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The Boussinesq equations describe the motion of an incompressible viscous fluid subject
to convective heat transfer. Decay rates of derivatives of solutions of the three-dimension-
al Cauchy problem for a Boussinesq system are studied in this work.

1. Introduction

In this work we show some theoretical results about decay rates of strong solutions of the
three-dimensional Cauchy problem for Boussinesq equations, described by the following
partial differential equation problem (see [6]):

%—v&u+u-Vu+Vﬂ:6f in (0,T) x R?,
divu=0 in(0,T) x R,
%?—Xaem-ve:o in (0,T) x R?, (1.1)

u(0,x) =a(x) inR?,

0(0,x) = b(x) in R,

where the unknown are u, 8, 7 which denote, respectively, the velocity field, the scalar
temperature and the scalar pressure. Data are the positive constants v, x, respectively, the
viscosity and the thermal conductivity coefficients and the function f the external force
field, and a(x), b(x), respectively, represent the initial velocity and initial temperature.

The main objective of this work is to obtain a decay rate of derivatives for the strong
solutions to the Cauchy problem (1.1). For this, we will consider the usual Lebesgue
spaces L?(R?) with the usual norms | - | ,. We will denote LE(R3) the closure of Con(R3) =
{v e Cy;divv = 0} in LP(R?). We will denote too by L?(0, T;L(R?)) the Banach space,
classes of functions defined a.e. in [0, T] on L9(R?), that are L?-integrable in the sense of
Bochner. For more details see [1, 3].

We observe that this model of fluids includes as a particular case the classical Navier-
Stokes equations, which has been thoroughly studied (see, e.g., [7, 8]). Rojas Medar and
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Lorca obtained results of uniqueness and existence of the local solutions and regularity of
solutions for Boussinesq equations [9, 10].

Results of decay rates of strong solution were obtained by Cheng He and Ling Hsido
[4]. In this paper, we are interested to get similar results for Boussinesq equations.

2. Results of decay rates

The main objective of this work is to establish the decay rates of derivatives about time
variable and spaces variables for the strong solutions to the Cauchy problem of the Boussi-
nesq equations (1.1). For this, we will consider a sequence of Cauchy problems for the
linearized Boussinesq equations

k
aalt —yAuF+ (W Ve + vk = 05 F on (0,T) x R,
divu* =0 on (0,T) x R?,
k
%— AB a1 VO =0 on (0,T) X R, 2.1)
u“(0,x) =a(x) onR3,
0%(0,x) = b*(x) on R?,
for k > 1, where a* € C,(R?) and b* € C§° (R?) such that
ak —a in L}(R?) strongly,
(2.2)

b* — b in L*(R?) strongly,

with [a¥|5 < |a|; and |b¥|5 < |b|5. The first term, (u’,7%,6°), of this sequence is solution
of the trivial Cauchy problem:

ou’ 0 0 3
X—VAU +Va'=0 on(O,T)><IR N

divu®=0 on(0,T)xR3,

0
% —XAHO =0 on(0,T) xR, (2.3)

u’(0,x) =a’(x) onR?,
0°(0,x) = b°(x) on R>.

Let T,(t,x;5, y) = (4vrrt) 3% exp(—|x|>/4vt) be a fundamental solution of the heat equa-
tion in R? (with viscosity coefficient »). Then, the solution of the linearized Boussinesq
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system (2.1) can be written as follows:

uk(t,x) = J L,(t,%;0, y)af (y)dy
R3

JJ r, txsy)Zuk 1(5)/

(s y)dyds
(2.4)

J J W (5,58, y) (s y)dyds
+J J Fv(t,x;s,y)ek_l(s,y)ﬁ(s,y)dyds,
0 Jr?

0(t,2) = | Ty(0,)04 ()

t : k-1 061
_ L JW I, (t,x55, ) Z u; (S’y)a_xj(s’y)dyds'

j=1

(2.5)

The convergence for the above method can be seen in [2, 7].

Definition 2.1. A couple (u,6) is called strong solution for the system (1.1), if

u e LP(0,00;LE (R?)) N L™ (0,00;L3 (R?)),

0 € L (0,00;L9(R?)) N L™ (0, 00;L3 (R?)) (2.6)

for some p >2 and q > 3, and satisfying

J ,[uxs (u —+u A‘PJF(“'VSD)ll)dxdt

) 27)
:—j a-<p(0,x)dx+J J 0f - pdxdt
R3 0 R3

forall € C§ (0, 00;C,(R?)) and

J: LRS (9‘% +0Ay+(u- Vw)@) dxdt = — LRS by (0,x)dx (2.8)

for all y € C§° (0, 00; C5° (R?)).

Lemma 2.2. For the pressure i* the following estimate holds:
|Vat], <Cl(u*"- V)ut + 051, (2.9)

forl<r<oo, k>0.
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LEmMA 2.3. Let a € L3(R?), b € L*(R?), 1f(t)]y < Cot™1*¥24(|als + |b]3), [VE(t)|q <
Cot™¥?*324(|al5 + |bl3), where the constant C, is independent of t and q. If C*Cy(lals +
|bl3) < 1 for some constant C*, then

12724 (|uk(e) |, + |65(8) | ) < CCollals +1b15),

(2.10)
24| vuk(n) |, + | 05(0) | ) < CCo(lals + [bl5)
for3<g<oco,t>=0andk=0.
Proof. We put
Ik 2= 3/2q(|u t)| +|0k t)| )
(2.11)

JE =t ( | vuk ()| + [ VO],

We will assume by inductive hypotheses that the estimates (2.10) are true for k — 1. By
the Young inequality for convolution, we can estimate the terms of (2.4) as follows:

1/p
U T,(6,%30,y)af (y) dy' (4vmt)” ”(J e*"‘*y‘z/“”dy) laf |
R3

(2.12)
< CHV2g | gk |
where 1/p +1/3 = 1 + 1/q. Again, by the Young inequality we obtain
J I, txsy)Zuk 1(sy (sy)dyds
q
< CJ -3/2(1/2-1/q) |uk’1 |4 | Vuf! |4d5 (2.13)
< CC3(lals +1bl5) "t V232,
where 1/p +1/2 = 1+ 1/q. Now, using (2.9) we have
t on* 2 2,-1/2+3/2
J. | Tt ) S (s dyds| < CCElals + 101" 205,
. ' 1 (2.14)
|| Tesss )0 o ) s ydyds| < OGP (Gal + 1)
0JR3 q
Moreover
|uk(0) |, = €292 (Co(Jals + 1b15) + G (Jals + 1B13)°). (2.15)

Analogously, we can obtain the estimate for [6%(t)] ¢- Now, differentiating (2.4) and using
the fact

‘ %Fy(t,x;s,y) ‘ < C(t — ) 2g MaylP/4(t=s) (2.16)
!
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fori=1,2,3 and some constant A > 0, follows
‘ij Fv(t,x;O,y)aff(y)dy‘ < Ct™1*¥)a|;. (2.17)
ox; Jrs q

Analogously, we obtain

k-
ax,J J txsy)zuk (s, )’) (S y)dyds

q (2.18)
< CC0(|a|3 + |b|3) l’71+3/2q,

'ax,J J txsy) (5 y)dyds

(2.19)
< CC§(|a|3 4 |b|3)2t71+(3/2q) JO (1 _ W)f1/2—3/2rw—3/2+3/2(1/r+1/q)dw,

where r >3 and 1/r + 1/q > 1/3, to obtain the convergence of the last integral in (2.19).
Finally, we obtain

o JJ Ty (t,x55,)05 fidyds <Cj(t §) VAR | gl £ s (2.20)

Without difficulty we can obtain for the equation of the temperature

JE < Collals +1bl3) + CC3(lals + 1b13)* < 2Co(lals + |bl3). (2.21)

For q = oo we can obtain analogously as before

t
I* < C(lals + |b|3)+Ct1/2I (t—s) 4 ur 1] (| VuF ], + | VO], )ds
, 0 (2.22)
+cr1/zf (t—5) 4|65 1| Iflads < C(lals + [bls) + CC2(Jals + b]3)°.
0

Similarly, we obtain the estimative for J& . O

Lemma 2.4. Let a € L3(R?), b € L*(R®) and |f|; < Cot™ "% (|al5 + |bl3), |V, <
Cot=¥2324(|al5 + |bl3). If C*Co(lals + |bl3) < 1 for some constant C*, then for3 < q < oo,
the following estimate is true uniformly in k:

020k
0x10x; ]

o?uk
0x10x; .

3
£3/2-3/2q Z (

) <2Co(lals+1bl3). (2.23)
Lj=1
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Proof. The identity (2.4) can be written as follows:

t/2
uf-‘(t,x)zj I, (t,x;0, y) y)dy — J J L (tx5s,y)
R3

_ ouk! 0
X (Z u’]‘ Y(s,y) gx- (s,y)+%(s,y) 051(s, ) fils, ) )dyds
, - (2.24)

_Jt/Z—[Ra (6,355, ) (Z 1(5}/ 0x;j (5,y)

- le(s,y)ﬁ(s,y))dyds

analogously for temperature.
We will make the case I = j (for the case ] # j the argument is analogous). By the Young
inequality we obtain

axlj I, (t,x;0, y)a; (y)

1
=Cy J{RS< y(6x30, y)af (y) + L tyl) (t,x;O,y)af‘(y)>dy (2.25)
q
< Ct73/2+3/2q|a|3'
By analogous computations, we have
t/2 3 aukfl
A O N
! j= ! q (2.26)

1/2
2 - - —
< CC(Z)(\a|3+ Ibls)°t 3/2+3/2q L (1 — w)~7/4+3/243,=3/4 4y,

The estimation for the terms that involve fot/z are obtained analogously. By other side

k,

(s y)dyds

3
L,(t,x;s,
ax, L/z R y) g‘

q

< CC(Z) ( lal; + |b|3)2t73/2+3/2q Jl/z(l _ W)71/2W72+3/2qdw ( :
2.27

1
+CCo(lals+b]3) J (1 —w) V2243244,
12

20 k-1
73/2+3/2qa u (s)

X sup PP

se(t/2,t]

S

q
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Analogously

axl L/zj I txsy) dyds

P S0k (2.28)
a2 |9 (k-1 k-1
<C t/Z(t s) (‘ axZ((u V)u o q) ds
and, finally,
T, (t,x55, )0k 1fdyds

axl Lz R (2.29)

< CC(%(\a|3 + |b|3)2t—3/2+3/2qj (1 —w) V2243244,

12

The proof of Lemma 2.4 is a consequence from the above estimative. O

Lemma 2.5. Let a € L3(R%), b € L3(R?) and |f|; < Cot""324(lals + |bl3), |Vfl4 <
Cot™¥?324(|al5 + |bl3). If M(lals + |bl3) < 1 for some constant M, then for 3 < q < o,
the following estimative are verified uniformly in k:

£ | Vak|, < Cllals +1b15), (2.30)
k k
t3/2—3/2q(‘aalt‘ %‘ ) < C(lals+bl3) + C(lals +bl3)". (2.31)
q q

Proof. The proofis a consequence of Lemmas 2.2, 2.3, and 2.4, and the following facts

ou* k k-1 k-1 k. pk-1
gszu — (@ V)ur - vt + 60,
2.32
8_9" _ Agk _ vek 1 ( )
a X ut” 0

The main result in this paper is the following.

THEOREM 2.6. Let a € L3(R%), b € L*(R?) and |f|; < Cot""324(lal3 + |bl3), |Vfl,
Cot=¥2*324(|al53 + |bl3). Then, there exists a positive constant e such that, if (1als + |bl3)
&, there exists a unique solution (u,0) for (1.1), which satisfy:

<
<

tY27324y € BC([0, ); L1(R?)),
t1/273/249 € BC([0,);L1(R?)
t'7%24|Vu| € BC([0,0);L(R?)
t1/27324|v 9| € BC([0,00);L1(R?)

)

)
),
)

>

[
(
: (2.33)
[
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for 3 < g < oo and moreover

‘ € BC([0,0);L1(R?)),

> a20

xl

£3/2- 3/2‘1|an € BC([0,0);L1(R%)),

‘ € BC([0,0);L1(R?)), (2.34)

t3/2 3/25]% EBC([O OO) Lq([R3))

for3 < q < oo.
Proof. Using Lemma 2.3 with g = 3, we obtain

[u |5+ |6F], < C(lals+1bl5),

(2.35)
|Vt [+ | V6*]; < 2 (Jals + [b3)
then, for 1 < p <2 it is easy to show
uf € L% (0,00; L (R?)),
6% € L™ (0,00; L% (R?)),
2.36
Vuk e Lf (0,00;L%(R%)), (2:36)
vok e L (0,00;L3 (R?)).
Let g and g* such that 1/q+1/q* = 1 and we consider the following estimative:
sup | (Adbv)| < sup |Vuk|q|Vv|q* < |Vuk\q,
‘V|W1’q* =1 |V\W1’q* =1
0 0
2
sup  [((u1- V)uthv) | < | [ut
VI g =1 ‘ (2.37)
Wo
sup  [(VAF,v)| < |7Tk|q.
\V\Wl,q* =1
0
Now, using Holder and Sobolev inequalities, we have
sup | (05 'f,v)| <C sup |6k_1f|3q/(q+3)|VV|q*
lv‘wé‘q* =1 v '1)4* =1 (238)

_C|9k 1f|3q/q+3

Thus, by using Lemma 2.4 together with Sobolev and Hélder inequalities, we obtain

' < [Vut] +Clut ], | Vubt ]+ L0 Ifl, (2.39)
t |y
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consequently,

k
o ‘ <Ct 1+, (2.40)
ot |y

Analogously the following inequality can be proved for the temperature 6*

90k

= ‘ < Ct "3/, (2.41)
ot W-La(R3)

Therefore, for 1 < r < 2g/(2g — 3), we have

ouf
ot
00k
ot

€ L, (0,00, W™ 1(R?)),
(2.42)
GLfOC(O,OO;Wfl’q([R3)).

By using the compact embedding of W'3(R?) on L} (R?) and the Compactness The-
orem in [11, Cap. 3], we obtain that there exists (u,8) such that

v —u inL} (0,00;L} (R?)) strongly,

(2.43)
6k — 0 in L% (0,00;L} (R?)) strongly.
Now, using the standard arguments, it is easily to show that (u,0) is a unique solution

of (1.1) (see [5]). O
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