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We treat some recent results concerning sampling expansions of Kramer type. The link
of the sampling theorem of Whittaker-Shannon-Kotelnikov with the Kramer sampling
theorem is considered and the connection of these theorems with boundary value prob-
lems is specified. Essentially, this paper surveys certain results in the field of sampling
theories and linear, ordinary, first-, and second-order boundary value problems that gen-
erate Kramer analytic kernels. The investigation of the first-order problems is tackled in
a joint work with Everitt. For the second-order problems, we refer to the work of Everitt
and Nasri-Roudsari in their survey paper in 1999. All these problems are represented by
unbounded selfadjoint differential operators on Hilbert function spaces, with a discrete
spectrum which allows the introduction of the associated Kramer analytic kernel. How-
ever, for the first-order problems, the analysis of this paper is restricted to the specification
of conditions under which the associated operators have a discrete spectrum.

1. Introduction

This paper surveys certain results in the area of sampling theories and linear, ordinary,
first- and second-order boundary value problems that produce Kramer analytic kernels.

1.1. Notations. The symbol H(U) represents the class of Cauchy analytic functions that
are holomorphic (analytic and regular) on the open set U < C, that is, H(C) represents
the class of all entire or integral functions on C. The symbol I = (a,b) denotes an arbitrary
open interval of R; the use of “loc” restricts a property to compact subintervals of R. All
the functions f : (a,b) — C are taken to be Lebesgue measurable on (g, b), all integrals are
in the sense of Lebesgue, and AC denotes absolute continuity with respect to Lebesgue
measure.

If w is a weight function on I, then the Hilbert function space L*(I;w) is the set
of all complex-valued, Lebesgue measurable functions f : I — C such that fab wlf |2 =
ff w(x)|f(x)|?dx < +o0 and then, with due regard to equivalence classes, the norm and
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inner product are given by

b
IFIR = LW' B (o= j w(x) f (0g(x)dx. (L1)

1.2. The W.S.K. sampling theorem. This sampling theorem owes its first appearance to
Whittaker, in 1915. The same result was obtained later and independently by Kotel’nikov,
in 1933, and by Shannon, in 1949. So, it is presently known in the mathematical litera-
ture as the W.S.K. theorem (see [31, 35, 40]). However, there are more names who have
legitimate claims to be included and for a historical review, we refer to [26, 27]. Turning
to the seminal paper by Shannon, this theorem, the proof of which is found in [35], reads
as follows.

TaEOREM 1.1 (see [35]). If a signal (function) f(t) contains no frequencies higher than
W72 cycles per second, that is, is band limited to [—nW,n W], which means that f(t) is of
the form

474

f(t) = J Wg(x) exp(ixt)dx, (1.2)

-

then f(t) is completely determined by giving its ordinates at a sequence of points spaced 1/W
apart and f (t) is the sum of its “scaled” cardinal series

< n \sint(Wt—n)
fo= 2 f(w) a(Wt—n) (13)

n=—o00

Remark 1.2. This is the first of the sampling theory results; the signal f cannot change to
a substantially new value in a time less than half a cycle of its highest frequency, W/2 cy-
cles per second. And moreover, the collection of “samples” { f(n/W):n=0,+1,%2,...}
specifies g via its Fourier series, since the general Fourier coefficient of g (in (1.2)) is
f(n/W), and then g specifies f via (1.2). So, if f can be “measured” at the sampling
points {n/W : n € Z}, which are equidistantly spaced over the whole real line R, then f
can be reconstructed uniquely at every point of the real line R. The engineering principle
established in this way leads to the assertion that certain functions whose frequency con-
tent is bounded are equivalent to an information source with discrete time. This has a ma-
jor application in signal analysis, and in order to obtain, in general, a great appreciation
of the broad scope of sampling theory, we refer, for example, to [4, 5, 6, 26, 28, 30, 33].

The contents of the paper are as follows: Section 2 gives an analytical background in-
formation about the original and the analytic form of the Kramer theorem followed by
a discussion concerning quasidifferential problems and operators; Section 3 gives an ac-
count of results with respect to the generation of Kramer analytic kernels from first-order
boundary value problems, but without mentioning the spectral properties that yield a dis-
crete spectrum of the associated operators; and finally, Section 4 deals with results about
the connection of second-order linear ordinary boundary value problems and the Kramer
sampling theorem.
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2. Introduction to the analytical background

2.1. The original and the analytic form of the Kramer theorem. In 1959, Kramer pub-
lished the following remarkable result, the proof of which is given in [32].

THEOREM 2.1 (Kramer theorem). Suppose that f(t):= [,K(x,t)g(x)dx, t € R, for some
g € L*(I), where I is an open interval of R and the kernel K : I xR — R satisfies the proper-
ties that, for each real t, K(+,t) € L*(I), and there exists a countable set of reals {t, : n € Z}
such that {K(+,t,) : n € Z} forms a complete orthogonal set on L*(I). Then

D= S fe)Sut),  Sa(t) = WKEOK L) dx

. (2.1)
neZ fI|K :tn | dx

And moreover, the conditions on the kernel are met by certain solutions of selfadjoint eigen-
value problems, where the parameter t is an eigenvalue parameter; the eigenvalues are chosen
to be the sampling points and the complete orthogonal system of eigenfunctions, the set of
functions {K(x,An) :n € Z}.

Remark 2.2. (i) Each eigenvalue problem that produces a complete set of eigenfunctions
and also real simple and countably infinite many eigenvalues is suitable for the Kramer
theorem. For a study of Kramer kernels constructed from boundary value problems, see,
for example, [7, 32].

(ii) A certain class of boundary value problems transforms the W.S.K. sampling theo-
rem (Theorem 1.1) into a particular case of the Kramer theorem. For example, take under
consideration the selfadjoint, regular eigenvalue problem, for o >0, 1 € R:

—-iy'(x) = Ay(x), x¢€[-0,0], y(-0) = y(0). (2.2)

The eigenvalues are given by A, = nm/o, n € Z, and the corresponding eigenfunctions are
yn(x) = exp(innx/c), n € Z. The general solution K(x,A) = exp(ixA) of the differential
equation is a suitable kernel for Theorem 1.1. So, if f is of the form

F) = J exp(ixh)g(x)dx, g€ I2(~0,0), AER, (2.3)

then there exists the sampling representation

£ = Zf<n7r>51n axl—nn)' (2.4)

= o) —nm)

(iii) The Kramer kernel that arises from the above example has a significant prop-
erty. This property also emerges in a number of other cases of symmetric boundary value
problems and is not predicted in the statement of Kramer’s theorem, that is, K(x,-) €
H(C), x € I (see Section 1.1). For additional details of the previous boundary value prob-
lem, see the results in [15, Section 5.1].

The following theorem gives an analytic form of the Kramer theorem in the way that
allows analytic dependence of the kernel on the sampling parameter.
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THEOREM 2.3. Let I = (a,b) be an arbitrary open interval of R and let w be a weight func-
tion on 1. Let the mapping K : I x C — C satisfy the following properties:

(1) K(-,A) € L*(I;w) (A € C),
(2) K(x,-) e H(C) (x € (a,])),
(3) there exists a sequence {A, € R:n € Z} satisfying
(D) An <Ani1 (n € Z),
(i) lim,—+0 A, = o0,
(iii) the sequence of functions {K(-,A,) : n € Z} forms a locally linearly independent
and a complete orthogonal set in the Hilbert space L*(I;w),

(4) the mapping A — f: w(x)|K(x,A)|%dx is locally bounded on C.

Define the set of functions {K} as the collection of all functions F : L*(I;w) x C — C
determined by, for f € L*(I;w),

b
F(f;A)=F(QA):= j w(x)K(x,A) f(x)dx (A€ C). (2.5)

Then for all F € {K},

() F(f,+) € H(C) (f € LX(I;w));
(b) if S, : C — C is defined by, for alln € Z,

b
Si(A) = ||K(-,An)||‘2j WK (xR (x,A,)dx (1€ C), (2.6)

w

then S,, € H(C);
(c) F(f,A) = F(A) = 2.,z F(A\y)Ss(A), for all F € {K}, where the series is absolutely
convergent, for each A € C, and locally uniformly convergent on C.

Proof. For the proof of this theorem see [18, Theorem 2 and Corollary 1]; the ideas for
these results come from [10] and [21, Theorem 1.1]. O

Remark 2.4. (i) Suitable problems for the above theorem are, for example, regular selfad-
joint eigenvalue problems of nth-order and singular selfadjoint problems of second-order
in the limit-circle endpoint case (for classifications of eigenvalue problems, see [34], and
for information concerning Kramer analytic kernels, see, e.g., [15, 19, 41]).

(ii) As outlined in Remark 2.2(ii), the W.S.K. theorem can be seen as a particular case
of Kramer’s result for a certain class of problems. So, the question arises whether these two
theorems are equivalent to each other or not. The link of the W.S.K. “sampling results”
and Kramer’s theorem has been the concern of many authors. The first person who dealt
with this problem was Campbell in 1964 (see [7]). Later, there is a lot to be found in
the literature; see, for example, [29, 42]. Also, an extensive historical perspective of the
equivalence of Kramer and W.S.K. theorems for second-order boundary value problems
is given in [24]; there also may be found some results for the Bessel and the general Jacobi
cases.
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2.2. Quasidifferential problems and operators. The environment of the general theory
of quasiderivatives is the best for the study of symmetric (selfadjoint) boundary value
problems which, as noticed in Remark 2.4(i), are a source for the generation of Kramer
analytic kernels. Furthermore, all the classical differential expressions appear as special
cases of quasidifferential expressions; for confirmation, we refer to [13, 14, 20, 25, 34].
Finally, the Shin-Zettl quasidifferential expressions are considered to be the most gen-
eral ordinary linear differential expressions so far defined, for order n € N and n > 2; for
details see [9, 11, 22, 23, 36, 37, 38, 43]. Accordingly, the general formulation of quasidif-
ferential boundary value problems will be performed as follows.

LetI = (a,b) be an open interval of the real line R. Let M,, be a linear ordinary differen-
tial expression. In the classical case, M, is of finite order n > 1 on I with complex-valued
coefficients, and of the form

Mulf1=paf P+ puci f" V4 pif +pof, (2.7)

where p;: 1 — C with p; € L} (I), j =0,1,...,n— 1, n, and further p, € ACj,c(I) with
Pn(x) # 0, for almost all x € I. For the special case n = 1, see details in [12].

In the more general quasidifferential case, the expression M, is defined as in [23] and
[14, Section I]. For n = 2, the expression M,, := M, is determined by a complex Shin-Zettl
matrix A = [a,s] € Z,(I) with the domain D(M,,) of M4 defined by

D(M,y) := {f:l — (C:fA[rfl] € ACjoc(I), forr = 1,2,...,11},

2.8
Malf1=1"f{" (f € D(Ma)), o
where the quasiderivatives fA[J ], for j = 1,2,...,n, are taken relative to the matrix A €
Zn(I). For these results and additional properties, see the notes [9]. In this investigation,
M, is Lagrange symmetric in the notation of [9, 20].

Every classical ordinary linear differential expression M,, as in (2.7), can be written as

a quasidifferential expression My, as in (2.8), with the same order n > 2. The first-order
differential expressions are essentially classical in form. Therefore, we can assume that
when n > 2, M, is a quasidifferential expression specified by an appropriate Shin-Zettl
matrix A € Z,(I). When n = 1, we consider M, as a classical expression and the analysis
given here works also in this case.

Now, the Green’s formula for M,, has the form

B
[ temal - gl = £ B - 1£.8)@  (fgeD(M)),  (29)
for any compact subinterval [«, 8] of (a,b). Here the skew-symmetric sesquilinear form
[-,-] is taken from (2.9); that is, it maps D(M,,) x D(M,) — C and is defined, for n > 2,
by

n

[f,81(0):=i" 3 (=1 [ (x)gtrD(x) - (x € (a,b), f,g € D(M,)) (2.10)

r=1



376  On sampling expansions of Kramer type
and, for n = 1, by
[f>8](x):=ip(x) f(x)g(x) (x € (a,), f.g € D(M1)). (2.11)
From the Green’s formula (2.9), it follows the limits
[f26)(a) = lim [ £,] ()

. 2.12
[£:8)(b) = lim [ £.,g](x), 212
both exist and are finite in C.

The spectral differential equations associated with the pairs {M,, w}, where w is a given
nonnegative weight (see Section 1.1), are

M,[yl =Awy on(a,b) (2.13)

with the spectral parameter A € C. The solutions of (2.13) are considered in the Hilbert
function space L*((a,b);w) (see Section 1.1). In order to define symmetric boundary
value problems in this space, linear boundary conditions of the form (see (2.9), (2.10),
(2.11), and (2.12))

[y:B:]1 = (B 1) = [y, B:1(a) =0, r=1,2,....4d, (2.14)

have to be connected, where the family {f,, r = 1,2,...,d} is a linearly independent set of
maximal domain functions chosen to satisfy the symmetry condition

(B Bs1(b) = [Brfsl(@) =0 (r,s=1,2,...,d). (2.15)

The integer d € Ny is the common deficiency index of (2.13) determined in L?((a,b);w)
and gives the number of boundary conditions needed for the boundary value problem
((2.13), (2.14)) to be symmetric, that is, to produce a selfadjoint operator in L?((a,b); w).
This boundary value problem generates a uniquely determined unbounded selfadjoint
operator T in the space L>((a,b); w); see [23].

If the problem is regular on an interval (a,b), in which case this interval has to be
bounded, then d = n and the generalized boundary conditions (2.14) require the point-
wise values of the solution y and its quasiderivatives at the endpoints a and b. For this
regular case when the order #n = 2m is even and the Lagrange symmetric matrix is real
valued, see details in [34]. In the case n = 1, the index d can take the values 0 or 1, but
the value 0 is rejected (see Remark 3.3). In the case n = 2, essentially the Sturm-Liouville
case, the index d may take the values 0, 1, or 2; this value depends on the regular/limit-
point/limit-circle classification, in L?>(I;w), at the endpoints a and b of the differential
expression M,, (cf. [39, Chapter II]).

For the connection between the classical and quasidifferential systems, we refer to [14].

3. First-order problems

In this section, we investigate in greater details the link between the Kramer sampling
theorem and linear ordinary differential equations of first-order. The results we present
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here are given in [19]. We only point out that the development of our operator theory
as a source for the construction of Kramer analytic kernels is not given here; see [19] for
details of these Kramer kernels. The operator theory required is to be found in [1, 2, 8]; for
the classical theory of selfadjoint extensions of symmetric operators as based on Hilbert
space constructions, see [34].

3.1. Differential equations and operators. The selfadjoint boundary value problems

considered here are generated by the general first-order Lagrange symmetric linear dif-
ferential equation which defines the differential expression M; and is of the form

Mi[yl(x):=ip(x)y (x)+ %ip’(x)y(x) +q(x)y(x)

(3.1)
=Aw(x)y(x), VxE€(ab),
where —co < a < b < +o0 and A € C is the spectral parameter. Also,
pg-w:(a,b) — R,
p € ACioc(a,b), p(x)>0, Vxe€(ab),
(3.2)

g-w € L}, (a,b),
w(x) >0, foralmostallx e (a,b).

Under conditions (3.2), the differential equation (3.1) has the following initial value
properties; let ¢ € (a,b) and y € C, then there exists a unique mapping y : (a,b) X C - C
with

(1) y(-,A) € ACjoc(a,b), forall A € C,
(ii) y(x,-) € H, for all x € (a,b),
(iii) y(c,A) =y, forallA € C,
(iv) y(+,A) satisfies (3.1), for almost all x € (a,b) and all A € C.

However, direct formal integration shows that the required solution y is given by

V-0 * (Aw(t) - q(1)
yeo) =y S e (J o dt), Vxe(ab), VAEC.,  (33)

Remark 3.1 (see [19, Lemma 2.1]). A necessary and sufficient condition to ensure that
the solution y(-,A) € L*((a,b);w), forall A € C, is

P w()
L e, (3.4)

We notice that if there are any selfadjoint operators T in L?((a,b); w) generated by M;
(see (3.1)), then all such operators have to satisfy the inclusion relation

TocT=T*<T =T¢, (3.5)
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where Ty and T) are the minimal and maximal operators, respectively, generated by M;.
From the general theory of unbounded operators in Hilbert space, such selfadjoint oper-
ators exist if and only if the deficiency indices (d~,d*) of T are equal; see [34, Chapter
IV]. Thus for selfadjoint extensions of T to exist, there are only two possibilities:

(iyd =d" =0,

(i) d- =d" =1.

Remark 3.2 (see [19, Lemma 4.1]). (i) The indices d~ = d* = 0 if and only if, for some
c € (a,b), w/p & L (a,c] and w/p & L'[c,b).
(ii) The indices d~ = d* = 1 if and only if w/p € L' (a,b).

Remark 3.3. (a) In the case of Remark 3.2(i), if we define the operator T by T := T = T,
then T is the (unique) selfadjoint operator in L?>((a,b);w) generated by the differential
expression M, of (3.1). The selfadjoint boundary value problem, in this case, consists
only of the differential equation (3.1). In fact, the spectrum of T is purely continuous and
occupies the whole real line, that is, 0(T) = Ca(T) = R. We note that this case can give
no examples of interest for sampling theories. As an example in L?(—co0,+00), consider
iy’ (x) = Ay(x), for all x € (—co,+00).

(b) In the case of Remark 3.2(ii), which covers all regular cases of (3.1) and all singular
cases when condition (3.4) is satisfied, the general Stone/von Neumann theory of selfad-
joint extensions of closed symmetric operators in Hilbert space proves that there is a con-
tinuum of selfadjoint extensions {T'} of the minimal operator Ty with Top C T C T). These
extensions can be determined by the use of the generalized Glazman-Krein-Naimark
(GKN) theory for differential operators as given in [12, Section 4, Theorem 1]. The do-
main of any selfadjoint extension T of Ty can be obtained as a restriction of the do-
main of the maximal operator T;. These restrictions are obtained by choosing an element
B € D(T)) such that f arises from a nonnull member of the quotient space D(T;)/D(Ty)
with the symmetric property (recall (2.15)) [B,81(b™) — [B,8](a™) = 0. With this bound-
ary condition function § € D(T}), the domain D(T) is now determined by

D(T):= {f € D(Th) : [f,B1(b7) = [f,B](a") = O}, (3.6)

and the selfadjoint operator is defined by T'f := w M| f], for all f € D(T).
For an example of such a boundary condition function 3, see [19, Section 4, (4.20)].

Now, the selfadjoint boundary value problem consists of considering the possibility
of finding nontrivial solutions y(-,A) of the differential equation (3.1) with the property
y(+,A) € L*((a,b);w) that satisfies the boundary condition

[)’(:)‘)’,8] (b_) - [}’(ﬂ\))ﬁ](‘f) =0. (37)

The solution of this problem depends upon the nature of the spectrum ¢(T) of the
selfadjoint operator T determined by the choice of the boundary condition element j5.

In the case of Remark 3.2(ii), it is shown in [19, Theorem 5.1] that the spectrum of
o(T) of any selfadjoint extension T of T is discrete, simple, and has equally spaced eigen-
values on the real line of the complex spectral plane.
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3.2. Kramer analytic kernels. The results in [19] read as follows.

THEOREM 3.4. Suppose that (3.1) satisfies (3.2) and also (3.4) to give equal deficiency indices
d- =d* = 1. Let the selfadjoint operator T be determined by imposing a coupled bound-
ary condition (3.6) on the domain D(T)) of the maximal operator T\ using a symmetric
boundary condition function 8 as in Remark 3.3(b). Denote the spectrum o(T) of T by
{Ay 1 n € Z}. Define the mapping K : (a,b) X C — C by, where c € (a,b) is fixed,

1 “Aw(t) —q(t)
K(x,A)._Wexp(L e dt), Vxe(aby1eC.  (38)

Then the kernel K, together with the point set {A, : n € Z}, satisfies all the conditions
required for the application of Theorem 2.3 to yield K as a Kramer analytic kernel in the
Hilbert space L*((a,b); w).

Proof. See [19]. O
For an example of this general result, we refer to [19, Theorem 7.1] (cf. Remark 2.2(ii)).

This example is considered in [15] too.

4. Second-order problems

In this section, we deal with the generation of Kramer analytic kernels from second-order

linear ordinary boundary value problems. The results given here can be found in [15].

4.1. Sturm-Liouville theory. Sturm-Liouville boundary value problems are effective in
generating Kramer analytic kernels. These problems concern the classic Sturm-Liouville
differential equation

—(p(x)y' (1)) +9(x)y(x) = Aw(x)y(x) (x€=(a,b)), (4.1)
where —o0 <a <b < +o0 and A € C is the spectral parameter. Also,

pg-w:(a,b) — R,
p~ha:w € Lip(a,b), (4.2)
w(x) >0, foralmostallx € (a,b).

For a discussion on the significance of these conditions, see [16, page 324]. For the
general theory of Sturm-Liouville boundary value problems, see [39, Chapters I and II].
Accordingly, we impose a structural condition.

Condition 4.1. The endpoint a of the differential equation (4.1) is to be regular or limit-
circle in L2(I;w); independently, the endpoint b is to be regular or limit-circle in L?(I;w)
(cf. [21]).

Remark 4.2. The endpoint classification of Condition 4.1 leads to a minimal, closed, sym-
metric operator in L?(I;w) generated by (4.1) with deficiency indices d* = 2; in turn, this
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requires that all selfadjoint extensions A of this minimal, symmetric operator are deter-
mined by applying two linearly independent, symmetric boundary conditions and either

(i) both conditions are separated with one applied at a and with one applied at b, or
(ii) both conditions are coupled.

4.1.1. Regular or limit-circle case with separated boundary conditions. This case of Condi-
tion 4.1 and Remark 4.2(i) concerns the results of [21]. The Sturm-Liouville differential
equation is given by (4.1) and satisfies (4.2). The separated boundary conditions are

ly,x-](a) = [y,x:+](b) = 0, (4.3)

where, for a given pair of functions {x_, -}, the following conditions are fulfilled:

(C1) k_,x-: (a,b) = R are maximal domain functions,
(C2) [korx-](a) = 1.
The pair {x,,y.} satisfies analogous conditions at the endpoint b.
This symmetric boundary value problem gives a selfadjoint differential operator T
with the following properties:
(a) T is unbounded in L*((a, b);w),
(b) the spectrum of T is real and discrete with limit points at +co or —co or both,
(c) the spectrum of T is simple,
(d) the eigenvalues and eigenvectors satisfy the boundary value problem.

The results in [21] are given by the following theorem.

THEOREM 4.3. Let the coefficients p, q, and w satisfy the conditions (4.2); let the Sturm-
Liouville quasidifferential equation (4.1) satisfy the endpoint classification of Condition 4.1;
let the separated boundary conditions be given by (4.3), where the boundary condition func-
tions {k_,x-} and {xy,x+} satisfy conditions (C1) and (C2); let the selfadjoint differential
operator T be determined by the separated, symmetric boundary value problems let the sim-
ple, discrete spectrum of T be given by {A, : n € Z} withlim,_ .o A, = +00; let {y, :n € Z}
be the eigenvectors of T; and let the pair of basis solutions {¢1,$2} of (4.1) satisfy the initial
conditions, for some point ¢ € (a,b):

(/)1(6:/1) =1, (P(bi)(ca/l) =0,
$2(c,A) =0, (p$3)(c,A) = 1.

Define the analytic Kramer kernel K_ : (a,b) x C — C by

(4.4)

)= [¢1(5A), k-] (@)ga(x,4) = [ha(+,4), k-] (@)1 (x,A). (4.5)

) is a solution of (4.1), forallA € C, and K_(-,A) e R (A € R);

A) isan element of the maximal domain and in particular of L*((a,b);w);
~(5A),x](a) =

_(,A), k. ](b) Ozfandonlylf)te A :nell;
K_(x,-) e H(C) (x € (a,b));

>¢:
>,“>_,
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(vi) K_(-,A4) = knywy, where k, € R\{0} (n € Z);
(vil) K_ is unique up to multiplication by a factor e(-) € H(C) withe(1) # 0 (A € C) and
el)) eR (A €R).

Remark 4.4. The notation K_ is chosen for technical reasons; there is a kernel K, with
similar properties, but with a and «_ replaced by b and «..

For an example, we refer to [15, Section 5.2, Example 5.8]. This example can also be
found in [21].

4.1.2. Regular or limit-circle case with coupled boundary conditions. This case of Condition
4.1 and Remark 4.2(ii) covers the results of [16]. Here the situation is different. Let (4.1)
satisfy (4.2) and let the boundary conditions be given by

y(b) = e“Ty(a), forsome a € [—7,7] (4.6)

with the 2 X 2 matrix T = [t,s], where t,, € R (r,s = 1,2), det(T) = 1, and the 2 X 1 vector
y is defined by

¥(t) = ([%9] t)

[}’Jp]it)) (t € (a,b)); (4.7)

T is called boundary condition matrix. The functions 6 and ¢ are chosen such that

(i) 0 and ¢ are real-valued maximal domain functions;
(i) [60,¢](a) = lim,—.+[6,¢](t) = 1;
(iii) [0,4](b) = lim—p-[6,¢] () = 1.
For example, 6 and ¢ can be real-valued solutions of (4.1) on (a,b).
The boundary conditions (4.6) are coupled and selfadjoint, for each endpoint either
regular or limit-circle, and are in canonical form (see [3]).
Let the pair of basis solutions {u,v} of the differential equation (4.1) be specified by
the possibly singular initial conditions (cf. [3]), forall A € C,

[u>6](a)/1) =0, [ua(p](a:/l) =1,

wol@h) =1, [v,g](@) =0 8

To define a differential operator A, choose any boundary condition matrix T and any
a € [—m,7]; the boundary value problem gives a selfadjoint differential operator with the
properties (a), (b), and (d) and, in place of (c), the property that the multiplicity of the
spectrum is either 1 or 2.

Remark 4.5. For complex boundary conditions, that is, when 0 <ec< 7 or —7 <oc< 0, the
spectrum is always simple. In the case of real boundary conditions, that is, « = —,0,7,
the spectrum may or may not be simple (see [3]).

The complex case. According to the comments made in Remark 4.5, the results in [16]
are divided into two parts. The first part is referred to as the complex case when 0 < a < 7w
or —7 < a < 0 and this gives the following theorem.
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THEOREM 4.6. Let (4.1) satisfy Condition 4.1, where the coefficients p, g, and w satisfy (4.2)
and let the symmetric, coupled, and complex boundary condition be given by, see (4.6),

y(b) = e“Ty(a), forsomea € (—m,0) U (0,7); (4.9)

let A be the unique selfadjoint, unbounded differential operator in L>((a,b);w), specified
by (4.1) and (4.6); let the discrete spectrum o of A be represented by {A, :n € Z} with
lim,_.+wA, = =00, and let {y, : n € Z} represent the corresponding eigenfunctions. Let the
analytic function D(T, -) : C — C be defined by, with solutions u, v determined by (4.8),

D(T,A) :=tu [u(+,1),¢](b) + t22[v(+,1),0] (b)

— t12[0(-,1),61(b) — £ [u(-,1),0](b). (4.10)

Then

(i) D(T,-) € H(C);

(ii) A is an eigenvalue of A if and only if A is a zero of D(T,A) — 2 cos(«);
(iii) the zeros of D(T,A) — 2 cos(«) are real and simple;
(iv) the eigenvalues of A are simple.

Let the above-stated definitions and conditions hold; then the boundary value prob-
lem (4.1) and (4.6) generate two independent analytic Kramer kernels K; and K;:

Ki(x,A) == ([u(-,)),0](b) — e®t1y)v(x,A) — ([v(+,A),0](b) — e®ti1) u(x, M), (a11)
Ky(x,A) := ([u(+,4),9](b) — e“tra) v(x,4) — ([v(+,9),0](b) — e“tr1 ) u(x,A). .
Proof. See [16]. O

The real case. The second part of [16] is concerned with real boundary value problems,
that is, « = —,0, 7, for which the following structural condition holds (see Remark 4.5).

Condition 4.7. In the real case « = —,0, 7, all the eigenvalues are assumed to be simple.
The results in this case are similar to the results stated in Theorem 4.6 except that a
phenomenon of degeneracy may occur; see [16, Section 8, Definition 3].

TaeoREM 4.8. Let all the conditions of Theorem 4.6 hold with the addition of conditions
(4.6); let the kernels Ky and K, be given by (4.11) and the phenomenon of degeneracy be
defined as in [16]. For r = 1,2, let the subspaces L2((a,b); w) of L*((a,b); w) be defined by

L*((a,b);w) :=span{y,; n€ Z,} (r=1,2). (4.12)

Then

(i) every eigenvalue in {A, : n € Z} is nondegenerate for at least one K,;
(i) for r = 1,2, the kernel K, is an analytic Kramer kernel for the subspace L2((a,b); w);
(iii) K(x,A) = a1 Ky (x,A) + oo Ko (x, /1) (x € (a,b); A € C) is an analytic Kramer kernel
for the whole space L*((a,b);w), for ay,a, € R.
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Proof. See [16]. O

Remark 4.9. The case when the multiplicity of the spectrum ¢(A) is 2 is fully examined
in [17].

Examples for both the above complex and real cases can be found in [16] and also in
[15, Section 5.2]. In all the examples, the regular differential equation

-y"(x) =Ay(x) (x€[-mm]) (4.13)

is considered and 6(x) = cosx and ¢(x) = sinx are chosen so as to give the boundary
conditions (see (4.6))

y(n) = ( _y'y((’;))> = eoT ( _y'y((__’;))> = ¢ Ty(—n). (4.14)

The functions u and v that satisfy the initial conditions are

u(x,A) = —cos (\/X(x +1m)),

V(0 A) = %sm(ﬁ(ﬂﬂ)). (4.15)

Acknowledgment

The author wishes to express her gratitude to Professor W. N. Everitt for his help, support,
advice, and for his guidance in the area of research that concerns this paper.

References

[1] N.I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space. Vol. I, Mono-
graphs and Studies in Mathematics, vol. 9, Pitman, Massachusetts, 1981.

, Theory of Linear Operators in Hilbert Space. Vol. II, Monographs and Studies in Math-
ematics, vol. 10, Pitman, Massachusetts, 1981.

[3] P. B. Bailey, W. N. Everitt, and A. Zettl, Regular and singular Sturm-Liouville problems with
coupled boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 3, 505-514.

[4] P. L. Butzer, A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J.
Math. Res. Exposition 3 (1983), no. 1, 185-212.

[5] P L. Butzer, W. Splettstosser, and R. L. Stens, The sampling theorem and linear prediction in
signal analysis, Jahresber. Deutsch. Math.-Verein. 90 (1988), no. 1, 1-70.

[6] P.L.Butzer and R. L. Stens, Sampling theory for not necessarily band-limited functions: a histor-
ical overview, SIAM Rev. 34 (1992), no. 1, 40-53.

[7] L. L. Campbell, A comparison of the sampling theorems of Kramer and Whittaker, J. Soc. Indust.
Appl. Math. 12 (1964), 117-130.

[8] N.Dunford and]. T. Schwartz, Linear Operators. Part II: Spectral Theory. Self Adjoint Operators
in Hilbert Space, John Wiley & Sons, New York, 1963.

[9]  W.N. Everitt, Linear ordinary quasidifferential expressions, Proceedings of the 1983 Beijing Sym-
posium on Differential Geometry and Differential Equations, Science Press, Beijing, 1986,
pp. 1-28.




384
(10]
(11]

[12]

[14]

On sampling expansions of Kramer type

W. N. Everitt, W. K. Hayman, and G. Nasri-Roudsari, On the representation of holomorphic
functions by integrals, Appl. Anal. 65 (1997), no. 1-2, 95-102.

W. N. Everitt and L. Markus, Controllability of [r |-matrix quasi-differential equations, J. Differ-
ential Equations 89 (1991), no. 1, 95-109.

, The Glazman-Krein-Naimark theorem for ordinary differential operators, New Results

in Operator Theory and Its Applications, Oper. Theory Adv. Appl., vol. 98, Birkhduser,

Basel, 1997, pp. 118-130.

, Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-

Differential Operators, Mathematical Surveys and Monographs, vol. 61, American Mathe-

matical Society, Rhode Island, 1999.

, Complex symplectic geometry with applications to ordinary differential operators, Trans.
Amer. Math. Soc. 351 (1999), no. 12, 4905-4945.

W. N. Everitt and G. Nasri-Roudsari, Interpolation and sampling theories, and linear ordinary
boundary value problems, Sampling Theory in Fourier and Signal Analysis, Advanced Top-
ics, vol. 5, Oxford University Press, Oxford, 1999, pp. 96—129.

, Sturm-Liouville problems with coupled boundary conditions and Lagrange interpolation

series, J. Comput. Anal. Appl. 1 (1999), no. 4, 319-347.

, Sturm-Liouville problems with coupled boundary conditions and Lagrange interpolation
series. II, Rend. Mat. Appl. (7) 20 (2000), 199-238.

W. N. Everitt, G. Nasri-Roudsari, and J. Rehberg, A note on the analytic form of the Kramer
sampling theorem, Results Math. 34 (1998), no. 3-4, 310-319.

W. N. Everitt and A. Poulkou, Kramer analytic kernels and first-order boundary value problems,
J. Comput. Appl. Math. 148 (2002), no. 1, 29-47.

W. N. Everitt and D. Race, Some remarks on linear ordinary quasidifferential expressions, Proc.
London Math. Soc. (3) 54 (1987), no. 2, 300-320.

W. N. Everitt, G. Schottler, and P. L. Butzer, Sturm-Liouville boundary value problems and La-
grange interpolation series, Rend. Mat. Appl. (7) 14 (1994), no. 1, 87-126.

W. N. Everitt and A. Zettl, Generalized symmetric ordinary differential expressions. I. The general
theory, Nieuw Arch. Wisk. (3) 27 (1979), no. 3, 363-397.

, Differential operators generated by a countable number of quasi-differential expressions
on the real line, Proc. London Math. Soc. (3) 64 (1992), no. 3, 524-544.

M. Genuit and G. Schottler, A problem of L. L. Campbell on the equivalence of the Kramer and
Shannon sampling theorems, Comput. Math. Appl. 30 (1995), no. 3—6, 433—443.

1. Halperin, Closures and adjoints of linear differential operators, Ann. of Math. (2) 38 (1937),
no. 4, 880-919.

J. R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc. (N.S.) 12 (1985),
no. 1, 45-89.

, Sampling Theory in Fourier and Signal Analysis, Foundations, Oxford University Press,
Oxford, 1996.

J. R. Higgins and R. Stens, Sampling Theory in Fourier and Signal Analysis, Advanced Topics,
vol. 2, Oxford University Press, Oxford, 1999.

A. . Jerri, On the equivalence of Kramer’s and Shannon’s sampling theorems, IEEE Trans. Infor-
mation Theory IT-15 (1969), 497-499.

, The Shannon sampling theorem—its various extensions and applications: A tutorial re-
view, Proc. IEEE (1977), no. 11, 1565-1596.

V. A. Kotel’nikov, On the carrying capacity of the ether and wire in telecommunications, Material
for the First All-Union Conference on Questions of Communication, Izd. Red. Upr. Svyazi
RKKA, Moskow, 1933 (Russian).

H. P. Kramer, A generalized sampling theorem, J. Math. Phys. 38 (1959), 68-72.




Anthippi Poulkou 385

R. J. Marks II, Introduction to Shannon Sampling and Interpolation Theory, Springer Texts in
Electrical Engineering, Springer-Verlag, New York, 1991.

M. A. Naimark, Linear Differential Operators. Part II: Linear Differential Operators in Hilbert
Space, Frederick Ungar, New York, 1968, with additional material by the author, and a sup-
plement by V. E. Ljance. Translated from the Russian by E. R. Dawson. English translation
edited by W. N. Everitt.

C. E. Shannon, Communication in the presence of noise, Proc. IRE 37 (1949), 10-21.

D. Shin, Existence theorems for the quasi-differential equation of the nth order, Dokl. Akad. Nauk
SSSR 18 (1938), 515-518.

, On the quasi-differential transformations in Hilbert space, Dokl. Akad. Nauk SSSR 18

(1938), 523-526.

, On the solutions of a linear quasi-differential equation of order n, Mat. Sb. 7 (1940),
479-532.

E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential
Equations. Part I, 2nd ed., Clarendon Press, Oxford University Press, 1962.

E. T. Whittaker, On the functions which are represented by the expansions of the interpolation
theory, Proc. Roy. Soc. Edinburgh 35 (1915), 181-194.

A. 1. Zayed, On Kramer’s sampling theorem associated with general Sturm-Liouville problems and
Lagrange interpolation, SIAM J. Appl. Math. 51 (1991), no. 2, 575-604.

A. L. Zayed, G. Hinsen, and P. L. Butzer, On Lagrange interpolation and Kramer-type sampling
theorems associated with Sturm-Liouville problems, SIAM J. Appl. Math. 50 (1990), no. 3,
893-909.

A. Zettl, Formally self-adjoint quasi-differential operators, Rocky Mountain J. Math. 5 (1975),
453-474.

Anthippi Poulkou: Department of Mathematics, National and Capodistrian University of Athens,
Panepistimioupolis, 157 84 Athens, Greece
E-mail address: apoulkou@cc.uoa.gr


mailto:apoulkou@cc.uoa.gr

