of µ, ε, η ∈ (0, 1] nor initial
data [uo, wo] ∈ Do(mo). From (3.12) with (3.11) it follows that

(3.13)
|ρεη(uµεη(t)) + λ(wµεη(t))|2H

≤ R1(T ){|ρ(uoεη) + λ(wo)|2H + J1εη(uoεη, wo) + 1}
for all t ∈ [0, T ], where R1(·) : R+ → R+ is an increasing function indepen-
dent of µ, ε, η ∈ (0, 1] and initial data [uo, wo] ∈ Do(mo).

In particular, if ν > 0, then we obtain, by taking ν1 = ν
2 in (3.12),

(3.14)
d

dτ
|ρεη(uµεη(τ)) + λ(wµεη(τ))|2H +

ν

2
|ρεη(uµεη(τ)) + λ(wµεη(τ))|2H

≤ k2(ν){|uµε(τ) − u∞
εη|2V + |wµεη(τ)|2V + 1}
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for a.e. τ ∈ [0, T ], where k2(ν) is a positive constant depending on ν but
neither of µ, ε, η ∈ (0.1] nor initial data [uo, wo] ∈ Do(mo).

Estimates (III)

Next, compute

(3.8) × F−1(ρεη(uµεη) + λ(wµε) − ρεη(u∞
εη))

to obtain
1
2

d

dτ
|ρεη(uµεη(τ)) + λ(wµεη(τ)) − ρεη(u∞

εη)|2V ∗

+ (uµεη(τ) − u∞
εη, ρεη(uµεη(τ)) − ρεη(u∞

εη))

+ (uµεη(τ) − u∞
εη, λ(wµεη(τ))) +

ν

2
|ρεη(uµεη(τ))

+ λ(wµεη(τ)) − ρεη(u∞
εη)|2V ∗

≤ ν

2
|λ(wµεη(τ))|2H

for a.e. τ ∈ [0, T ]. Since

(3.15)
(uµεη(τ) − u∞

εη, ρεη(uµεη(τ))) ≥
∫
Ω
ρ̂εη(uµεη(τ))dx −

∫
Ω
ρ̂εη(u∞

εη)dx

≥ (uµεη(τ) − u∞
εη, ρεη(u∞

εη)),

it follows from the above inequality that

(3.16)

d

dτ
|ρεη(uµεη(τ)) + λ(wµεη(τ)) − ρεη(u∞

εη)|2V ∗

+ ν|ρεη(uµεη(τ)) + λ(wµεη(τ)) − ρεη(u∞
εη)|2V ∗

+ 2|
∫
Ω
ρ̂εη(uµεη(τ))dx|

≤ k3{|uµεη(τ) − u∞
εη|2H + 1}

for a.e. τ ∈ [0, T ], where k3 is a positive constant independent of µ, ε, η ∈
(0, 1] and initial data [uo, wo] ∈ Do(mo). Therefore the integration of (3.16)
over [0, t] yields

(3.17)
|ρεη(uµεη(t)) + λ(wµεη(t)) − ρεη(u∞

εη)|2V ∗ + |
∫ t

0

∫
Ω
ρ̂εη(uµεη)dxdτ |

≤ R2(T ){J1εη(uoεη, wo) + |ρ(uoεη) + λ(wo) − ρεη(u∞
εη)|2V ∗ + 1}

for all t ∈ [0, T ], where R2(·) : R+ → R+ is an increasing function indepen-
dent of µ, ε, η ∈ (0, 1] and initial data [uo, wo] ∈ Do(mo).

Estimate (IV)

Finally, compute the following items (1) - (4):
(1): Multiply (3.8) by u′

µεη and integrate over [0, τ ]×Ω for each 0 ≤ τ ≤ t.
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(2): Multiply d
dt(3.7) by w′

µεη and integrate over [0, τ ] × Ω for each 0 ≤
τ ≤ t.

(3): Add the results of (1) and (2).
(4): Multiply the result of (3) by τ and integrate in τ over [0, t].

Then we have

(3.18)

1
2
{t|uµεη(t) − u∞

εη|2V + t|w′
µεη(t)|2V ∗

o
+ tµ|w′

µεη|2H}

+ νt

∫
Ω
ρ̂εη(uµεη(t))dx − νt(ρεη(u∞

εη), uµεη(t))

+ κ

∫ t

0
τ |∇w′

µεη|2Hdτ +
∫ t

0
τ(ρεη(uµεη)′, u′

µεη)dτ

≤ Lg

∫ t

0
τ |w′

µεη|2Hdτ +
1
2

∫ t

0
{|uµεη − u∞

εη|2V
+ |w′

µεη|2V ∗
o

+ µ|w′
µεη|2H}dτ

+ ν

∫ t

0

∫
Ω
ρ̂εη(uµεη)dxdτ − ν

∫ t

0
(ρεη(u∞

εη), uµεη)dτ

+
∫ t

0

∫
Ω
τλ′′(wµεη)|w′

µεη|2uµεηdxdτ

for all t ∈ [0, T ]. For the rigorous derivation of (3.18), we refer to [10, Lemma
5.2].

Here, we use the interpolation inequality

(3.19) |z|2H ≤ κ

2
|∇z|2H + Cκ|z|2V ∗

o
for all z ∈ Vo,

where Cκ is a positive constant depending only on κ. Applying (3.19) to the
first term of the right hand side of (3.18), we derive from (3.18) with (3.11)
and (3.17) that

(3.20)

t|uµεη(t) − u∞
εη|2V + t|w′

µεη(t)|2V ∗
o

+ tµ|w′
µεη(t)|2H

+ νt|
∫
Ω
ρ̂εη(uµεη(t))dx| + κ

∫ t

0
τ |∇w′

µεη|2Hdτ

+ 2
∫ t

0
τ(ρεη(uµεη)′, u′)dτ

≤ R3(T ){J1εη(uoεη, wo) + |ρ(uoεη) + λ(wo) − ρεη(u∞
εη)|2V ∗ + 1}

+ 2
∫ t

0

∫
Ω
τλ′′(wµεη)|w′

µεη|2uµεηdxdτ

for all t ∈ [0, T ], where R3(·) : R+ → R+ is a function having the same
properties as Ri(·), i = 1, 2.

Remark 3.1. In Estimates (IV), if (4) is replaced by the following (4)′:
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(4)′ Integrate the result of (3) in τ over [0, t],
then we have, instead of (3.20),

(3.21)

|uµεη(t) − u∞
εη|2V + |w′

µεη(t)|2V ∗
o

+ µ|w′
µεη(t)|2H + ν|

∫
Ω
ρ̂εη(uµεη(t))dx|

+ κ

∫ t

0
|w′

µεη|2Vo
dτ + 2

∫ t

0
(ρεη(uµεη)′, u′)dτ

≤ Ko(T, |ρ(uoεη)|H , |uoεη|V , |wo|H2(Ω), | − κ∆wo + ξo|V )

+ 2
∫ t

0

∫
Ω
λ′′(wµεη)|w′

µεη|2uµεηdxdτ

for a.e. t ∈ [0, T ] and µ, ε, η ∈ (0, 1], where ξo is a function in H satisfying
that

−κ∆wo + ξo ∈ V and ξo ∈ β(wo) a.e. Ω

and Ko(·, · · · , ·) is an increasing function on R5
+ with respect to all the

arguments. Moreover, just as in Remark 2.2, we note that |wµεη(t)|2H2(Ω) +
|ξµεη(t)|2H is estimated from above by the H-norm of

)µεη(t) := −(F−1
o + µI)w′

µεη(t) + πo[λ′(wµεη(t))uµεη(t) − g(wµεη(t))],

namely,

|wµεη(t)|2H2(Ω)+|ξµεη(t)|2H ≤ C1(|)µεη(t)|2H + 1) (cf.(2.22))

≤ C2(|w′
µεη(t)|2V ∗

o
+ µ2|w′

µεη(t)|2H + |uµεη(t)|2H + 1)

for a.e. t ∈ [0, T ] and all µ, ε, η ∈ (0, 1],

where C1 and C2 are positive constants. Therefore, it follows from (3.21)
that

(3.22)

|wµεη(t)|2H2(Ω) + |ξµεη(t)|2H
≤ K1(T, |ρ(uoεη)|H , |uoεη|V , |wo|H2(Ω), | − κ∆wo + ξo|V )

+ k4

∫ T

0

∫
Ω
λ′′(wµεη)|w′

µεη|2uµεηdxdτ

for all t ∈ [0, T ], where K1(·, · · · , ·) is a function on R5
+ having the same

properties as Ko(·) and k4 is a positive constant independent of µ, ε, η ∈
(0, 1].

4. Convergence of Approximate Solutions and Proof of the
Existence Result

The solution of (PSC) is constructed in two steps of limiting process as
η → 0 and ε, µ → 0.

In the first step, parameters µ and ε are fixed, and parameter η goes to
0. For each ε ∈ (0, 1], we write J1ε for J1ε0 and u∞

ε for u∞
ε0.
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Lemma 4.1. Let µ, ε ∈ (0, 1], 0 < T < +∞ and [uo, wo] ∈ Do(mo). Then
problem (PSC)µε := (PSC)µε0 has one and only one solution {uµε, wµε} on
[0, T ]. Moreover it satisfies the following energy inequalities (4.1) - (4.3):

(4.1)

J1ε(uµε(t), wµε(t)) +
∫ t

0
|uµε − u∞

ε |2V dτ

+
∫ t

0
(|w′

µε|2V ∗
o

+ µ|w∞
µε|2H)dτ

≤ J1ε(u0ε, wo)

for all t ∈ [0, T ], where uoε := uo ∧ aε;

(4.2) |ρε(uµε(t))+λ(wµε(t))|2H ≤ R1(T ){|ρ(uoε)+λ(wo)|2H+J1ε(uoε, wo)+1}
for all t ∈ [0, T ];

(4.3)

t|uµε(t) − u∞
ε |2V + t|w′

µε(t)|2V ∗
o

+ tµ|w′
µε(t)|2H

+ νt|
∫
Ω
ρ̂ε(uµε(t))dx| + κ

∫ t

0
τ |w′

µε|2V ∗
o
dτ

≤ R3(T ){J1ε(uoε, wo) + |ρ(uoε) + λ(wo) − ρε(u∞
ε )|2V ∗ + 1}

for all t ∈ [0, T ]. Here R1(·) and R3(·) are the same ones as in Estimates
(II), (IV ).

Proof. Let {uµεη, wµεη}, µ, ε, η ∈ (0, 1], be the approximate solutions consid-
ered in section 3. Then we now recall such an estimate, essentially due to
[16], for the integral

Iµεη(t) :=
∫ t

0

∫
Ω
λ′′(wµεη)|w′

µεη|2uµεηdxdτ
in [10; the proof of Lemma 5.2] that

(4.4) Iµεη(t) ≤ δ1 sup
0≤τ≤t

|w′
µεη(τ)|2H + δ1

∫ t

0
|w′

µεη|2Vo
dτ + k5(µ, δ1)

for all t ∈ [0, T ], where δ1 is an arbitrary (small) positive number and
k5(µ, δ1) is a positive constant depending only on µ, δ1, but not on ε, η ∈
(0, 1].

It is easy to see from (3.13), (3.21), (3.22) in Remark 3.1 and (4.4) that

(4.5)

|uµεη|2L∞(0,T ;V ) + |ρεη(uµεη)|2L∞(0,T ;H)

+ |wµεη|2L∞(0,T ;H2(Ω)) + |ξµεη|2L∞(0,T ;H)

+ |w′
µεη|2L2(0,T ;Vo) + |w′

µεη|2L∞(0,T ;H) +
∫ T

0
(ρεη(uµεη)′, u′

µεη)dτ

≤ k6 := k6(T, µ, uo, wo)

for ε, η ∈ (0, 1], where k6 is a positive constant depending on T, µ and initial
data [uo, wo] ∈ Do(mo), but not on ε, η ∈ (0, 1]. Also, by (3.2) we have

(4.6)
∫ T

0
(ρεη(uµεη)′, u′

µεη)dτ ≥ C(ε)|u′
µεη|2L2(0,T ;H).
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Therefore, for a sequence {ηn} with ηn ↓ 0 (as n → +∞), some functions
uµε ∈ W 1,2(0, T ;H)∩Cw([0, T ];V ), wµε ∈ Cw([0, T ];H2(Ω))∩W 1,2(0, T ;V )∩
W 1,∞(0, T ;H) and ξµεη ∈ L∞(0, T ;H) it follows from (4.5) and (4.6) that

(4.7)
uµεηn → uµε in C([0, T ];H) ∩ Cw([0, T ];V )

and weakly in W 1,2(0, T ;H),

(4.8)
wµεηn → wµε in C([0, T ];V ) ∩ Cw([0, T ];H2(Ω))

and weakly in W 1,2(0, T ;V )

and

(4.9) ξµεηn → ξµε weakly∗ in L∞(0, T ;H);

these imply that ρεηn(uµεηn) → ρε(uµε) weakly∗ in L∞(0, T ;H) and that
ξµε ∈ β(wµε) a.e. on [0, T ] × Ω, since ξµεηn ∈ β(wµεηn) a.e. on [0, T ] × Ω.
Besides, it is easily inferred from the above convergences (4.7) - (4.9) that
{uµε, wµε} is a (unique) solution of (PSC)µε on [0, T ]. By the way, since uµε ≤
0 a.e. on [0, T ] × Ω, condition (H3) implies that λ′′(wµεηn)|w′

µεηn
|2uµε ≤ 0

a.e. on [0, T ] × Ω, so that

(4.10)

lim sup
n→+∞

∫ T

0

∫
Ω
τλ′′(wµεηn)|w′

µεηn
|2uµεηndxdτ

≤ lim sup
n→+∞

∫ T

0

∫
Ω
τλ′′(wµεηn)|w′

µεηn
|2(uµεηn − uµε)dxdτ

≤ const. lim sup
n→+∞

|uµεηn − uµε|C([0,T ];H) · |w′
µεηn

|2L2(0,T ;L4(Ω))

= 0.

Now, passing to the limit in (3.11) and (3.13) and (3.20) as ηn → 0, we have
by (4.10) inequalities (4.1), (4.2) and (4.3).

Remark 4.1. By combining (3.21) and (3.22) in Remark 3.1 with (4.10)
for the solution {uµε, wµε} of (PSC)µε we have the following estimate:

(4.11)

|uµε(t) − u∞
ε |2V + |w′

µε(t)|2V ∗
o

+ µ|w′
µε(t)|2H + ν|

∫
Ω
ρ̂ε(uµε(t))dx|

+ κ

∫ t

0
|∇w′

µε|2Hdτ + 2
∫ t

0
(ρε(uµε)′, u′

µε)dτ

≤ Ko(T, |ρ(uoε)|H , |uoε|V , |wo|H2(Ω), | − ∆wo + ξo|V )

for a.e. t ∈ [0, T ];

(4.12)
|wµε(t)|2H2(Ω) + |ξµε(t)|2H

≤ K1(T, |ρ(uoε)|H , |uoε|V , |wo|H2(Ω), | − ∆wo + ξo|V )

for all t ∈ [0, T ], where Ki(·, · · · , ·) : R5
+ → R+, i = 1, 2, are increasing

functions with respect to all the arguments.
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Proof of Theorem 2.2. First assume that [uo, wo] ∈ Do(mo). In this
case we can use the estimates (4.11) and (4.12) in addition to (4.1) - (4.3).
Therefore, for suitable sequences {µn} and {εn} with µn ↓ 0 and εn ↓ 0
(as n → +∞) and some functions u ∈ L∞(0, T ;V ), ρ̃ ∈ L∞(0, T ;H), w ∈
Cw([0, T ];H2(Ω)) and ξ ∈ L∞(0, T ;H), the solution {un, wn} of (PSC)n
:= (PSC)µnεn converges to the couple {u,w} in the sense that

(4.13) un → u weakly∗ in L∞(0, T ;V ),

(4.14) ρn := ρεn(un) → ρ̃ in Cw([0, T ];H) and weakly in W 1,2(0, T ;V ∗),

(4.15) wn → w in C([0, T ];H) ∩ Cw([0, T ];H2(Ω)),

(4.16) w′
n → w′ weakly∗ in L∞(0, T ;V ∗

o ),

(4.17) ξn := ξµnεn → ξ weakly∗ in L∞(0, T ;H).

By the standard techniques of the maximal monotone operator theory, it
follows from (4.13) and (4.14) that ρ̃ = ρ(u) and un → u in Cw([0, T ];V ) (cf.
[10; the proof of Theorem 2.3] and [15;Remark 1.3]), and also from (4.15)
and (4.17) that ξ ∈ β(w) a.e. on [0, T ] × Ω. Now, it is easy to see that the
limit {u,w} is a solution of (PSC) on [0, T ], and estimates (2.18) - (2.20)
hold for s = 0 < t ≤ T and M1(T ) = R1(T ),M2(T ) = R3(T ), by Lemma
4.1.

Secondly, consider the general case of [uo, wo] ∈ D(mo). In this case,
choose a sequence {[uok, wok]} in Do(mo) such that

ρ(uok) → ρ(uo) in H, wok → wo in V, J1(uok, wok) → J1(uo.wo)

as k → +∞. As was shown above, for each k problem (PSC;f, h, uok, wok)
has one and only one solution {uk, wk} on [0, T ] and it satisfies inequalities
(2.18) - (2.20) and (2.21) for s = 0 < t ≤ T . Therefore, there is a subsequence
of {uk, wk}, denoted by {uk, wk} again, with some functions u, ρ̃, w and ξ
such that

(4.18)
uk → u weakly in L2(0, T ;V )

and weakly∗ in L∞(δ, T ;V ) for every 0 < δ ≤ T,

(4.19) ρ(uk) → ρ̃ weakly∗ in L∞(0, T ;H),

(4.20) wk → w in C([0, T ];H) ∩ Cw(([0, T ];V ), weakly in L2(0, T ;H2(Ω))

and in Cw([δ, T ];H2(Ω)) for every 0 < δ ≤ T,

(4.21)
w′
k → w′ weakly in L2(0, T ;V ∗

o )

and weakly∗ in L∞(δ, T ;V ∗
o ) for every 0 < δ ≤ T,

(4.22)
ξk → ξ weakly in L2(0, T ;H)

and weakly∗ in L∞(δ, T ;H) for every 0 < δ ≤ T.
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Just as in the first step, (4.18) and (4.19) imply that ρ̃ = ρ(u) and

(4.23) uk → u in Cw([δ, T ];V ) for every 0 < δ ≤ T,

and (4.20) and (4.22) imply that ξ ∈ β(w) a.e. on [0, T ] × Ω. Also, con-
vergences (4.18) - (4.22) are enough to show that {u,w} is a solution of our
problem (PSC) on [0, T ] and satisfies (2.18) - (2.20) for s = 0 < t ≤ T . We
finally get a global solution {u,w} of (PSC), since T is arbitrary.

Inequalities (2.18) - (2.20) for s > 0 and T > 0 are immediately obtained
by taking s as the initial time.

5. The Attractor for the Semigroup Associated With (PSC)

Based on Theorem 2.2, for each t ≥ 0 we can define a mapping S(t) :
D(mo) → D(mo) by

(5.1) S(t)[uo, wo] = [u(t), w(t)], [uo, wo] ∈ D(mo),

where {u,w} is the global solution of (PSC;f, h, uo, wo).

Theorem 5.1. Assume that (H1) - (H5), (2.16) and (2.17) are satisfied.
Let σ∗ < mo < σ∗. Then the family {S(t)} := {S(t); t ≥ 0}, defined by
(5.1), satisfies the following properties:
: (a) {S(t)} is a semigroup defined on D(mo), i.e.

S(0) = I on D(mo), S(t + s) = S(t)S(s) on D(mo) for any s, t ≥ 0.

: (b) Let 0 < δ < T < +∞. Then S(·)[z, v] ∈ Cw([δ, T ];V × H2(Ω)) for
any [z, v] ∈ D(mo). Moreover, if [zn, vn] ∈ D(mo), n = 1, 2, · · · , [z, v] ∈
D(mo), {J1(zn, vn)} is bounded, ρ(zn) → ρ(z) weakly in H and vn → v
weakly in V as n → +∞, then

(5.2) S(·)[zn, vn] → S(·)[z, v] in Cw([δ, T ];V × H2(Ω))

as n → +∞.
: (c) For each M > 0, DM (mo) is positively invariant for {S(t)} (i.e.

S(t)DM (mo) ⊂ DM (mo) for all t ≥ 0), and in particular,

(5.3) S(t)DM (mo) ⊂ DM
o (mo) for all t > 0.

Proof. Assertion (a) is a direct consequence of the global existence and
uniqueness result (cf. Theorems 2.1 and 2.2) for (PSC), and assertion (c)
follows from (2.18) - (2.21) and (2.23). The proof of assertion (b) is exactly
same as that of the second step in the proof of Theorem 2.2; see (4.20) and
(4.23).

The main result of this paper is stated in the following theorem.

Theorem 5.2. Assume that (H1) - (H5) with ν > 0, (2.16) and (2.17) are
satisfied. Let σ∗ < mo < σ∗ and let {S(t)} be the semigroup on D(mo)
defined by (5.1). Then there exists a subset A of Do(mo) such that
: (i) A is compact and connected in H×V , and is bounded in V ×H2(Ω);
: (ii) A is invariant for {S(t)}, i.e. A = S(t)A for all t ≥ 0;
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: (iii) for each subset B of D(mo) with sup[z,v]∈B{J1(z, v) + |ρ(z)|2H} <
+∞, and for each ε > 0 there exists a finite time TB,ε > 0 such that

distH×V (S(t)[z, v], A) < ε for all [z, v] ∈ B and all t ≥ TB,ε,

where distH×V (·, ·) stands for the distance in H × V .

In this paper, we say that a set A is a global attractor for the semigroup
{S(t)}, if it has properties (i), (ii) and (iii) of Theorem 5.2. The key for the
proof of Theorem 5.2 is to find an absorbing set Bo for the semigroup {S(t)}.
To do so we prove a lemma under the same assumptions of Theorem 5.2.

Lemma 5.1. (1) There is a positive constant No such that

(5.4) κ|πow(t)|2Vo
+

∫
Ω
β̂(w(t))dx ≤ No{|w′(t)|V ∗

o
+ |u(t)|H +1}, a.e. t ≥ 0,

for all global solutions {u,w} with initial data [uo, wo] ∈ D(mo).
(2) There are positive constants εo, ε1 and N1 such that

(5.5)

d

dt
{J1(u(t), w(t)) + εo|ρ(u(t)) + λ(w(t))|2H}

+ ε1{J1(u(t), w(t)) + εo|ρ(u(t)) + λ(w(t))|2H}
≤ N1, a.e. t ≥ 0,

for all global solutions {u,w} with initial data [uo, wo] ∈ D(mo).

Proof. (1) We multiply (2.6) by πow(t)(= w(t) − mo) to get

(F−1
o w′(t), πow(t)) + κ|πow(t)|2Vo

+ (ξ(t), w(t) − mo) + (g(w(t)), w(t) − mo)

= (λ′(w(t))u(t), w(t) − mo) for a.e. t ≥ 0.
This implies that (5.4) holds for some constant No independent of initial
data [uo, wo] ∈ D(mo), since

(ξ(t), w(t) − mo) ≥
∫
Ω
β̂(w(t))dx − |Ω|β̂(mo),

|(F−1
o w′(t), πow(t))| ≤ const.|w′(t)|V ∗

o

and
|(λ′(w(t))u(t), w(t) − mo)| ≤ const.|u(t)|H .

(2) By the definition of subdifferential ρ−1 of ˆρ−1, we observe that

(5.6)

∫
Ω

ˆρ−1(ρ(u(t)))dx − (ρ(u(t)) + λ(w(t)), u∞)

≤ (ρ(u(t)) − ρ(u∞), u(t)) +
∫
Ω

ˆρ−1(ρ(u∞))dx

− (ρ(u(t)) + λ(w(t)), u∞)

= (ρ(u(t)) + λ(w(t)), u(t) − u∞)

− (ρ(u∞) + λ(w(t)), u(t)) +
∫
Ω

ˆρ−1(ρ(u∞))dx

≤ k7{|u(t) − u∞|2V + |ρ(u(t)) + λ(w(t))|2H + 1} for all t > 0,
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where k7 is a positive constant independent of any solution {u,w} of (PSC)
with [uo, wo] ∈ D(mo). Combining (5.4) and (5.6), we see that

(5.7)
J1(u(t), w(t)) ≤ k8{|u(t) − u∞|2V + |w′(t)|2V ∗

o

+ |ρ(u(t)) + λ(w(t))|2H + 1} for a.e. t ≥ 0,

where k8 is a positive constant independent of any solution {u,w} of (PSC)
with [uo, wo] ∈ D(mo). Besides, recall the inequalities

(5.8)
d

dt
J1(u(t), w(t)) + |u(t) − u∞|2V + |w′(t)|2V ∗

o
≤ 0 for a.e. t ≥ 0,

and

(5.9)
d

dt
|ρ(u(t)) + λ(w(t))|2H +

ν

2
|ρ(u(t)) + λ(w(t))|2H

≤ k2{|u(t) − u∞|2V + |w(t)|2V + 1}
for a.e. t ≥ 0, which are derived from (2.18) and (3.14), respectively. In
(5.9), note from (5.4) that |w(t)|2V can be estimated by const.{|w′(t)|V ∗

o
+

|u(t)|H + 1}, so that

(5.10)
d

dt
|ρ(u(t)) + λ(w(t))|2H +

ν

2
|ρ(u(t)) + λ(w(t))|2H

≤ k9{|u(t) − u∞|2V + |w′(t)|2V ∗
o

+ 1}
for a.e. t ≥ 0, where k9 is a positive constant independent of all solutions
{u,w} of (PSC) with [uo, wo] ∈ D(mo).

Now, compute (5.8) + εo × (5.10) with εo = 1
2k9

to obtain

(5.11)

d

dt
{J1(u(t), w(t)) + εo|ρ(u(t)) + λ(w(t))|2H}

+
1
2
{|u(t) − u∞|2V + |w′(t)|2V ∗

o
+ 1}

+
νεo
2

|ρ(u(t)) + λ(w(t))|2H
≤ 1

for a.e. t ≥ 0. Therefore, putting

ε1 = min{ 1
2k8

,
νεo
4k8

,
ν

4
} and N1 = 1,

we obtain (5.5) immediately from (5.11).

Remark 5.1. In general, for a solution {u,w} of (PSC) we do not know
the absolute continuity of J1(u(t), w(t)) in time t. But it follows from (2.18)
of Theorem 2.2 that J1(u(t), w(t)) is of bounded variation (hence almost
everywhere differentiable in t) and its derivative d

dtJ1(u,w) is integrable on
each bounded interval of R+, and

J1(u(t), w(t)) − J1(u(s), w(s)) ≤
∫ t

s

d

dτ
J1(u,w)dτ for any 0 ≤ s ≤ t < +∞.

Therefore inequality (5.5) makes sense. Also, inequality (5.9) similarly makes
sense.
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Now we fix the functional

J(z, v) := J1(z, v) + εo|ρ(z) + λ(v)|2H
with εo in (2) of Lemma 5.1. For the simplicity of notation we write
J(S(t)[uo, wo]) for J(u(t), w(t)), {u,w} being the global solution of (PSC)
with initial data [uo, wo] ∈ D(mo).

Lemma 5.2. There exists a subset Bo of D(mo) such that
: (a) sup

[z,v]∈Bo

J(z, v) < +∞,
: (b) for any subset B with sup[z,v]∈B J(z, v) < +∞, there exists a time

tB > 0 such that

S(t)B ⊂ Bo for all t ≥ tB.

Proof. From (5.5) of Lemma 5.1 it follows that

J(S(t)[z, v]) ≤ e−ε1tJ(z, v) +
N1

ε1
for all t ≥ 0 and all [z, v] ∈ D(mo).

Now, take a subset

Bo := {[z, v] ∈ D(mo);J(z, v) ≤ 1 +
N1

ε1
}.

Then, Bo clearly satisfies properties (a) and (b).

Lemma 5.3. Let B be any subset of D(mo) with sup[z,v]∈B J(z, v) < +∞,
and δ be any positive number. Then Bδ := ∪t≥δS(t)B

H×V
is in Do(mo),

compact in H × V , bounded in V × H2(Ω) and

sup
[z,v]∈Bδ

J(z, v) < +∞.

Proof. By Lemma 5.2, there is a finite time to > 0 such that S(t)B ⊂ Bo and
S(t)Bo ⊂ Bo for all t ≥ to. Hence, if t ≥ 2to+δ, then S(t)B = S(δ)S(t−to−
δ)S(to)B ⊂ S(δ)Bo. By (2.18) - (2.23) of Theorem 2.2 and Remarks 2.2, 2.3,
S(δ)Bo is in Do(mo), bounded in V × H2(Ω) and sup[z,v]∈S(δ)Bo

J(z, v) <

+∞. Therefore, B2to+δ := ∪t≥2to+δS(t)B
H×V

is in Do(mo), compact in
H × V , bounded in V × H2(Ω) and sup[z,v]∈B2to+δ

J(z, v) < +∞. Applying
again (2.18) - (2.23) with s = 0 and T = 2to + δ, we see that the set

Bδ,2to+δ :=
⋃

δ≤t≤2to+δ

S(t)B
H×V

has the same properties as B2to+δ. Consequently Bδ (⊂ B2to+δ ∪ Bδ,2to+δ)
has the required properties.

Proof of Theorem 5.2. The construction of A is quite standard. In fact,
we shall show that the set

(5.12) A :=
⋂
s>0

⋃
t≥s

S(t)Bo

H×V
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is the required one, where Bo is the absorbing set found by Lemma 5.2. By
(5.12) it is clear that

(5.13)




[z, v] ∈ A if and only if there are sequences {tn} with
tn ↑ +∞ as n → +∞
and {[zn, vn]} ⊂ Bo such that
S(tn)[zn, vn] → [z, v] in H × V.

Moreover, on account of Lemmas 5.2 and 5.3, we see that A ⊂ Do(mo)∩Bo,
and in (5.13) the sequences {tn} and {[zn, vn]} can be chosen so as to satisfy
further that for some [z̃, ṽ] ∈ Do(mo)

(5.14)




S(tn)[zn, vn] → [z, v] weakly in V × H2(Ω),
[zn, vn] → [z̃, ṽ] weakly in V × H2(Ω),
supn≥1 J(zn, vn) < +∞, supn≥1 J(S(tn)[zn, vn]) < +∞.

(i) By Lemma 5.3, for each s > 0, Bs := ∪t≥sS(t)Bo
H×V

is compact in
H × V and bounded in V × H2(Ω), so is A.

Next, by contradiction we show the connectedness of A. Assume that A
is not connected in H ×V . Then there would exist two compact sets A1 and
A2 in H × V such that

A1 ∪ A2 = A, A1 ∩ A2 = ∅, Ai �= ∅, i = 1, 2.

Let Xi := [zi, vi] ∈ Ai for i = 1, 2, and choose by (5.13) and (5.14) sequences
{tin} with tin ↑ +∞ and Xi

n := [zin, v
i
n] ∈ Bo ∩ Do(mo) such that

(5.15)
S(tin)Xi

n → Xi weakly in V × H2(Ω),

sup
n≥1

J(S(tin)Xi
n) < +∞, i = 1, 2.

Without loss of generality we may assume that

t1n < t2n < t1n+1, t2n − t1n ≥ 1, for all n = 1, 2, · · · .
Putting X̃2

n := S(t2n − t1n)X2
n, we have

(5.16) S(t1n)X̃2
n (= S(t2n)X2

n) → X2 weakly in V × H2(Ω)

and by Lemma 5.3

(5.17) sup
n≥1

J(X̃2
n) < +∞.

Consider the segment

Ln(τ) := τX1
n + (1 − τ)X̃2

n, τ ∈ [0, 1].

Then, we easily observe from (5.15) - (5.17) that

(5.18) Ln(τ) ∈ Do(mo), τ ∈ [0, 1], sup
τ∈[0,1],n≥1

J(Ln(τ)) < +∞.

This implies by (b) of Theorem 5.1 that S(t1n)Ln(τ), τ ∈ [0, 1], is a con-
tinuous curve combining S(t1n)X1

n and S(t1n)X̃2
n in H × V . Now, take ε-

neighborhoods U i
ε of Ai for i = 1, 2, for a sufficiently small number ε > 0 so
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that U1
ε ∩U2

ε = ∅. In this case, S(t1n)X1
n ∈ U1

ε and S(t1n)X̃2
n ∈ U2

ε for all suf-
ficiently large n (cf. (5.15),(5.16)). Hence there is a sequence {τn} ⊂ (0, 1)
such that

(5.19) S(t1n)Ln(τn) /∈ U1
ε ∪ U2

ε .

Besides, by Lemma 5.2, choose a positive number to such that

S(to)Ln(τ) ∈ Bo for all τ ∈ [0, 1], n = 1, 2, · · · .
Since S(t1n)Ln(τ) = S(t1n − to)S(to)Ln(τ) ⊂ S(t1n − to)Bo, it follows from
Lemma 5.3 that {S(t1n)Ln(τ); τ ∈ [0, 1], n ≥ no} is bounded in V × H2(Ω)
for all sufficiently large no. Therefore, by (5.13), any accumulation point of
{S(t1n)Ln(τn);n ≥ no} in H × V belongs to A. This contradicts (5.19).

(ii) First we prove S(t)A ⊂ A for all t > 0. Let X := [z, v] be any element
of A. Then, there are sequences {tn} with tn ↑ +∞ and {Xn := [zn, vn]}
satisfying the properties in (5.13) and (5.14). We note by (b) of Theorem
5.1 that for t > 0

S(t + tn)Xn = S(t)S(tn)Xn → S(t)X weakly in V × H2(Ω).

Hence S(t)X ∈ A by (5.13) again. Thus S(t)A ⊂ A.
Conversely, we show A ⊂ S(t)A for t > 0. Let X := [z, v] be any element

of A. Then, there are sequences {tn} and {Xn := [zn, vn]} ⊂ Do(mo) ∩ Bo

satisfying (5.13) and (5.14). Now, by Lemmas 5.2 and 5.3, {Yn := S(tn −
t)Xn;n ≥ no} is bounded in V × H2(Ω) and supn≥no

J(Yn) < +∞ (if no is
sufficiently large), so we may assume that Yn → Y weakly in V ×H2(Ω) for
some Y ∈ A. Applying (b) of Theorem 5.1 we see that

S(t)Yn → S(t)Y weakly in V × H2(Ω),

so that X = S(t)Y , since S(t)Yn = S(tn)Xn → X weakly in V × H2(Ω) by
(5.13). Thus A ⊂ S(t)A.

(iii) By Lemma 5.2 it is enough to show that

distH×V (S(t)[z, v], A) → 0 uniformly in [z, v] ∈ Bo as t → +∞.

But this is evident from the definition (5.12) of A.
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