CHARACTERIZATION OF A CLASS OF FUNCTIONS
USING DIVIDED DIFFERENCES
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We determine the class of functions, the divided difference of which, at n distinct
numbers, is a continuous function of the product of these numbers.

1. Introduction

We first introduce the needed terminology. The divided differences of a function f at
distinct points are defined recursively as follows:

flxi] = f(xa),
_ (1.1)
f[xl,...,xn] — f[xz,...,xn)]c _fx[]xl,...,xn_l]’ ns2.

The following formula is well known, [2],

f[x1,...,xn]=z f();jj)), (1.2)

2,

where {x j}?:l C C are distinct numbers and w; (x) := ]_[Zzl (x —xp).

Furthermore, if f € %,_1, the set of algebraic polynomials of degree at most n — 1,
then, [2], f[x1,...,Xn+1] = 0. This fact can be proved by induction in n.

The more general definition of divided differences allowing repeated points is that
flx1,...,xp] ;= an—1, where p,_1(x) = ZZ;(I) agxk is the polynomial that interpolates
f at{x;}_, in the Hermite sense, [2].

The main results of this paper are the following theorems.

THEOREM 1.1. Letn € N, n > 2, be fixed and f be a real-valued function defined on an
open set D of the real line R. Assume that the divided difference f|[x1,...,x,] satisfies
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86  Characterization of a class of functions using divided differences

the functional equation

flrx] =6 ] (1.3)
j=1

for every set of n distinct numbers {x j}7:] C D, and G is a continuous function on the
set of products P,(D) := {H?zl Xj: {Xj}’j’.zl C D}. Then

X

n—1
f(x):a;l—i-Zakxk. (1.4)
k=0

Furthermore, G(t) = (—1)"a_1/t +a,_;.

THEOREM 1.2. Let f be a complex-valued function defined on an open set D of the
complex plane C. Assume that f satisfies the conditions of Theorem 1.1 on D. Then f
and G have the forms given by Theorem 1.1.

A similar characterization was obtained in [1] for functions the divided difference
of which at n distinct points is a function of the sum of the points.

2. Proofs of the theorems

Proof of Theorem 1.1. First assume that 0 ¢ D. We claim that f € C°°(D), that is,
f has continuous derivatives of arbitrary order in D. Let {x j};!zl C D be distinct.
From (1.2) and (1.3) for f[xy,...,x,] we get

() )

+f@0<

(2.1)

w), (xz) w),

We let x; — x1 in (2.1). All terms on the left-hand side of (2.1) beginning with the
second term which tends to f(x;)(1/ ]_[';:3 (x —x;))|x=x,, and the right-hand side G
have finite limits. Then the first term on the left-hand side of (2.1) has a finite limit, that
is, f’(x1) exists. Since the points x1, x3,...,x, are distinct, all terms in the equation
obtained from (2.1) after taking the limit x, — xj, except possibly the first one, are
continuous at x; for fixed {x; };?=3. We obtain f € C'(D). Then (1.2) and (1.3) imply
G € CY(P,(D)). This can be seen by observing that the derivative of the right-hand
side of (1.2) with respect to x; is continuous at x; if the points {x j};l':l are distinct
and {)Cj}’j’.:2 are fixed. Then with a = l_[;zz xj,dG(axy)/dx; exists and is continuous
at x1. Therefore, G’ (t) € C(P,(D)) exists because every ¢ € P,(D) can be written as
a product of n distinct numbers from D and P, (D) is an open set.
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Next, from (1.2) we have

WD ] = f,(xx") =G (W x). (2.2)
= onlx))

Differentiating (2.2) with respect to A and setting A = 1, we obtain

/ o f(x)
f( ) ey Ap | = J—
(x X )[xl X ] ]2:(:) w;,(x]') 2.3)

=n—1DG(x1xn) +nx1 - x, G (x1 -+ x).

Equation (2.3) for f1(x) = xf’(x) has the same form as (1.3) for f(x), and G (¢) =
(n—1G @) +ntG'(t) € C(P,(D)). Using the same argument and induction, we can
show that for every k € N, fi(x) € C'(D) and G (¢) € C' (P, (D)), where the functions
Jfr and Gy are defined recursively by fi4+1(x) = xfk’(x), k>0, fox) = f(x), and
Gry1(t) = (n—1)Gr(1) +ntG;€(t), k >0, Go(t) = G(t). From the definition of f,
we get

k
fe) = ar jxd fO ), (2.4)
j=l
where ay 1 = arr =1 and agy1,j = ax,j—1+ jak,j, j =2,...,k. Since 0 ¢ D, we get
F®(x) e C(D) for every k > 0, that is, f € C®°(D).
We proceed by induction with respect to n € N, n > 2. For n = 2 we have

f(x2) = f(x1)

=G(x1x2), x1,x2€D, x| #x2, (2.5)
X2 — X1

and f € C*(D). Set x; = x and let xo — x. We get

f(x?) =)

fl)=G(x*) = = , xeD\{1}. (2.6)

We may assume that 1 € D, otherwise we consider f(ax) instead of f(x) for some
a € D. Set g(t) =: f(1+471). Since 0 € D(g), the domain of g, and g € C*°(D(g)), g
has a power series representation

o0

gty =Y at’, te(-rr), 2.7)

k=0

for small r > 0. Relations (2.6), with x =¢+1, and (2.7) yield

> 2 +2t)—g(0 >
ngkr"“=g’(r)=(g( > +)2[ 20) =) &’ G+2)°.  (28)
k=1 s=0
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Comparing the coefficients of 7/ in (2.8) we obtain

J
. S —j .
(j+Dgj+1 =Z(._ )225 Tgs1,  J=0, 2.9)
s=0 J=s
or, equivalently, (with v =s+1)
. i v—1 Ty i2

(j+1-2)gj01 = ( )2 i,z (2.10)

S\ —v+1

Equation (2.10) is nontrivial only if j > 2. This is so because adding to g (or f) a
linear function and multiplying g (or f) by a constant does not change its properties.
The binomial coefficients in (2.10) are not zero only if v—1 > j —v 41, that is, if
v > j/2+1 > 2. Then (2.10) implies that g; is a multiple of g for every j > 2. In
particular, if g = 0 then g (and hence f) is a linear function.

If go # 0 we may assume that g = 1. In this case (2.10) implies g; = (—1)/ for
every j > 2. This follows from (2.9) and the identity

J

Z(.S )ZZS—f(—l)S‘f=j+1, jiz2, (2.11)
J—S
s=1
which is the special case o« = 2, § = —1 of the formula
I j -
Aj(a,p) = Boigims =N kTR >0, 2.12
j (@, B) §)<j_s>°‘ B ];)12 jz (2.12)

where «, f € C and A1 > are the zeros of A2 —ak—B. Hence, it is enough to verify (2.12).
For j =0and j =1, (2.12) is obvious. Next, for j > 1

Jj+1

Ajyi(a, B) = Z <j +j _s> Q2 —i=1gitl=s

s=1

Jj+l 1
_ o 2(s—D—jgj—(s—1
=« E . o B

= <J —(s— 1))

J
. s—1 2(s—=D=0G-D g(G—D—(s—1)
”21(]'—1—@—1))“ ¢
S=

=aAj(a,B)+BAj1(a, B) (2.13)

J Jj—1
j—k j—1—k
=a) M+ A
k=0 k=0

~.

-1

— k+1,Jj—k kqJjt+1-k k+1,Jj—k

=3 () - 3
k=0

~. =

+
- o

N kg tk
= " x
k

El

Il
o
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where we used the identities

K s—1 n s—1 1 . 2.14)
= , s=1,...,J, .
j+1—s j—s+1 j—s J

A+ A2 =a, A{A2 = — B, and induction with respect to j.

Since g; = (=1, j =2, it follows from (2.7) that g(¢) = g»/(1 +¢)+ At + B
for t € (—r,r). We have proved that for every xog € D there exists r(xg) > 0 such that
f(x)=c/x+ax+Db, |x —x9| < r(xp). We have to show that the coefficients a, b, and
c are independent of xg € D. Let I; and I be two open subinterval of D such that

f(x):c—v-l—avx—i-bv, xel,, v=1,2. (2.15)
X

From (2.5) we get

(c2+a2y* +b2y)x = (c1 +arx® +bix)y

sl = (v —x)xy

=G(xy), xel, yebh.

(2.16)
Let C = xoyo for some xg € I1 and yg € I, and let yc = (11 x I)) N{(x,y) : xy = C}.
Then

(c24+a2y*+b2y)C —(c1y* +ai1C?+b;Cy)
(»>-0)cC

flx,yl= =G(0), (x,y)evyc.

2.17)
Since yc is a continuous curve, (2.17) implies that (b, —b1)C =0,a,C —c1 = G(C)C,
and (c; —a1C)C = —G(C)Cz. Using that C # 0 we get by = by and a;C —c> =
G(C)C = arC —cq, hence, (ap —a1)C = c¢1 — cp. Unless a; = ap we can choose
C # (c1 —c2)/(az —ay) and that choice would give us a contradiction. Thus a; = as
and then ¢; = c5.
Now assume that Theorem 1.1 is true for some n > 2 and consider the case n+ 1.
Let x; € D be fixed. We define f(x) = f[x1,x]. Let {x.j}’}ié C D\ {x1} be distinct
numbers. From (1.2) and (1.3) with &, (x) := ]_[2'221 (x —xg), we obtain

f[xz,_._,xn_,_l]:nX:M:nX:f(Xj)_f(xl)

A ST CACT) e AR )

(2.18)

n+1

= f[xl,...,xn+1] = G()q ij),

j=2

where we also used that f(xy)[x1,...,x,4+1] = 0. Hence, f satisfies the conditions
of Theorem 1.1 for n points. By the induction assumption
n—1

f[x],x]zf(x)z Z&j(xl)xf, xeD\{xl}, (2.19)

j=—1
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or, equivalently,

n—1 n

f@) = f(x1)+(x—x1) Z aj(x)xd = Z aj(x1)x/, xeD\{x}. (220

j=—1 j=—1

Equation (2.20) is true for x = x| as well. Furthermore, (2.20) is unique in the sense
that the coefficients a(x) are independent of x| € D. Indeed,

n+1 ' n+1 .
xf(x):Zaj_l(xl)xJ =Zaj_1(xz)x], xeD (2.21)
j=0 j=0
implies a;(x;) =a;(x2), j = —1,...,n, since a nonzero polynomial has finitely many

ZEros.
Now assume that 0 € D. Then D := D\ {0} is an open set. For every n — 1 distinct
numbers {xj}’j’.:2 C Dy, from (2.18) with f(x) := f[0, x] and (1.3) we obtain

flx2...coxn] = f[0.x2, ..., x4 ] = G(0). (2.22)

Then £ (x) satisfies the conditions of Theorem 1.1 on the set D; and 0 ¢ D;. Therefore,
fx)=(f(x)—fQO0)/x=a_1/x+p(x), p(x) € P,_3.Since G € C(D), (1.3) implies
feC(D)anda_; =0.Hence f(x) = f(0)+xp(x) € P,_1.

The formula for G(¢) follows from the identities x*[x1, ..., x,] = -1k, k=0,...,
n—1, and
1 -1 n+1
—[xl,...,xn]zL, n>l. (2.23)
X X1 Xp
The proof of Theorem 1.1 is complete. (|

Proof of Theorem 1.2. The proof of Theorem 1.2 follows the same arguments as the
proof of Theorem 1.1 except that after verifying f € C!(D) as in the proof of
Theorem 1.1, we automatically obtain that f € C*°(D) via Cauchy’s integral formula.

d
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