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We consider an abstract coupled evolution system of second order in time. For any positive value of the initial energy, in particular
for high energies, we give sufficient conditions on the initial data to conclude nonexistence of global solutions. We compare our
results with those in the literature and show how we improve them.

1. Introduction

A coupled Klein-Gordon system, in electromagnetic theory,
was first introduced in [1]. Posteriorly, further generalizations

have been studied. In particular, the following system was
analyzed in [2]

(KG)

{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑢𝑡𝑡 − Δ𝑢 + 𝑚21𝑢 + 𝐾1 (𝑥) 𝑢 = 𝑎1 (𝑝 + 1) |V|𝑞+1 |𝑢|𝑝−1 𝑢,
V𝑡𝑡 − ΔV + 𝑚22V + 𝐾2 (𝑥) V = 𝑎2 (𝑞 + 1) |𝑢|𝑝+1 |V|𝑞−1 V,
𝑢 (0, 𝑥) = 𝑢0 (𝑥) ,
𝑢𝑡 (0, 𝑥) = 𝑢1 (𝑥) ,
V (0, 𝑥) = V0 (𝑥) ,
V𝑡 (0, 𝑥) = V1 (𝑥) ,

(1)

on R × R𝑁, where 𝑎𝑖 > 0, 𝑚𝑖 ̸= 0, 𝐾𝑖(𝑥) ≥ 0, 𝑥 ∈ R𝑁, 𝑖 =1, 2, and 𝑝 > 1, 𝑞 > 1. The existence and uniqueness of weak
solutions of (KG), aswell as characterizations for blow-up and
globality, by means of the potential well method for values
of the initial energy smaller than the mountain pass level,
were proved in [2]. In the same paper, sufficient conditions
were given to obtain blow-up for arbitrary positive values

of the initial energy. The purpose of our work is to study
an abstract hyperbolic coupled system and improve some
results about nonexistence of global solutions presented in
the literature for some concrete systems. In particular, we
shall improve some blow-up results presented in [2], for the
problem (KG). Precisely, we consider the following abstract
problem:
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(P)

{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑃𝑢𝑡𝑡 + 𝐴𝑢 = 𝐹 (𝑢, V) ,
𝑄V𝑡𝑡 + 𝐵V = 𝐺 (𝑢, V) ,
𝑢 (0) = 𝑢0,𝑢𝑡 (0) = 𝑢1,
V (0) = V0,
V𝑡 (0) = V1,

(2)

on R, where we assumed that the operators

𝑃 : 𝑊𝑃 󳨀→ 𝑊󸀠𝑃,
𝑄 : 𝑊𝑄 󳨀→ 𝑊󸀠𝑄,
𝐴 : 𝑉𝐴 󳨀→ 𝑉󸀠𝐴,
𝐵 : 𝑉𝐵 󳨀→ 𝑉󸀠𝐵

(3)

are linear, continuous, positive, and symmetric, where

𝑉𝐴 ⊂ 𝑊𝑃 ⊂ 𝐻,
𝑉𝐵 ⊂ 𝑊𝑄 ⊂ 𝐻 (4)

are linear subspaces of the Hilbert space 𝐻 with inner
product (⋅, ⋅) and norm ‖ ⋅ ‖. Here, 𝐻󸀠, 𝑊󸀠𝑃, 𝑊󸀠𝑄, 𝑉󸀠𝐴, 𝑉󸀠𝐵 are the
corresponding dual spaces and we identify 𝐻 = 𝐻󸀠. Then,

𝐻 ⊂ 𝑊󸀠𝑃 ⊂ 𝑉󸀠𝐴,
𝐻 ⊂ 𝑊󸀠𝑄 ⊂ 𝑉󸀠𝐵. (5)

By means of the operators 𝑃, 𝑄, 𝐴, and 𝐵, we define the
following bilinear forms:

P (𝑢, 𝑤) ≡ (𝑃𝑢, 𝑤)𝑊𝑃×𝑊󸀠𝑃 ,
‖𝑢‖2𝑊𝑃 ≡ P (𝑢, 𝑢) ,

∀𝑢, 𝑤 ∈ 𝑊𝑃,
Q (V, 𝑤) ≡ (𝑄V, 𝑤)𝑊𝑄×𝑊󸀠𝑄 ,

‖V‖2𝑊𝑄 ≡ Q (V, V) ,
∀V, 𝑤 ∈ 𝑊𝑄,

A (𝑢, 𝑤) ≡ (𝐴𝑢, 𝑤)𝑉𝐴×𝑉󸀠𝐴 ,
‖𝑢‖2𝑉𝐴 ≡ A (𝑢, 𝑢) ,

∀𝑢, 𝑤 ∈ 𝑉𝐴,
B (V, 𝑤) ≡ (𝐵V, 𝑤)𝑉𝐵×𝑉󸀠𝐵 ,

‖V‖2𝑉𝐵 ≡ B (V, V) ,
∀V, 𝑤 ∈ 𝑉𝐵.

(6)

We assume that there exists 𝑐 > 0, such that

(𝐻0) ‖𝑢‖2𝑉𝐴 + ‖V‖2𝑉𝐵 ≥ 𝑐 (‖𝑢‖2𝑊𝑃 + ‖V‖2𝑊𝑄) ,
∀ (𝑢, V) ∈ 𝑉𝐴 × 𝑉𝐵. (7)

The nonlinear source terms 𝐹 : 𝑉𝐴 × 𝑉𝐵 󳨀→ 𝐻 and 𝐺 : 𝑉𝐴 ×𝑉𝐵 󳨀→ 𝐻, are such that 𝐹(0, 0) = 0 = 𝐺(0, 0), and (𝐹, 𝐺) :(𝑉𝐴 × 𝑉𝐵) × (𝑉𝐴 × 𝑉𝐵) 󳨀→ 𝐻 × 𝐻 is a potential operator with
potentialK : 𝑉𝐴 × 𝑉𝐵 󳨀→ R, that is, 𝐹(𝑢, V) = 𝜕𝑢K(𝑢, V) and𝐺(𝑢, V) = 𝜕VK(𝑢, V), and they satisfy

(𝐻1) (𝐹 (𝑢, V) , 𝑢) + (𝐺 (𝑢, V) , V) − 𝑟K (𝑢, V) ≥ 0,
∀ (𝑢, V) ∈ 𝑉𝐴 × 𝑉𝐵, (8)

where 𝑟 > 2 is a constant.

2. Functional Framework

We shall analyze qualitative properties for a set of solutions
of problem (P). To this end, we define the phase space

H ≡ (𝑉𝐴 × 𝑊𝑃) × (𝑉𝐵 × 𝑊𝑄) . (9)

We assume that the following local existence and uniqueness
result is met.

Theorem 1. For every initial data ((𝑢0, 𝑢1), (V0, V1)) ∈
H, there exists 𝑇 > 0, and a unique local solution((𝑢0, 𝑢1), (V0, V1)) 󳨃󳨀→ ((𝑢, 𝑢̇), (V, V̇)) ∈ 𝐶([0, 𝑇);H), 𝑢̇(𝑡) ≡(𝑑/𝑑𝑡)𝑢(𝑡), V̇(𝑡) ≡ (𝑑/𝑑𝑡)V(𝑡), such that problem (𝑃) is satisfied
in the following sense

𝑑𝑑𝑡P (𝑢̇ (𝑡) , 𝑤) + A (𝑢 (𝑡) , 𝑤) = (𝐹 (𝑢 (𝑡) , V (𝑡)) , 𝑤) ,
𝑑𝑑𝑡Q (V̇ (𝑡) , 𝑤) + B (V (𝑡) , 𝑤) = (𝐺 (𝑢 (𝑡) , V (𝑡)) , 𝑤) , (10)

a. e. in (0, 𝑇) and for every (𝑤, 𝑤) ∈ 𝑉𝐴× 𝑉𝐵. Furthermore, the
following energy equation holds for 𝑇 > 𝑡 ≥ 𝑡0 ≥ 0,

𝐸 (𝑢 (𝑡0) , 𝑢̇ (𝑡0) , V (𝑡0) , V̇ (𝑡0))
= 𝐸 (𝑢 (𝑡) , 𝑢̇ (𝑡) , V (𝑡) , V̇ (𝑡))
≡ 12 {‖𝑢̇ (𝑡)‖2𝑊𝑃 + ‖V̇ (𝑡)‖2𝑊𝑄} + 𝐽 (𝑢 (𝑡) , V (𝑡)) ,

𝐽 (𝑢 (𝑡) , V (𝑡))
≡ 12 {‖𝑢 (𝑡)‖2𝑉𝐴 + ‖V (𝑡)‖2𝑉𝐵} − K (𝑢 (𝑡) , V (𝑡)) .

(11)

Remark 2. Problem (P) is invariant if we reverse
the time direction: 𝑡 󳨃󳨀→ −𝑡. Indeed, the solution
backwards ((𝑢(𝑡), 𝑢̇(𝑡)), (V(𝑡), V̇(𝑡))), 𝑡 < 0, with
initial data ((𝑢0, 𝑢1), (V0, V1)) is the solution forwards((𝑢(−𝑡), 𝑢̇(−𝑡)), (V(−𝑡), V̇(−𝑡))), −𝑡 > 0 with initial data((𝑢0, −𝑢1), (V0, −V1)).
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An important set of solutions are the equilibria, that is,
solutions independent of time: 𝑢̇ = 0 = V̇. In this case, (𝑢, V)
satisfies

A (𝑢, 𝑤) = (𝐹 (𝑢, V) , 𝑤) ,
B (V, 𝑤) = (𝐺 (𝑢, V) , 𝑤) , (12)

for every (𝑤, 𝑤) ∈ 𝑉𝐴 × 𝑉𝐵. In particular, for 𝑤 = 𝑢, 𝑤 = V,

‖𝑢‖2𝑉𝐴 = (𝐹 (𝑢, V) , 𝑢) ,
‖V‖2𝑉𝐵 = (𝐺 (𝑢, V) , V) , (13)

and then

𝐼 (𝑢, V) ≡ ‖𝑢‖2𝑉𝐴 + ‖V‖2𝑉𝐵 − (𝐹 (𝑢, V) , 𝑢) − (𝐺 (𝑢, V) , V)
= 0. (14)

By (𝐻0), (𝑢, V) ≡ (0, 0) is an equilibrium. The set of
equilibria (𝑢, V) ̸= (0, 0), with minimal energy is called
ground state, and the corresponding value of the energy
is the mountain pass level denoted by 𝑑; see [3]. For the
problem (KG), the sign of 𝐼(𝑢0, V0) characterizes either blow-
up in finite time or boundedness of solutions if 𝐸0 ≡𝐸(𝑢0, 𝑢1, V0, V1) < 𝑑. Indeed, blow-up and boundedness
properties hold if, 𝐼(𝑢0, V0) < 0 and 𝐼(𝑢0, V0) > 0, respectively;
see [2]. Similar analysis have been done to prove similar
characterizations for coupled systems of wave equations with
linear and nonlinear damping terms; see [4–8] and references
therein, just to cite some works of the abundant literature
in the field. The qualitative analysis of the solutions with
high energies is almost unknown. There are some works that
prove blow-up if 𝐼(𝑢0, V0) < 0 and some other conditions
on 𝐸0 and the initial data are satisfied; see for instance [2].
Similar theorems have been proved in [6, 9–11], for damped
systems of semilinear wave equations. The purpose of this
work is to improve considerably the existing results for blow-
up for systems (P), with high energies.We shall generalize the
technique used in a previous work for a single equation; see
[12].

3. Nonexistence of Global Solutions

We consider the following orthogonal decomposition of the
velocities

𝑢̇ = P (𝑢̇, 𝑢)‖𝑢‖2𝑊𝑃 𝑢 + ℎ,
V̇ = Q (V̇, V)‖V‖2𝑊𝑄 V + ℎ̃ (15)

where P(𝑢, ℎ) = 0 and Q(V, ℎ̃) = 0. Then, we define the
functionals

𝑅 (𝑢, 𝑢̇) ≡ |P (𝑢̇, 𝑢)|2‖𝑢‖2𝑊𝑃 ,
𝑆 (V, V̇) ≡ |Q (V̇, V)|2‖V‖2𝑊𝑄

(16)

Consequently,

‖𝑢̇‖2𝑊𝑃 = ‖ℎ‖2𝑊𝑃 + 𝑅 (𝑢, 𝑢̇) ,
‖V̇‖2𝑊𝑄 = 󵄩󵄩󵄩󵄩󵄩ℎ̃󵄩󵄩󵄩󵄩󵄩2𝑊𝑄 + 𝑆 (V, V̇) . (17)

Also, we define

Ψ1 (𝑢) ≡ ‖𝑢‖2𝑊𝑃 ,
Ψ2 (V) ≡ ‖V‖2𝑊𝑄 ,

Ψ (𝑢, V) ≡ Ψ1 (𝑢) + Ψ2 (V)
Φ (𝑢, 𝑢̇, V, V̇) ≡ 𝑐Ψ (𝑢, V) + (P (𝑢, 𝑢̇) + Q (V, V̇))2Ψ (𝑢, V) .

(18)

where 𝑐 > 0 is the constant in 𝐻(0). We also define the
following functions

𝜂𝑞 (𝑢, 𝑢̇, V, V̇) ≡ 12 Φ (𝑢, 𝑢̇, V, V̇)
− 𝑐𝑟 Ψ (𝑢, V) ( 𝑐Ψ (𝑢, V)Φ (𝑢, 𝑢̇, V, V̇) )𝑞 ,

for 𝑞 ≥ 0,
𝜇𝜆 (𝑢, 𝑢̇, V, V̇) ≡ 12 Φ (𝑢, 𝑢̇, V, V̇)

− 𝑐𝑟 Ψ (𝑢, V) ( 𝜆𝑐Ψ (𝑢, V)Φ (𝑢, 𝑢̇, V, V̇) )(𝑟−2)/2 ,
for 𝜆 ∈ (0, 1) ,

𝜎] (𝑢, 𝑢̇, V, V̇) ≡ 12 Φ (𝑢, 𝑢̇, V, V̇) − 𝑐]𝑟 Ψ (𝑢, V) ,
for ] > 1.

(19)

If P(𝑢, 𝑢̇) + Q(V, V̇) > 0, we notice that 𝑞 󳨃󳨀→ 𝜂𝑞(𝑢, 𝑢̇, V, V̇) is
strictly increasing, 𝜆 󳨃󳨀→ 𝜇𝜆 is strictly decreasing, and ] 󳨃󳨀→𝜎] is strictly decreasing. They have the following relations

lim
𝜆󳨀→1

𝜇𝜆 (𝑢, 𝑢̇, V, V̇) = 𝜂(𝑟−2)/2 (𝑢, 𝑢̇, V, V̇) ,
lim
]󳨀→1

𝜎] (𝑢, 𝑢̇, V, V̇) = 𝜂0 (𝑢, 𝑢̇, V, V̇) , (20)

and 𝜎](𝑢, 𝑢̇, V, V̇) < 𝜂0(𝑢, 𝑢̇, V, V̇) < 𝜂(𝑟−2)/2(𝑢, 𝑢̇, V, V̇) <𝜇𝜆(𝑢, 𝑢̇, V, V̇).
For the (KG) system, a recent work [2] proved blow-

up of solutions with initial energy: 𝐸0 < (𝑐(𝑟 −4)/2𝑟)Ψ(𝑢0, V0). We observe that (𝑐(𝑟 − 4)/2𝑟)Ψ(𝑢0, V0) <(𝑐(𝑟−2)/2𝑟)Ψ(𝑢0, V0) < 𝜂0(𝑢0, 𝑢1, V0, V1). Here, we shall prove
nonexistence of global solutions of the (P) system with initial
energy 𝜎]∗(𝑢0, 𝑢1, V0, V1) < 𝐸0 < 𝜇∗𝜆(𝑢0, 𝑢1, V0, V1), for some
]∗ > 1 and 𝜆∗ ∈ ((𝑟 − 2)/𝑟, 1). Furthermore, we shall prove
that for any positive value of the initial energy there are initial
data implying nonexistence of global solutions.
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Theorem 3. Consider any solution of problem (P) in the sense
of Theorem 1. Assume that hypotheses (𝐻0) and (𝐻1) are met
and that

󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝑊𝑃 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩2𝑊𝑄 > 0,
P (𝑢0, 𝑢1) + Q (V0, V1) > 0, (21)

are satisfied. Then, we construct the nonempty interval

I0 ≡ (𝛼0, 𝛽0) ⊂ (0, 12 Φ (𝑢0, 𝑢1, V0, V1)) , (22)

where

𝛼0 = 𝜎]∗ (𝑢0, 𝑢1, V0, V1) = 𝑟 − 22𝑟 ( 𝑐Ψ (𝑢0, V0)
]∗(2/(𝑟−2))

) ,
𝛽0 = 𝜇𝜆∗ (𝑢0, 𝑢1, V0, V1) = 𝑟 − 22𝑟 ( Φ (𝑢0, 𝑢1, V0, V1)𝜆∗ ) ,

(23)

for some (𝑟 − 2)/𝑟 < 𝜆∗ < 1 and ]∗ > 1, and we have the
following assertions.

(i) If the initial energy is such that 𝐸0 ∈ I0, then the
maximal time of existence of the solution is finite.

(ii) For fixed Ψ(𝑢0, V0),
P (𝑢0, 𝑢1) + Q (V0, V1) 󳨃󳨀→ 󵄨󵄨󵄨󵄨I0󵄨󵄨󵄨󵄨 = 𝛽0 − 𝛼0 (24)

is strictly increasing, and

lim
P(𝑢0 ,𝑢1)+Q(V0 ,V1)󳨀→∞

𝛼0 = 0
= lim

P(𝑢0 ,𝑢1)+Q(V0 ,V1)󳨀→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽0 − 12 Φ (𝑢0, 𝑢1, V0, V1)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,
lim

P(𝑢0 ,𝑢1)+Q(V0 ,V1)󳨀→∞
]∗ = ∞,

lim
P(𝑢0 ,𝑢1)+Q(V0 ,V1)󳨀→∞

𝜆∗ = 𝑟 − 2𝑟 .
(25)

Corollary 4. Assume that hypotheses of Theorem 3 are met.
For every number E > 0, we can choose initial data with
P(𝑢0, 𝑢1) + Q(V0, V1) large enough, so that E ∈ I0, and then
the corresponding solutionwith𝐸0 = E exists only up to a finite
time.

4. Proofs

Proof (of Theorem 3). First, we will assume that the solution
is global and then, by means of a differential inequality
in terms of Ψ, we shall get a contradiction. Then, assume
that Ψ(𝑢(𝑡), V(𝑡)) exists for any 𝑡 ≥ 0. We observe that(𝑑/𝑑𝑡)Ψ(𝑢(𝑡), V(𝑡)) = 2(P(𝑢(𝑡), 𝑢̇(𝑡))+Q(V(𝑡), V̇(𝑡))). Now, we

define G(𝑡) ≡ Ψ−(𝑟−2)/4(𝑢(𝑡), V(𝑡)), and due to (21), we have
that for 𝑡 ≥ 0, close to zero, the following inequality holds

𝑑𝑑𝑡G (𝑡) = − 𝑟 − 24
⋅ Ψ−(𝑟+2)/4 (𝑢 (𝑡) , V (𝑡)) 𝑑𝑑𝑡 Ψ (𝑢 (𝑡) , V (𝑡)) = − 𝑟 − 22
⋅ Ψ−(𝑟+2)/4 (𝑢 (𝑡) , V (𝑡))
⋅ (P (𝑢 (𝑡) , 𝑢̇ (𝑡)) + Q (V (𝑡) , V̇ (𝑡))) < 0.

(26)

By energy equation and hypotheses (𝐻0) and (𝐻1), we obtain
𝑑2𝑑𝑡2Ψ (𝑢 (𝑡) , V (𝑡)) = 2 (‖𝑢̇ (𝑡)‖2𝑊𝑃 + ‖V̇ (𝑡)‖2𝑊𝑄

− 𝐼 (𝑢 (𝑡) , V (𝑡))) = 2 (‖𝑢̇ (𝑡)‖2𝑊𝑃 + ‖V̇ (𝑡)‖2𝑊𝑄
− 𝐼 (𝑢 (𝑡))) + 2𝑟𝐸0 − 2𝑟𝐸0 ≥ (𝑟 + 2)
⋅ (𝑅 (𝑢 (𝑡) , 𝑢̇ (𝑡)) + 𝑆 (V (𝑡) , V̇ (𝑡))) + (𝑟 − 2)
⋅ (‖𝑢 (𝑡)‖2𝑉𝐴 + ‖V (𝑡)‖2𝑉𝐵) − 2𝑟𝐸0.
≥ 𝑟 + 24 { ((𝑑/𝑑𝑡) Ψ1 (𝑢 (𝑡)))2Ψ1 (𝑢 (𝑡))
+ ((𝑑/𝑑𝑡) Ψ2 (V (𝑡)))2Ψ2 (V (𝑡)) } + 𝑐 (𝑟 − 2) (Ψ1 (𝑢 (𝑡))
+ Ψ2 (V (𝑡))) − 2𝑟𝐸0.
≥ 𝑟 + 24 ( ((𝑑/𝑑𝑡) Ψ (𝑢 (𝑡)))2Ψ (𝑢 (𝑡) , V (𝑡)) ) + 𝑐 (𝑟 − 2)
⋅ Ψ (𝑢 (𝑡) , V (V)) − 2𝑟𝐸0,

(27)

where we used the following

(Ψ2 (V (𝑡)) 𝑑𝑑𝑡 Ψ1 (𝑢 (𝑡)) − Ψ1 (𝑢 (𝑡)) 𝑑𝑑𝑡 Ψ2 (V (𝑡)))2
≥ 0 ⇐⇒

( 𝑑𝑑𝑡 Ψ1 (𝑢 (𝑡)))2Ψ22 (V (𝑡))
+ ( 𝑑𝑑𝑡 Ψ2 (V (𝑡)))2Ψ21 (𝑢 (𝑡))
≥ 2Ψ1 (𝑢 (𝑡)) Ψ2 (V (𝑡)) 𝑑𝑑𝑡 Ψ1 (𝑢 (𝑡)) 𝑑𝑑𝑡 Ψ2 (V (𝑡)) ⇐⇒

( 𝑑𝑑𝑡 Ψ1 (𝑢 (𝑡)))2 Ψ2 (V (𝑡))Ψ1 (𝑢 (𝑡))
+ ( 𝑑𝑑𝑡 Ψ2 (V (𝑡)))2 Ψ1 (𝑢 (𝑡))Ψ2 (V (𝑡))



Abstract and Applied Analysis 5

≥ 2 𝑑𝑑𝑡 Ψ1 (𝑢 (𝑡)) 𝑑𝑑𝑡 Ψ2 (V (𝑡)) ⇐⇒
( 𝑑𝑑𝑡 Ψ1 (𝑢 (𝑡)))2 ( Ψ2 (V (𝑡))Ψ1 (𝑢 (𝑡)) + 1)

+ ( 𝑑𝑑𝑡 Ψ2 (V (𝑡)))2 ( Ψ1 (𝑢 (𝑡))Ψ2 (V (𝑡)) + 1)
≥ ( 𝑑𝑑𝑡 Ψ1 (𝑢 (𝑡)) + 𝑑𝑑𝑡 Ψ2 (V (𝑡)))2 ⇐⇒

((𝑑/𝑑𝑡) Ψ1 (𝑢 (𝑡)))2Ψ1 (𝑢 (𝑡)) + ((𝑑/𝑑𝑡) Ψ2 (V (𝑡)))2Ψ2 (V (𝑡))
≥ ((𝑑/𝑑𝑡) Ψ1 (𝑢 (𝑡)) + (𝑑/𝑑𝑡) Ψ2 (V (𝑡)))2Ψ1 (𝑢 (𝑡)) + Ψ2 (V (𝑡))
= ((𝑑/𝑑𝑡) Ψ (𝑢 (𝑡) , V (𝑡)))2Ψ (𝑢 (𝑡) , V (𝑡)) .

(28)

Then,

𝑑2𝑑𝑡2G (𝑡) = ( 𝑟 − 24 Ψ−(𝑟+2)/4 (𝑢 (𝑡) , V (𝑡)))
× ( 𝑟 + 24 ((𝑑/𝑑𝑡) Ψ (𝑢 (𝑡) , V (𝑡)))2Ψ (𝑢 (𝑡) , V (𝑡))
− 𝑑2𝑑𝑡2Ψ (𝑢 (𝑡) , V (𝑡))) ≤ −𝑐 (𝑟 − 2)24 G (𝑡) + 𝐸0
⋅ 𝑟 (𝑟 − 2)2 G (𝑡)(𝑟+2)/(𝑟−2) ,

(29)

and since (𝑑/𝑑𝑡)G(𝑡) < 0, we get
( 𝑑𝑑𝑡G (𝑡))2 ≥ (𝑟 − 2)24 (2𝐸0G2𝑟/(𝑟−2) (𝑡) − 𝑐G2 (𝑡))

+ 𝐶0,
(30)

where

𝐶0 ≡ ( 𝑑𝑑𝑡G (0))2

− (𝑟 − 2)24 (2𝐸0G2𝑟/(𝑟−2) (0) − 𝑐G2 (0)) .
(31)

We shall prove that there exists a constant 𝜌0 > 0 such that

( 𝑑𝑑𝑡G (𝑡))2 ≥ 𝜌20 > 0, ∀𝑡 ≥ 0, (32)

and then 𝑑𝑑𝑡G (𝑡) ≤ −𝜌0 < 0, ∀𝑡 ≥ 0. (33)

Hence,

0 ≤ G (𝑡) ≤ −𝜌0𝑡 + G (0) , ∀𝑡 ≥ 0 (34)

which is impossible for any 𝑡 > G(0)/𝜌0. Then, the solution
only exits up to a finite time.

Next, we prove that (32) is satisfied. To this end, we
consider the right-hand side of (30) and define, for 𝑠 ≥ 0,

F (𝑠) ≡ (𝑟 − 2)24 (2𝐸0𝑠𝑟/(𝑟−2) − 𝑐𝑠) + 𝐶0, (35)

and we notice that

F (𝑠) ≥ F (𝑠0) , ∀𝑠 ≥ 0, (36)

with 𝑠0 ≡ (𝑐(𝑟 − 2)/2𝑟𝐸0)(𝑟−2)/2 > 0, and
F (𝑠0) = (𝑟 − 2)24 (2𝐸0𝑠𝑟/(𝑟−2)0 − 𝑐𝑠0) + 𝐶0,

= − (𝑟 − 2) 𝐸0 ( 𝑐 (𝑟 − 2)2𝑟𝐸0 )𝑟/2 + 𝐶0,
(37)

Also,

𝐶0 = (𝑟 − 2)24 (󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝑊𝑃 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩2𝑊𝑄)−(𝑟+2)/2 (P (𝑢0, 𝑢1)
+ Q (V0, V1))2
− (𝑟 − 2)24 (2𝐸0 (󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝑊𝑃 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩2𝑊𝑄)−𝑟/2
− 𝑐 (󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝑊𝑃 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩2𝑊𝑄)−(𝑟−2)/2) .

(38)

We observe that (32) is satisfied if 𝜌20 = F(𝑠0) > 0, which is
characterized by

2𝑐𝑟 ( 𝑐 (𝑟 − 2)2𝑟𝐸0 )(𝑟−2)/2 + 2𝐸0 (󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝑊𝑃 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩2𝑊𝑄)−𝑟/2
< (󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝑊𝑃 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩2𝑊𝑄)−(𝑟+2)/2
⋅ (P (𝑢0, 𝑢1) + Q (V0, V1))2
+ 𝑐 (󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝑊𝑃 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩2𝑊𝑄)−(𝑟−2)/2 ,

(39)

and it is equivalent to

𝐸0 + ( 𝑐 (𝑟 − 2) Ψ (𝑢0, V0)2𝑟𝐸0 )(𝑟−2)/2 𝑐Ψ (𝑢0, V0)𝑟
< 12 Φ (𝑢0, 𝑢1, V0, V1) ,

(40)

where

Φ (𝑢0, 𝑢1, V0, V1) ≡ 𝑐Ψ (𝑢0, V0)
+ (P (𝑢0, 𝑢1) + Q (V0, V1))2Ψ (𝑢0, V0) . (41)
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Now, in order to guarantee that (40) is satisfied, we define, for𝑠 ≥ 0,
N (𝑠) ≡ 𝑠 + ( 𝑐 (𝑟 − 2) Ψ (𝑢0, V0)2𝑟𝑠 )(𝑟−2)/2 𝑐Ψ (𝑢0, V0)𝑟 . (42)

We observe that N(𝑠) 󳨀→ ∞ as either 𝑠 󳨀→ 0 or 𝑠 󳨀→ ∞,
and

N (𝑠) ≥ N (𝑠1) = 𝑐2 Ψ (𝑢0, V0) , ∀𝑠 ≥ 0, (43)

for 𝑠1 ≡ ((𝑟 − 2)/2𝑟)𝑐Ψ(𝑢0, V0). Moreover, by (21), there exist
exactly two different roots of N(𝑠) = (1/2)Φ(𝑢0, 𝑢1, V0, V1),
denoted by 𝛼0 and 𝛽0, such that

0 < 𝛼0 < 𝑠1 < 𝛽0 < 12 Φ (𝑢0, 𝑢1, V0, V1) ,
12 Ψ (𝑢0, V0) < N (𝑠) < 12 Φ (𝑢0, 𝑢1, V0, V1) ,

∀𝑠 ∈ I0 ≡ (𝛼0, 𝛽0) , 𝑠 ̸= 𝑠1.
(44)

And since N is strictly monotone for 𝑠 < 𝑠1 and 𝑠 > 𝑠1,
it follows that, for fixed Ψ(𝑢0, V0), the interval I0 grows as
P(𝑢0, 𝑢1) + Q(V0, V1) grows. Precisely,

lim
P(𝑢0 ,𝑢1)+Q(V0 ,V1)󳨀→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 12 Φ (𝑢0, 𝑢1, V0, V1) − 𝛽0󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 0
= lim

P(𝑢0 ,𝑢1)+Q(V0 ,V1)󳨀→∞
𝛼0. (45)

Then, (32) holds if and only if the initial energy satisfies

N (𝐸0) < 12 Φ (𝑢0, 𝑢1, V0, V1) , (46)

that is, if 𝐸0 ∈ I0. This proves that the maximum time of
existence must be finite if the initial energy is within this
interval.

Next, we shall find the values of 𝛼0 and 𝛽0. Remember
that these are the roots of N(𝑠) = (1/2)Φ(𝑢0, 𝑢1, V0, V1). To
find 𝛼0, we consider the function

𝜎] (𝑢0, 𝑢1, V0, V1) ≡ 12 Φ (𝑢0, 𝑢1, V0, V1)
− 𝑐]𝑟 Ψ (𝑢0, V0) , (47)

defined for ] > 1, and the equation

N (𝜎] (𝑢0, 𝑢1, V0, V1)) = 12 Φ (𝑢0, 𝑢1, V0, V1) (48)

which holds if and only if

1
]2/(𝑟−2)

= 2𝑟𝑐 (𝑟 − 2) ( 𝜎] (𝑢0, 𝑢1, V0, V1)Ψ (𝑢0, V0) ) (49)

which is equivalent to

2𝑟 ] + ( 𝑟 − 2𝑟 ) 1
]2/(𝑟−2)

= Φ (𝑢0, 𝑢1, V0, V1)𝑐Ψ (𝑢0, V0) . (50)

We notice that

𝑓 (𝑠) ≡ 2𝑟 𝑠 + ( 𝑟 − 2𝑟 ) 1𝑠2/(𝑟−2) 󳨀→ ∞ (51)

as 𝑠 󳨀→ 0 and 𝑠 󳨀→ ∞. Also, min{𝑠>0}𝑓(𝑠) = 𝑓(1) = 1.
Moreover,

Φ (𝑢0, 𝑢1, V0, V1)𝑐Ψ (𝑢0, V0) > 1. (52)

Then, the equation for ] has two roots and only one is bigger
than 1. Furthermore, at this root, ]∗ > 1,

𝛼0 = 𝜎]∗ (𝑢0, 𝑢1, V0, V1)
= ( 𝑐 (𝑟 − 2) Ψ (𝑢0, V0)2𝑟 ) 1

]∗(2/(𝑟−2))
,

lim
P(𝑢0 ,𝑢1)+Q(V0 ,V1)󳨀→∞

]∗ = ∞.
(53)

Next, we consider the function

𝜇𝜆 (𝑢0, 𝑢1, V0, V1)
≡ 12 Φ (𝑢0, 𝑢1, V0, V1)

− 𝑐𝑟 Ψ (𝑢0, V0) ( 𝜆𝑐Ψ (𝑢0, V0)Φ (𝑢0, 𝑢1, V0, V1) )(𝑟−2)/2 ,
(54)

defined for (𝑟 − 2)/𝑟 < 𝜆 < 1, and the equation

N (𝜇𝜆 (𝑢0, 𝑢1, V0, V1)) = 12 Φ (𝑢0, 𝑢1, V0, V1) (55)

which is equivalent to

𝑐𝑟 Ψ (𝑢0, V0) ( 𝑐 (𝑟 − 2)2𝑟 Ψ (𝑢0, V0)𝜇𝜆 (𝑢0, 𝑢1, V0, V1) )(𝑟−2)/2

= 𝑐𝑟 Ψ (𝑢0, V0) (𝜆 𝑐Ψ (𝑢0, V0)Φ (𝑢0, 𝑢1, V0, V1) )(𝑟−2)/2 ,
(56)

and it is characterized by

𝑟 − 22𝑟 = 𝜆 𝜇𝜆 (𝑢0, 𝑢1, V0, V1)Φ (𝑢0, 𝑢1, V0, V1) (57)

which holds if and only if

2𝑟 (𝜆 𝑐Ψ (𝑢0, V0)Φ (𝑢0, 𝑢1, V0, V1) )𝑟/2 = 𝜆 − 𝑟 − 2𝑟 . (58)

Notice that

𝑔 (𝜆) ≡ 2𝑟 (𝜆 𝑐Ψ (𝑢0, V0)Φ (𝑢0, 𝑢1, V0, V1) )𝑟/2 ,
ℎ (𝜆) ≡ 𝜆 − 𝑟 − 2𝑟 ,

(59)
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are strictly monotone increasing, and

𝑔 (0) > ℎ (0) ,
𝑔 (1) < ℎ (1) . (60)

Then, there exists one and only one 𝜆∗ ∈ ((𝑟 − 2)/𝑟, 1) where𝑔(𝜆∗) = ℎ(𝜆∗). Moreover,

𝛽0 = 𝜇𝜆∗ (𝑢0, 𝑢1, V0, V1)
= ( (𝑟 − 2) Φ (𝑢0, 𝑢1, V0, V1)2𝑟 ) 1𝜆∗ ,

lim
P(𝑢0 ,𝑢1)+Q(V0 ,V1)󳨀→∞

𝜆∗ = 𝑟 − 2𝑟 .
(61)

Proof (of Corollary 4). Since

P + Q 󳨀→ ∞ 󳨐⇒
𝛼0 󳨀→ 0,
𝛽0 󳨀→ ∞

(62)

then, for every E > 0, there exists 𝑀 > 0, such that

P + Q > 𝑀 󳨐⇒
E ∈ I0 = (𝛼0, 𝛽0) . (63)

Hence, the corresponding solutionwith initial energy𝐸0 = E
satisfying (21) exists only up to a finite time.

Remark 5. For small energies, 𝐸0 < 𝑑, the potential well
method characterizes the qualitative behavior of any solution
in terms of the sign of 𝐼(𝑢0, V0); see [4–8]. In particular,
blow-up is characterized if 𝐼(𝑢0, V0) < 0. Let us examine the
situation for any positive value of the initial energy.

Assume that hypotheses of Theorem 3 are met. From
energy equation, (𝐻0), (𝐻1), (21), 𝐸0 < 𝛽0, and since (𝑟 −2)/𝑟 < 𝜆∗ < 1, we obtain

𝐼 (𝑢0, V0) = 2𝐸0 − 󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩2𝑊𝑃 − 󵄩󵄩󵄩󵄩V1󵄩󵄩󵄩󵄩2𝑊𝑄 + 2K (𝑢0, V0)
− (𝐹 (𝑢0, V0) , 𝑢0) − (𝐺 (𝑢0, V0) , V0)

≤ 2𝐸0 − ( 󵄨󵄨󵄨󵄨P (𝑢0, 𝑢1)󵄨󵄨󵄨󵄨2󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝑊𝑃 + 󵄨󵄨󵄨󵄨Q (V0, V1)󵄨󵄨󵄨󵄨2󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩2𝑊𝑄 )
− (𝑟 − 2)K (𝑢0, V0)

< 2𝛽0 − (P (𝑢0, 𝑢1) + Q (V0, V1))2Ψ (𝑢0, V0)
− (𝑟 − 2)K (𝑢0, V0)

= (𝑟 − 2) Φ (𝑢0, 𝑢1, V0, V1)𝑟𝜆∗
− (P (𝑢0, 𝑢1) + Q (V0, V1))2Ψ (𝑢0, V0)
− (𝑟 − 2)K (𝑢0, V0) .

(64)

Let us assume that

K (𝑢0, V0) > 1𝑟 − 2 𝑐Ψ (𝑢0, V0) , (65)

and then

𝐼 (𝑢0, V0) < − (1 − 𝑟 − 2𝑟𝜆∗ ) Φ (𝑢0, 𝑢1, V0, V1) < 0. (66)

Hence, if the source term is large enough at the initial data,
the inequality 𝐼(𝑢0, V0) < 0 is a necessary condition for
nonexistence of global solutions. However, it seems that the
condition 𝐼(𝑢0, V0) < 0, alone, does not imply nonexistence of
global solutions for high energies; see [2, 6, 9–11]. Moreover,
we did not require the sign of 𝐼(𝑢0, V0) in the proof of
Theorem 3.

From Corollary 4, global nonexistence for small positive
energies is obtained if P(𝑢0, 𝑢1) + Q(V0, V1) is large enough
and, consequently, since

{2 (𝐸0 + K (𝑢0, V0)) − (󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝑉𝐴 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩2𝑉𝐵)} Ψ (𝑢0, V0)
≥ (P (𝑢0, 𝑢1) + Q (V0, V1))2 , (67)

then K(𝑢0, V0) must be also sufficiently big. Then, by the
previous discussion, 𝐼(𝑢0, V0) < 0 is implied. Apparently, only
for energies 𝐸0 < 𝑑, the condition 𝐼(𝑢0, V0) < 0 characterizes
the nonexistence of global solutions of problem (P).
Remark 6. We shall prove the following lower bound for 𝛽0

𝛽0 > 12 (P (𝑢0, 𝑢1) + Q (V0, V1))2Ψ (𝑢0, V0) . (68)

This inequality is equivalent to

( 𝑟𝜆∗𝑟 − 2 − 1) (P (𝑢0, 𝑢1) + Q (V0, V1))2
< 𝑐Ψ2 (𝑢0, V0) . (69)
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In order to prove it, let us define, for any 𝑠 ≡ (P(𝑢0, 𝑢1) +
Q(V0, V1))2 > 0, the positive function

𝑙 (𝑠) ≡ ( 𝑟𝜆∗𝑟 − 2 − 1) 𝑠 > 0, (70)

and we remember that 𝜆∗ is a function of 𝑠, defined implicitly
by

2𝑟 (𝜆∗ 𝑐Ψ0Φ0 )𝑟/2 = 𝜆∗ − 𝑟 − 2𝑟 , (71)

where

Φ0 ≡ 𝑐Ψ0 + 𝑠Ψ0 ,
Ψ0 ≡ Ψ (𝑢0, V0) ,
Φ0 ≡ Φ (𝑢0, 𝑢1, V0, V1) .

(72)

On the other hand, fromTheorem 3 we know that

lim
𝑠󳨀→∞

𝜆∗ = 𝑟 − 2𝑟 ,
lim
𝑠󳨀→0

𝜆∗ = 1. (73)

Then, from the definition of 𝜆∗ and Φ0,
lim
𝑠󳨀→∞

𝑙 (𝑠) = 2𝑟 − 2 lim
𝑠󳨀→∞

𝑠 (𝜆∗ 𝑐Ψ0Φ0 )𝑟/2

= 2𝑟 − 2 lim
𝑠󳨀→∞

𝑠 (𝜆∗ 𝑐Ψ20𝑐Ψ20 + 𝑠 )𝑟/2 = 0.
(74)

Also,

lim
𝑠󳨀→0

𝑙 (𝑠) = 0. (75)

Consequently, there is some 𝑠∗ ∈ (0, ∞), such that 𝑙(𝑠∗) =
max𝑠∈(0,∞)𝑙(𝑠). After some calculations, we find that

𝑠∗ = 𝑐Ψ20 ( (𝑟 − 2) (1 − 𝜆∗)𝑟𝜆∗ − (𝑟 − 2) (1 − 𝜆∗) ) ,
𝑙 (𝑠∗) = 𝑐Ψ20 ( (𝑟𝜆∗ − (𝑟 − 2)) (1 − 𝜆∗)𝑟𝜆∗ − (𝑟 − 2) (1 − 𝜆∗) )

(76)

and consequently

𝑙 (𝑠) ≤ 𝑙 (𝑠∗) < 𝑐Ψ20 , for any 𝑠 > 0. (77)

5. Some Examples

5.1. Nonlinear Klein-Gordon System. Klein-Gordon systems
like (KG) were studied in [2, 4–11], where blow-up results
were proved. We shall illustrate howTheorem 3 is applied for
each one of these systems.

5.1.1. Wang [2]. We rewrite the system (KG), introduced at
the beginning of this work, as follows:

(KG)∗
{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝛼𝑢𝑡𝑡 − 𝛼Δ𝑢 + 𝛼𝑚21𝑢 + 𝛼𝐾1 (𝑥) 𝑢 = 𝑎󸀠2 (𝑝 + 1) |V|𝑞+1 |𝑢|𝑝−1 𝑢,
V𝑡𝑡 − ΔV + 𝑚22V + 𝐾2 (𝑥) V = 𝑎󸀠2 (𝑞 + 1) |𝑢|𝑝+1 |V|𝑞−1 V,
𝑢 (0, 𝑥) = 𝑢0 (𝑥) ,
𝑢𝑡 (0, 𝑥) = 𝑢1 (𝑥) ,
V (0, 𝑥) = V0 (𝑥) ,
V𝑡 (0, 𝑥) = V1 (𝑥) ,

(78)

on R × R𝑁, where 𝛼 ≡ 𝑎2(𝑝 + 1)/𝑎1(𝑞 + 1), 𝑎󸀠2 ≡ 𝑎2/(𝑞 + 1).
Here, 𝑃 = 𝛼𝐼𝑑, 𝑄 = 𝐼𝑑 = the identity operator, 𝐻 = 𝑊𝑃 =𝑊𝑄 = 𝐿2(R𝑁), and (⋅, ⋅)2 = ‖ ⋅ ‖22 are the inner product and

the norm square in 𝐿2(R𝑁), respectively. Also,
𝐴𝑢 = −𝛼Δ𝑢 + 𝛼𝑚21𝑢 + 𝛼𝐾1 (𝑥) 𝑢
𝐵V = −ΔV + 𝛼𝑚22V + 𝛼𝐾2 (𝑥) V,
𝑉𝐴 = {𝑢 ∈ 𝐻1 (R𝑁) : ∫

RN
𝐾1 (𝑥) 𝑢 (𝑥) 𝑑𝑥 < ∞} ,

𝑉𝐵 = {V ∈ 𝐻1 (R𝑁) : ∫
RN

𝐾2 (𝑥) V (𝑥) 𝑑𝑥 < ∞} .
(79)

Finally,

𝐹 (𝑢, V) = 𝑎󸀠2 (𝑝 + 1) |V|𝑞+1 |𝑢|𝑝−1 𝑢,
𝐺 (𝑢, V) = 𝑎󸀠2 (𝑞 + 1) |𝑢|𝑝+1 |V|𝑞−1 V. (80)
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Hypothesis (𝐻0) holds with 𝑐 = min{𝑚21, 𝑚22},
‖𝑢‖2𝑉𝐴 + ‖V‖2𝑉𝐵 ≥ 𝛼 ‖∇𝑢‖22 + ‖∇V‖22 + 𝑐 (𝛼 ‖𝑢‖22 + ‖V‖22)

≥ 𝑐 (𝛼 ‖𝑢‖22 + ‖V‖22)
= 𝑐 (‖𝑢‖2𝑊𝑃 + ‖V‖2𝑊𝑄) .

(81)

Hypothesis (𝐻1) holds with 𝑟 ≡ 𝑝 + 𝑞 + 2 > 4, since the
potential operatorK of (𝐹, 𝐺) is

K (𝑢, V) = 𝑎󸀠2 (|V|𝑞+1 , |𝑢|𝑝+1)
2

, (82)

and then,

(𝐹 (𝑢, V) , 𝑢)2 + (𝐺 (𝑢, V) , V)2 − 𝑟K (𝑢, V) = 0. (83)

Theorem 1 is true and nonexistence of global solutions is due
to blow-up; see [2] for the details, where some bounds on 𝑝, 𝑞
are required. Consequently, by Theorem 3, if the initial data
satisfy

𝛼 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩22 > 0,
𝛼 (𝑢0, 𝑢1)2 + (V0, V1)2 > 0, (84)

and the initial energy is such that

min {𝑚21, 𝑚22} (𝑝 + 𝑞)2 (𝑝 + 𝑞 + 2) ( 𝛼 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩22
]∗(2/(𝑝+𝑞))

) < 𝐸0
< 𝑝 + 𝑞2 (𝑝 + 𝑞 + 2) 𝜆∗ (min {𝑚21, 𝑚22}
⋅ (𝛼 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩22) + (𝛼 (𝑢0, 𝑢1)2 + (V0, V1)2)2𝛼 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩22 ) ,

(85)

then the solution blows up in finite time in the norm of H.
We notice that as 𝛼(𝑢0, 𝑢1)2 + (V0, V1)2 grows, then ]∗ grows,
and consequently the lower bound of 𝐸0 is close to zero, and
also the upper bound grows. That is, by Corollary 4 for every
positive initial energy 𝐸0, there exist initial data satisfying
(84) such that the solution blows up. This result is new in
the literature. Sufficient conditions have been given before.
Indeed, blow-up is proved in [2] if (84) holds, 𝐼(𝑢0, V0) < 0,
and the initial energy is such that

0 < 𝐸0 < min {𝑚21, 𝑚22} (𝑝 + 𝑞)2 (𝑝 + 𝑞 + 2) (𝛼 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩22) . (86)

In Theorem 3 we did not assume any sign of 𝐼(𝑢0, V0) and 𝛽0
is larger than the upper bound on 𝐸0 given in [2].

5.1.2. Liu [6]. For the corresponding linear damped problem
of (KG) blow-up was proved under the same sufficient
conditions given in [2] for high energies, and for 𝐸0 < 𝑑 by
means of the potential well method.

5.1.3. Korpusov [10]. A Klein-Gordon system with linear
damping was analyzed with source terms of the form

𝐹 (𝑢, V) = 4 (𝑢 + 𝑎V)3 + 2𝑏𝑢V2,
𝐺 (𝑢, V) = 4𝑎 (𝑢 + 𝑎V) + 2𝑏𝑢2V, (87)

where 𝑎 > 0, 𝑏 > 0. Hypothesis (𝐻1) holds with 𝑟 = 4, and
the potential operator

K (𝑢, V) = ‖𝑢 + 𝑎V‖44 + 𝑏 ‖𝑢V‖22 , (88)

and then,

(𝐹 (𝑢, V) , 𝑢)2 + (𝐺 (𝑢, V) , V)2 − 4K (𝑢, V) = 0. (89)

Blow-up of solutions was proved if (84) holds with 𝛼 = 1,𝐼(𝑢0, V0) < 0, and
𝐸0 < 12 (P (𝑢0, 𝑢1) + Q (V0, V1) − 𝜇Ψ (𝑢0, V0))2Ψ (𝑢0, V0) , (90)

where 𝜇 is the coefficient of the linear damping term in the
system studied in [13]. If 𝜇 = 0,

𝐸0 < 12 (P (𝑢0, 𝑢1) + Q (V0, V1))2Ψ (𝑢0, V0) < 𝛽0, (91)

where the second inequality is the lower bound for 𝛽0,
obtained in Remark 6. Hence,Theorem 3 improves the result
presented in [10].

5.1.4. Aliev and Yusifova [9]. A system of several equations
with linear damping was studied. If we consider only two,
without damping, these are like those in (KG)∗ with 𝑎󸀠2 = 1,
and hypothesis (𝐻1) holds with 𝑟 = 𝑝 + 𝑞 + 2 > 2, because𝑝 > 0 and 𝑞 > 0. The blow-up of solutions is proved in [9] if
(84) holds, with 𝛼 = 1, 𝐼(𝑢0, V0) < 0, and

𝐸0 < (𝑝 + 𝑞)2 (𝑝 + 𝑞 + 2) (󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝑊𝑃 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩2𝑊𝑄) < 𝛽0, (92)

where ‖𝑢0‖2𝑊𝑃 = (𝑝+1)‖𝑢0‖22 and ‖V0‖2𝑊𝑄 = (𝑞+1)‖V0‖22. Again,
Theorem 3 improves the result presented in [9].

5.1.5. Wu [11]. A system like (KG) with a linear damping
was studied with no particular source terms. However, these
are assumed to satisfy (𝐻1) with 𝑟 = 2 + 4𝛿 > 2, some𝛿 = (𝑟 − 2)/4 > 0. Blow-up is proved for high energies, under
the following conditions: 𝐼(𝑢0, V0) < 0 and

𝑟 − 22 ((𝑢0, 𝑢1)2 + (V0, V1)2) > 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩22
> 𝑟 − 2𝑟 𝐸0 > 0. (93)

These conditions are more restrictive than the ones assumed
inTheorem 3.
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5.1.6. Ye [8], Benaissa et al. [4]. Klein-Gordon system like(KG) was studied with nonlinear damping and degenerated
nonlinear damping terms, respectively. In both papers, blow-
up was showed for energies 𝐸0 < 𝑑, by the potential well
method and the following source terms were considered

𝐹 (𝑢, V) = 𝑎1 (𝑢 + V)2(𝑝+1) (𝑢 + V) + 𝑎2 |𝑢|𝑝 |V|𝑝+2 𝑢,
𝐺 (𝑢, V) = 𝑎1 (𝑢 + V)2(𝑝+1) (𝑢 + V) + 𝑎2 |V|𝑝 |𝑢|𝑝+2 V, (94)

with 𝑝 > −1, 𝑎1 > 0 and 𝑎2 > 0. Hypothesis (𝐻1) holds with𝑟 = 2(𝑝 + 2) > 2, and the potential operator

K (𝑢, V)
= 12 (𝑝 + 2) (𝑎1 ‖𝑢 + V‖2(𝑝+2)2(𝑝+2)

+ 2𝑎2 ‖𝑢V‖𝑝+2𝑝+2) , (95)

and then,

(𝐹 (𝑢, V) , 𝑢)2 + (𝐺 (𝑢, V) , V)2 − 2 (𝑝 + 2)K (𝑢, V) = 0. (96)

Hence, Theorem 3 and Corollary 4 are applied and blow-up
is proved for the undamped case in [4, 8], for high energies.

5.1.7. Wu [7], Gan and Zhang [5]. By means of the potential
well method, blow-up was showed for solutions of systems
like (KG), with 𝐸0 < 𝑑, without damping, and with linear
damping, respectively. In those papers, particular cases of the
following source terms were considered

𝐹 (𝑢, V) = (𝑎1 |𝑢|2𝑝 + 𝑎2 |𝑢|𝑝−1 |V|𝑝+1) 𝑢,
𝐺 (𝑢, V) = (𝑎1 |V|2𝑝 + 𝑎2 |V|𝑝−1 |𝑢|𝑝+1) V, (97)

with 𝑝 > 0, 𝑎1 > 0, and 𝑎2 > 0. Hypothesis (𝐻1) holds with𝑟 = 2(𝑝 + 1) > 2, and the potential operator

K (𝑢, V) = 12 (𝑝 + 1) (𝑎1 ‖𝑢‖2(𝑝+1)2(𝑝+1)
+ 𝑎1 ‖V‖2(𝑝+1)2(𝑝+1)

+ 2𝑎2 ‖𝑢V‖𝑝+1𝑝+1) , (98)

and then,

(𝐹 (𝑢, V) , 𝑢)2 + (𝐺 (𝑢, V) , V)2 − 2 (𝑝 + 1)K (𝑢, V) = 0. (99)

Hence, Theorem 3 and Corollary 4 are applied and blow-up
is proved for the undamped case in [5, 7], for high energies.

5.2. Generalized Boussinesq System. We consider the system

(GB)

{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑢𝑡𝑡 − 𝛼1Δ𝑢 − 𝛼2Δ𝑢𝑡𝑡 + 𝛼3Δ2𝑢 + 𝑚1𝑢 + Δ𝐹 (𝑢, V) = 0,
V𝑡𝑡 − 𝛽1ΔV − 𝛽2ΔV𝑡𝑡 + 𝛽3Δ2V + 𝑚2V + Δ𝐺 (𝑢, V) = 0,
𝑢 (0, 𝑥) = 𝑢0 (𝑥) ,
𝑢𝑡 (0, 𝑥) = 𝑢1 (𝑥) ,
V (0, 𝑥) = V0 (𝑥) ,
V𝑡 (0, 𝑥) = V1 (𝑥) ,

(100)

on R × R𝑁, where 𝛼𝑖 > 0, 𝛽𝑖 > 0, 𝑖 = 1, 2, 3, 𝑚𝑗 > 0, 𝑗 =1, 2. For the physics of the problem we refer to [13, 14].
Applying (−Δ)−1 to the system above, we get

(GB)∗
{{{{{{{{{{{{{{{{{{{{{{{{{{{

((−Δ)−1 + 𝛼2𝐼𝑑) 𝑢𝑡𝑡 + (−𝛼3Δ + 𝑚1 (−Δ)−1 + 𝛼1𝐼𝑑) 𝑢 = 𝐹 (𝑢, V) ,
((−Δ)−1 + 𝛽2𝐼𝑑) V𝑡𝑡 + (−𝛽3Δ + 𝑚2 (−Δ)−1 + 𝛽1𝐼𝑑) V = 𝐺 (𝑢, V) ,
𝑢 (0, 𝑥) = 𝑢0 (𝑥) ,
𝑢𝑡 (0, 𝑥) = 𝑢1 (𝑥) ,
V (0, 𝑥) = V0 (𝑥) ,
V𝑡 (0, 𝑥) = V1 (𝑥) ,

(101)

on R × R𝑁. Then,

𝑃𝑢̇ = ((−Δ)−1 + 𝛼2𝐼𝑑) 𝑢̇,
𝐴𝑢 = (−𝛼3Δ + 𝑚1 (−Δ)−1 + 𝛼1𝐼𝑑) 𝑢,
𝑄V̇ = ((−Δ)−1 + 𝛽2𝐼𝑑) V̇,
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𝐵𝑢 = (−𝛽3Δ + 𝑚2 (−Δ)−1 + 𝛽1𝐼𝑑) V,
(102)

and 𝐻 = 𝐿2(R𝑁),
𝑊𝑃 = 𝑊𝑄

= {𝑢 ∈ 𝐿2 (R𝑁) : (−Δ)−1/2 𝑢 ∈ 𝐿2 (R𝑁)} ,
𝑉𝐴 = 𝑉𝐵

= {𝑢 ∈ 𝐻1 (R𝑁) : (−Δ)−1/2 𝑢 ∈ 𝐿2 (R𝑁)} .
(103)

Moreover, if

‖𝑢‖2∗ = (𝑢, 𝑢)∗ ≡ ((−Δ)−1/2 𝑢, (−Δ)−1/2 𝑢)
2

, (104)

then

‖𝑢‖2𝑊𝑃 = ‖𝑢‖2∗ + 𝛼2 ‖𝑢‖22 ,
‖𝑢‖2𝑉𝐴 = 𝛼3 ‖∇𝑢‖22 + 𝑚1 ‖𝑢‖2∗ + 𝛼1 ‖𝑢‖22 ,
‖V‖2𝑊𝑄 = ‖V‖2∗ + 𝛽2 ‖V‖22 ,
‖V‖2𝑉𝐵 = 𝛽3 ‖∇V‖22 + 𝑚2 ‖V‖2∗ + 𝛽1 ‖V‖22 .

(105)

Consequently, hypothesis (𝐻0) holds with 𝑐 = min{𝑚1,𝛼1/𝛼2, 𝑚2, 𝛽1/𝛽2}. We assume that the source terms (𝐹, 𝐺)
and the corresponding potential operatorK do not have any
particular form but they satisfy (𝐻1). We do not know any
reference proving an existence and uniqueness result for this
system. We assume that Theorem 1 is true then nonexistence
of global solutions is due to blow-up. By Theorem 3 and
Corollary 4 for every positive initial energy 𝐸0, where

𝐸0 = 12 (󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩2∗ + 𝛼2 󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩22 + 𝛼3 󵄩󵄩󵄩󵄩∇𝑢0󵄩󵄩󵄩󵄩22 + 𝑚1 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2∗
+ 𝛼1 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩22) + 12 (󵄩󵄩󵄩󵄩V1󵄩󵄩󵄩󵄩2∗ + 𝛽2 󵄩󵄩󵄩󵄩V1󵄩󵄩󵄩󵄩22 + 𝛽3 󵄩󵄩󵄩󵄩∇V0󵄩󵄩󵄩󵄩22
+ 𝑚2 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩2∗ + 𝛽1 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩22) − K (𝑢0, V0) ,

(106)

there exists initial data such that󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2∗ + 𝛼2 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩2∗ + 𝛽2 󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩22 > 0,
(𝑢0, 𝑢1)∗ + 𝛼2 (𝑢0, 𝑢1)2 + (V0, V1)∗ + 𝛽2 (V0, V1)2 > 0 (107)

imply the nonexistence of global solutions in the norm ofH.
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