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This paper deals with solving numerically partial integrodifferential equations appearing in biological dynamics models when
nonlocal interaction phenomenon is considered. An explicit finite difference scheme is proposed to get a numerical solution
preserving qualitative properties of the solution. Gauss quadrature rules are used for the computation of the integral part of the
equation taking advantage of its accuracy and low computational cost. Numerical analysis including consistency, stability, and
positivity is included as well as numerical examples illustrating the efficiency of the proposed method.

1. Introduction

Since the seminal papers by Fisher [8] and Kolmogorov-
Petrovsky-Piskunov (KPP) [13], the diffusive logistic models
related to local interaction dynamic biological models have
been successfully developed [3, 14, 15, 20, 21]. In ecological
context, there is no real justification for assuming that the
interactions are local [9]. Also, in evolutionary theory, where
interactions are due not only to intraspecific competition but
also random mutations, the nonlocal interaction approach is
necessary [6, 11].

Important theoretical results about existence of solutions
and qualitative properties of nonlocal biological dynamic
problems have been treated in [4, 10, 12, 18, 19].

In this paper we consider the nonlocal interaction bio-
logical dynamic model described by the partial integro-
differential reaction-diffusion problem (PIDE); see [19]:

𝜕𝑈
𝜕𝑡 = 𝐷Δ𝑈 + 𝛽𝑈 (x, 𝑡)
⋅ (1 − 𝑎𝑈 (x, 𝑡) − 𝑏∫

Ω
𝜓 (x − y) 𝑈 (y, 𝑡) 𝑑y) ,

x ∈ Ω, 𝑡 ∈ [0, 𝑇] ,
(1)

whereΩ is a bounded or unbounded domain inR2 and 𝜓(x)
is a nonnegative kernel function satisfying

∫
R2
𝜓 (x) 𝑑x = 1, (2)

and 𝛽, 𝑎, and 𝑏 are some positive constants and𝐷 is a positive
dispersal rate, together with the initial conditions

𝑈 (x, 0) = 𝑓 (x) , x ∈ Ω (3)

and the boundary conditions

𝑈 (x, 𝑡) = 0, x ∈ 𝜕Ω, (4)

where 𝑓(x) represents an arbitrary continuous function.
For the sake of interest in consistency issues that we study
in Section 4, we assume that the kernel function 𝜓(x) is
differentiable in the region of integration.

From the biological point of view, the first term of the
right-hand sidemodels the diffusion, and the second includes
the pure logistic quadratic term and the consumption of
resources in some area around the average location. Note that
if the kernel 𝜓(x) is the Dirac delta function centered at the
origin, (1) recovers the Fisher-KPP equation.

Numerical analysis of the problem is suitable because
the best model may be wasted by a disregarded numerical
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treatment. Numerical methods dealing with problem (1)-(4)
are not extensive in the literature. Some relevant and easy
to implement worthy exceptions are [7] using a pseudo-
spectral Galerkin method and [16] that uses a meshless local
radial point interpolation method. Both papers consider the
bounded domain case and add a source term ℎ(x, 𝑡) in the
right-hand side of the PIDE that is useful to check accuracy
simulations.

In this paper we develop an explicit finite difference
scheme for the numerical computation and analysis of qual-
itative properties preserving numerical solutions of problem
(1)-(4). For the best of our knowledge about the publications
in the field this analysis seems not easily reachable with
other techniques such as finite elements, meshless, and even
implicit differencemethods. It is relevant to point out that the
integral term of the PIDE is treated using Gauss quadrature
rules having the versatility advantage of including both the
bounded and unbounded domain cases, just adapting the
quadrature rule.

Positivity of the numerical solutions is essential dealing
with a population problem and needs to be guaranteed. It is
also important to check that numerical solutions are bounded
by the carrying capacity of the problem, in agreementwith the
behaviour of the theoretical solution [19].

This paper is organized as follows. Section 2 presents the
discretization of the continuous problem, reaching an explicit
finite difference scheme. Section 3 deals with the positivity,
stability, and qualitative properties of the numerical solution.
The consistency of the scheme with the PIDE is studied
in Section 4. Finally, Section 5 features some numerical
experiments, showing that if the step size requirements for
stability are not satisfied results are wrong.

2. Discretization and Numerical
Scheme Construction

In this section, we perform the discretization of the con-
tinuous problem, with the goal to reach an explicit finite
difference scheme. Hereafter, we will work in a suitable
bounded numerical domain. Let us consider the numerical
domain [−𝐴, 𝐴]2 × [0, 𝑇], with 𝐴 > 0 large enough so that
outside of this area the population is negligible and 𝑇 > 0
denoting the time horizon. Let𝑀 and𝑁 be positive integers,
so that the domain [−𝐴, 𝐴]2 × [0, 𝑇] is partitioned in (2𝑀 +1)2 × (𝑁 + 1) mesh points denoted by (𝑥1,𝑖, 𝑥2,𝑗, 𝑡𝑛), where𝑥1,𝑖 = 𝑖ℎ, −𝑀 ≤ 𝑖 ≤ 𝑀, 𝑥2,𝑗 = 𝑗ℎ, −𝑀 ≤ 𝑗 ≤ 𝑀, and
𝑡𝑛 = 𝑛𝑘, 0 ≤ 𝑛 ≤ 𝑁. The step sizes discretizations ℎ and𝑘 verify ℎ𝑀 = 𝐴 and 𝑘𝑁 = 𝑇, respectively. The numerical
approximation of the unknown variable at the mesh point(𝑥1,𝑖, 𝑥2,𝑗, 𝑡𝑛) is denoted by 𝑢𝑛𝑖,𝑗 ≈ 𝑈(𝑥1,𝑖, 𝑥2,𝑗, 𝑡𝑛), while for the
integral term in (1), we designate

𝑔𝑛𝑖,𝑗 ≈ 𝐺 (𝑥1,𝑖, 𝑥2,𝑗, 𝑡𝑛) = ∫
Ω
𝜓 (x𝑖,𝑗 − y)𝑈 (y, 𝑡𝑛) 𝑑y,

−𝑀 ≤ 𝑖, 𝑗 ≤ 𝑀, 𝑛 ≥ 0.
(5)

where x𝑖,𝑗 = (𝑥1,𝑖, 𝑥2,𝑗).

The approximation 𝑔𝑛𝑖,𝑗 of the integral term𝐺(𝑥1,𝑖, 𝑥2,𝑗, 𝑡𝑛)
is performed by means of the accurate and computationally
cheapGauss quadrature rule; see [5], Chapters 2 and 3.Gauss-
Hermite or Gauss-Legendre quadratures are used depending
on whether the support of the kernel function 𝜓(𝑥) is
unbounded or compact, respectively. As the nodes of the
quadrature rule are not necessarily mesh points of the grid, a
bilinear interpolation is used for the computation of the terms𝑔𝑛𝑖,𝑗; see [1], page 882.

According to the expression for the Gauss-Hermite
quadrature, we have

∫∞
−∞

∫∞
−∞

𝜓 (x𝑖,𝑗 − y)𝑈 (y, 𝑡𝑛) 𝑑y

≈ 𝐿∑
𝑙=1

𝐿∑
𝑚=1

𝑤𝑙𝑤𝑚𝑒𝑥2𝑙 +𝑥2𝑚𝜓 (𝑥1,𝑖 − 𝑦1,𝑙, 𝑥2,𝑗 − 𝑦2,𝑚)
⋅ 𝑈 (𝑦1,𝑙, 𝑦2,𝑚, 𝑡𝑛) ,

(6)

where 𝑤𝑙 and 𝑤𝑚 are the weights and 𝑦1,𝑙 and 𝑦2,𝑚, 1 ≤𝑙, 𝑚 ≤ 𝐿, are the nodes of the Gauss-Hermite quadrature,
respectively.

Given a node (𝑦1,𝑙, 𝑦2,𝑚), 1 ≤ 𝑙, 𝑚 ≤ 𝐿, let us consider the
indexes 𝑖𝑙 and 𝑗𝑚 such that the grid point (𝑦1,𝑖𝑙 , 𝑦2,𝑗𝑚) verifies

𝑦1,𝑖𝑙 ≤ 𝑦1,𝑙 ≤ 𝑦1,𝑖𝑙+1,
𝑦2,𝑗𝑚 ≤ 𝑦2,𝑚 ≤ 𝑦2,𝑗𝑚+1.

(7)

The bilinear interpolation approximation is denoted by

𝑢 (𝑦1,𝑙, 𝑦2,𝑚, 𝑡𝑛) = 𝜌𝑙𝜌𝑚𝑢𝑛𝑖𝑙,𝑗𝑚 + 𝜌𝑙 (1 − 𝜌𝑚) 𝑢𝑛𝑖𝑙,𝑗𝑚+1
+ (1 − 𝜌𝑙) 𝜌𝑚𝑢𝑛𝑖𝑙+1,𝑗𝑚
+ (1 − 𝜌𝑙) (1 − 𝜌𝑚) 𝑢𝑛𝑖𝑙+1,𝑗𝑚+1,

(8)

where

𝜌𝑙 = 𝑦1,𝑖𝑙+1 − 𝑦1,𝑙
ℎ ,

𝜌𝑚 = 𝑦2,𝑗𝑚+1 − 𝑦2,𝑚
ℎ .

(9)

With previous notation, the approximation 𝑔𝑛𝑖,𝑗 of the
integral term 𝐺(𝑥1,𝑖, 𝑥2,𝑗, 𝑡𝑛) takes the form

𝑔𝑛𝑖,𝑗 =
𝐿∑
𝑙=1

𝐿∑
𝑚=1

𝑤𝑙𝑤𝑚𝑒𝑥2𝑙 +𝑥2𝑚𝜓 (𝑥1,𝑖 − 𝑦1,𝑙, 𝑥2,𝑗 − 𝑦2,𝑚)
⋅ 𝑢 (𝑦1,𝑙, 𝑦2,𝑚, 𝑡𝑛) .

(10)

TheGauss-Legendre quadrature rule is appropriate in the
case that the kernel function has a compact support. For
instance, let us consider 𝜓(x) with square support [−𝛿, 𝛿]2.
Then,

∫∞
−∞

∫∞
−∞

𝜓 (x𝑖,𝑗 − y)𝑈 (y, 𝑡𝑛) 𝑑y

= ∫𝑥2,𝑗+𝛿
𝑥2,𝑗−𝛿

∫𝑥1,𝑖+𝛿
𝑥1,𝑖−𝛿

𝜓 (x𝑖,𝑗 − y)𝑈 (y, 𝑡𝑛) 𝑑y.
(11)
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By using the change of variables

z = y − x𝑖,𝑗
𝛿 , (12)

in the right-hand side of (11) it follows that

𝐺(𝑥1,𝑖, 𝑥2,𝑗, 𝑡𝑛)
= 𝛿2 ∫1

−1
∫1
−1
𝜓 (−𝛿z) 𝑈 (𝛿z + x𝑖,𝑗, 𝑡𝑛) 𝑑z.

(13)

ApplyingGauss-Legendre quadrature togetherwith bilin-
ear interpolation in analogously way to (8), the numerical
approximation 𝑔𝑛𝑖,𝑗 of (12) takes the form

𝑔𝑛𝑖,𝑗 = 𝛿2 𝐿∑
𝑙=1

𝐿∑
𝑚=1

𝑤𝑙𝑤𝑚𝜓 (−𝛿𝑧1,𝑙, −𝛿𝑧2,𝑚)
⋅ 𝑢 (𝛿𝑧1,𝑙 + 𝑥1,𝑖, 𝛿𝑧2,𝑚 + 𝑥2,𝑗, 𝑡𝑛) ,

(14)

using the weights and nodes of the Gauss-Legendre formula.
Regarding the differential part of PIDE (1), let us consider

the forward approximation of the time derivatives and central
approximation of the spatial derivatives,

𝑢𝑛+1𝑖,𝑗 − 𝑢𝑛𝑖,𝑗
𝑘 ≈ 𝜕𝑈

𝜕𝑡 (𝑥1,𝑖, 𝑥2,𝑗, 𝑡𝑛) ,
𝑢𝑛𝑖+1,𝑗 − 𝑢𝑛𝑖−1,𝑗

2ℎ ≈ 𝜕𝑈
𝜕𝑥1 (𝑥1,𝑖, 𝑥2,𝑗, 𝑡

𝑛) ,
𝑢𝑛𝑖+1,𝑗 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖−1,𝑗

ℎ2 ≈ 𝜕2𝑈
𝜕𝑥21 (𝑥1,𝑖, 𝑥2,𝑗, 𝑡

𝑛)

(15)

and analogous expressions for derivatives with respect to the
second spatial variable 𝑥2. From (5) and (15) the following
explicit numerical scheme for (1),(3), and(4) has been con-
structed:

𝑢𝑛+1𝑖,𝑗
= 𝐷𝑘

ℎ2 (𝑢𝑛𝑖−1,𝑗 + 𝑢𝑛𝑖+1,𝑗 + 𝑢𝑛𝑖,𝑗−1 + 𝑢𝑛𝑖,𝑗+1)
+ (1 − 4𝐷𝑘

ℎ2 )𝑢𝑛𝑖,𝑗 + 𝑘𝛽𝑢𝑛𝑖,𝑗 (1 − 𝑎𝑢𝑛𝑖,𝑗 − 𝑏𝑔𝑛𝑖,𝑗) ,
−𝑀 + 1 ≤ 𝑖, 𝑗 ≤ 𝑀 − 1, 0 ≤ 𝑛 ≤ 𝑁 − 1,

(16)

with initial and transferred boundary conditions of our
numerical domain

𝑢0𝑖,𝑗 = 𝑓 (x𝑖,𝑗) ,
𝑢𝑛−𝑀,𝑗 = 𝑢𝑛𝑀,𝑗 = 𝑢𝑛𝑖,−𝑀 = 𝑢𝑛𝑖,𝑀 = 0,

1 ≤ 𝑖, 𝑗 ≤ 𝑀.
(17)

3. Positivity, Stability, and Carrying
Capacity Bound

According to Lemma 3.1 and Theorem 3.2 of [19] it holds
true that there exists a global solution 𝑈(x, 𝑡) for the PIDE
problem (1), (3), and (4) under the assumptions that𝑈(x, 0) ∈𝐶0(Ω) and 0 ≤ 𝑈(x, 0) ≤ 1/𝑎. Furthermore, this solution
verifies the constraints

0 ≤ 𝑈 (x, 𝑡) ≤ 1
𝑎 , x ∈ Ω, 𝑡 ≥ 0. (18)

This section is devoted to the numerical analysis of
the proposed scheme, guaranteeing the preservation of the
qualitative properties of the theoretical solution. In the
followingwe show that under appropriate step size conditions
the numerical solution {𝑢𝑛𝑖,𝑗} is nonnegative and is bounded
by the carrying capacity 1/𝑎 in agreement with (18). Thus
the stability of the numerical solution is granted because it
is bounded. Using the induction principle on the temporal
index 𝑛 and assuming the induction hypothesis 0 ≤ 𝑢𝑛𝑖,𝑗 ≤1/𝑎, we study whether 0 ≤ 𝑢𝑛+1𝑖,𝑗 ≤ 1/𝑎 also remains true.

Taking into account the equality (2) for the argument x𝑖,𝑗−
y, it holds, for a large enough value of 𝐿, that

𝑔𝑛𝑖,𝑗 ≤ 1 + 𝜖
𝑎 , − 𝑀 ≤ 𝑖, 𝑗 ≤ 𝑀, 0 ≤ 𝑛 ≤ 𝑁. (19)

Adopting the arbitrary value 𝜖 = 1 and assuming the
boundedness of the solution at the temporal level 𝑛, 0 ≤ 𝑢𝑛𝑖,𝑗 ≤1/𝑎, we can write, according to expression (16) for the 𝑛 + 1
time level,

𝑢𝑛+1𝑖,𝑗 ≥ 𝐷𝑘
ℎ2 (𝑢𝑛𝑖−1,𝑗 + 𝑢𝑛i+1,𝑗 + 𝑢𝑛𝑖,𝑗−1 + 𝑢𝑛𝑖,𝑗+1)
+ (1 − 2𝑘(2𝐷ℎ2 +

𝑏𝛽
𝑎 ))𝑢𝑛𝑖,𝑗,

(20)

resulting that 𝑢𝑛+1𝑖,𝑗 ≥ 0, −𝑀 ≤ 𝑖, 𝑗 ≤ 𝑀, under the condition
for the temporal step size:

𝑘 < ℎ2
2 (2𝐷 + (𝑏/𝑎) 𝛽ℎ2) . (21)

Regarding the boundedness of the numerical solution,
since the term 𝑔𝑛𝑖,𝑗 is nonnegative, from the scheme (16) we
can write

𝑢𝑛+1𝑖,𝑗 ≤ 𝐷𝑘
ℎ2 (𝑢𝑛𝑖−1,𝑗 + 𝑢𝑛𝑖+1,𝑗 + 𝑢𝑛𝑖,𝑗−1 + 𝑢𝑛𝑖,𝑗+1)
+ (1 − 4𝐷𝑘

ℎ2 )𝑢𝑛𝑖,𝑗 + 𝑘𝛽𝑢𝑛𝑖,𝑗 (1 − 𝑎𝑢𝑛𝑖,𝑗)
= 𝜙 (𝑢𝑛𝑖,𝑗, 𝑢𝑛𝑖−1,𝑗, 𝑢𝑛𝑖+1,𝑗, 𝑢𝑛𝑖,𝑗−1, 𝑢𝑛𝑖,𝑗+1) ,

(22)

by introducing the function 𝜙 of several real variables,
assumed to be differentiable with respect to all its arguments.
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Taking partial derivatives with respect to 𝑢𝑛𝑖,𝑗, and 𝑢𝑛𝑖,𝑗 ≤1/𝑎,
𝜕𝜙
𝜕𝑢𝑛𝑖,𝑗 = 1 − 𝑘 (4𝐷ℎ2 + 2𝛽𝑎𝑢𝑛𝑖,𝑗 − 𝛽)

≥ 1 − 𝑘 (4𝐷ℎ2 + 𝛽) .
(23)

Then, under the assumption

𝑘 < ℎ2
4𝐷 + 𝛽ℎ2 , (24)

the function 𝜙 is increasing over the range 0 ≤ 𝑢𝑛𝑖,𝑗 ≤ 1/𝑎, and
consequently the following inequality holds:

𝑢𝑛+1𝑖,𝑗 ≤ 𝐷𝑘
ℎ2 (𝑢𝑛𝑖−1,𝑗 + 𝑢𝑛𝑖+1,𝑗 + 𝑢𝑛𝑖,𝑗−1 + 𝑢𝑛𝑖,𝑗+1)
+ (1 − 4𝐷𝑘

ℎ2 )
1
𝑎 ≤ 𝐷𝑘

ℎ2
4
𝑎 + (1 − 4𝐷𝑘

ℎ2 )
1
𝑎

= 1
𝑎 .

(25)

In conclusion, assuming that 0 ≤ 𝑢0𝑖,𝑗 ≤ 1/𝑎 and taking a
temporal step size 𝑘 such that

𝑘 < ℎ2
4𝐷 + 𝛽𝛼ℎ2 ,

𝛼 = max{1, 2𝑏𝑎 } ,
(26)

it is guaranteed that 0 ≤ 𝑢𝑛𝑖,𝑗 ≤ 1/𝑎, 1 ≤ 𝑛 ≤ 𝑁.

Remark 1. Note that stability and positivity step size condi-
tion is linked to the problem dimension. In particular, for the
one dimensional case, the condition becomes

𝑘 < ℎ2
2𝐷 + 𝛽𝛼ℎ2 ,

𝛼 = max{1, 2𝑏𝑎 } .
(27)

4. Consistency

In this section we study the consistency of the numerical
solution, given by the scheme (16), with the problem (1)-
(4). Consistency of a numerical scheme with the respective
continuous problemmeans that the theoretical solution of the
problem approximates well the numerical scheme when the
step size discretizations tend to zero. So, a numerical scheme
can be consistent with an equation and not with another
one; see [17], Chapter 2. Thus, it is important to address the
consistency of a numerical scheme with a problem.

Let us consider the (1), in a compact form as L(𝑈) =
L(1)(𝑈) +L(2)(𝑈) = 0, where
L (1) (𝑈) = 𝜕𝑈

𝜕𝑡 − 𝐷Δ𝑈,
L (2) (𝑈) = −𝛽𝑈 (x, 𝑡)

⋅ (1 − 𝑎𝑈 (x, 𝑡) − 𝑏∫
Ω
𝜓 (x − y)𝑈 (y, 𝑡) 𝑑y) ,

x ∈ Ω, 𝑡 ∈ [0, 𝑇] ,

(28)

and the finite difference scheme (16), written as 𝐿(𝑢) =𝐿(1)(𝑢) + 𝐿(2)(𝑢) = 0, where
𝐿 (1) (𝑢) = 𝑢𝑛+1𝑖,𝑗 − 𝑢𝑛𝑖,𝑗

𝑘 − 𝐷(𝑢
𝑛
𝑖+1,𝑗 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖−1,𝑗

ℎ2

+ 𝑢𝑛𝑖,𝑗+1 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖,𝑗−1
ℎ2 ) ,

𝐿 (2) (𝑢) = −𝛽𝑢𝑛𝑖,𝑗 (1 − 𝑎𝑢𝑛𝑖,𝑗 − 𝑏𝑔𝑛𝑖,𝑗) ,
−𝑀 + 1 ≤ 𝑖, 𝑗 ≤ 𝑀 − 1, 0 ≤ 𝑛 ≤ 𝑁 − 1.

(29)

In accordance with [17], scheme 𝐿(𝑢) is said to be consis-
tent with problemL(𝑈) if local truncation error 𝑇𝑛𝑖,𝑗(𝑈),

𝑇𝑛𝑖,𝑗 (𝑈) = 𝐿 (𝑈𝑛𝑖,𝑗) −L (𝑈𝑛𝑖,𝑗) , (30)

tends to zero as 𝑘 󳨀→ 0, ℎ 󳨀→ 0, where 𝑈𝑛𝑖,𝑗 =
𝑈(𝑥1,𝑖, 𝑥2,𝑗, 𝑡𝑛) is the value of the exact solution of problem
(1)-(4) of the PIDE at the point (𝑥1,𝑖, 𝑥2,𝑗, 𝑡𝑛). Now let us
assume that the exact solution 𝑈(𝑥1, 𝑥2, 𝑡) is continuously
partial differentiable four timeswith respect to𝑥1 and𝑥2, and,
two times with respect to 𝑡. By using Taylor’s expansion about(𝑥1,𝑖, 𝑥2,𝑗, 𝑡𝑛), one gets the expression of the local truncation
error 𝑇(1)𝑛𝑖,𝑗(𝑈) = 𝐿(1)(𝑈𝑛𝑖,𝑗) − L(1)(𝑈𝑛𝑖,𝑗), associated to the
differential part of (1):

𝑇 (1)𝑛𝑖,𝑗 (𝑈) = 𝐸𝑛𝑖,𝑗 (1) 𝑘 − 𝐷 (𝐸𝑛𝑖,𝑗 (2) + 𝐸𝑛𝑖,𝑗 (3)) ℎ2, (31)

where

𝐸𝑛𝑖,𝑗 (1) = 1
2
𝜕2𝑈
𝜕𝑡2 (𝑥1,𝑖, 𝑥2,𝑗, 𝜏) , 𝑡𝑛 < 𝜏 < 𝑡𝑛+1, (32)

𝐸𝑛𝑖,𝑗 (2) = 1
12

𝜕4𝑈
𝜕𝑥14 (𝜉1, 𝑥2,𝑗, 𝑡

𝑛) , 𝑥1,𝑖−1 < 𝜉1 < 𝑥1,𝑖+1, (33)

𝐸𝑛𝑖,𝑗 (3) = 1
12

𝜕4𝑈
𝜕𝑥24 (𝑥1,𝑖, 𝜉2, 𝑡

𝑛) , 𝑥2,𝑗−1 < 𝜉2 < 𝑥2,𝑗+1. (34)

Regarding the local truncation error 𝑇(2)𝑛𝑖,𝑗(𝑈) =
𝐿(2)(𝑈𝑛𝑖,𝑗) −L(2)(𝑈𝑛𝑖,𝑗), related to the integral term in (1),

𝑇 (2)𝑛𝑖,𝑗 (𝑈)
= 𝛽𝑏𝑈𝑛𝑖,𝑗 (𝐺𝑛𝑖,𝑗 − ∫

Ω
𝜓 (x𝑖,𝑗 − y)𝑈 (y, 𝑡𝑛) 𝑑y) , (35)
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where 𝐺𝑛𝑖,𝑗 is the numerical approximation of
∫
Ω
𝜓(x𝑖,𝑗 − y)𝑈(y, 𝑡𝑛)𝑑y by means of the corresponding

Gauss-quadrature rule together with the use of a linear
interpolation

𝑈 (𝑦1,𝑙, 𝑦2,𝑚, 𝑡𝑛) = 𝜌𝑙𝜌𝑚𝑈𝑛𝑖𝑙,𝑗𝑚 + 𝜌𝑙 (1 − 𝜌𝑚) 𝑈𝑛𝑖𝑙 ,𝑗𝑚+1
+ (1 − 𝜌𝑙) 𝜌𝑚𝑈𝑛𝑖𝑙+1,𝑗𝑚
+ (1 − 𝜌𝑙) (1 − 𝜌𝑚) 𝑈𝑛𝑖𝑙+1,𝑗𝑚+1,

(36)

making use of relations (9).
It can be verified, see [1], that the numerical approxima-

tion 𝐺𝑛𝑖,𝑗 satisfies
𝐺𝑛𝑖,𝑗 = 𝐺𝑛𝑖,𝑗 + O (ℎ2) , (37)

being 𝐺𝑛𝑖,𝑗 the value of the expression for 𝐺𝑛𝑖,𝑗 replacing the
interpolating value𝑈(𝑦1,𝑙, 𝑦2,𝑚, 𝑡𝑛) by the exact solution value𝑈(𝑦1,𝑙, 𝑦2,𝑚, 𝑡𝑛).

Moreover,

𝐺𝑛𝑖,𝑗 − ∫
Ω
𝜓 (x𝑖,𝑗 − y)𝑈 (y, 𝑡𝑛) 𝑑y = 𝜖 (𝐿) (38)

is the associated quadrature error of the two-dimensional
corresponding Gauss quadrature formula. An estimation
of the error bound for Gaussian quadrature rules in two
dimensions can be found in [2] using divided differences,
assuming the integrand to be differentiable in the region of
integration.

It can be verified from the expression of 𝑇(2)𝑛𝑖,𝑗(𝑈) and
(37) and (38) that

𝑇 (2)𝑛𝑖,𝑗 (𝑈) = O (ℎ2) + 𝜖 (𝐿) , (39)

and the local truncation error 𝑇𝑛𝑖,𝑗(𝑈) satisfies
𝑇𝑛𝑖,𝑗 (𝑈) = O (𝑘) + O (ℎ2) + 𝜖 (𝐿) . (40)

5. Numerical Examples

This section illustrates the behaviour of the numerical solu-
tion of the problem (1)-(4) with some numerical experiments,
making use of the proposed scheme (16), in both cases of one
and two space dimensions.

Example 1. Let us consider the nonlocal logistic diffusion
model (1)-(4) in an unbounded one space dimension, with
parameters values (𝐷, 𝛽, 𝑎, 𝑏) = (0.25, 5, 1, 1). The initial
condition 𝑓(𝑥) and the function 𝜓(𝜉) in the integral term are
taken, respectively, as

𝑓 (𝑥) = {{{
1
4 , −4 ≤ 𝑥 ≤ 4,
0, otherwise, (41)

𝜓 (𝜉) = {{{
1
2 , −1 ≤ 𝜉 ≤ 1,
0, otherwise. (42)
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Figure 1: Numerical solution in the case of one space dimension and
unbounded domain.
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Figure 2: Numerical solution when the positivity and stability
condition is broken.

Table 1: Relative root mean squared error RRMSE and convergence
rate 𝛾, taking 𝑘4 = 0.0040 as the reference step size, and using ℎ =0.05 as spatial step size in all cases.

𝑘4=0.0005 𝑘1=0.0040 𝑘2=0.0020 𝑘3=0.0010𝑅𝑅𝑀𝑆𝐸 0.0014733979 0.0006292592 0.0002095394
𝛾 - 1.22742 1.58643

The spatial and temporal step sizes are chosen as ℎ = 0.05
and 𝑘 = 0.004, respectively. The number of nodes of the
quadrature is taken as 𝐿 = 10 and it is large enough to apply
results of stability Section 3 because themaximumof𝑔𝑛𝑖,𝑗 does
not exceed value 0.675 and assumption (19) is verified for𝜖 = 1. According to the expression (27), if 𝑘 < 0.004762,
which is fulfilled in this case, the positivity and stability of
the solution are guaranteed. Figure 1 shows the behaviour
of the numerical solution 𝑈(𝑥, 𝑡) from 𝑡 = 0 to the time
horizon 𝑇 = 2. Note that as time increases, the numerical
solution approaches the habitat carrying capacity 1/𝑎 and the
occupied habitat tends to broaden.

The convergence rate 𝛾 of the solution has also been
computed, which is defined here as the quantity 𝛾 =
log(𝜖𝑖/𝜖𝑗)/ log(𝑘𝑖/𝑘𝑗), where 𝜖𝑖 holds for the relative root
mean squared error of the 𝑖 − 𝑡ℎ numerical solution an 𝑘𝑖 is
the step size used to obtain that solution. Table 1 shows the
results taking different values for the temporal step size 𝑘.
Example 2. Let us consider the samemodel as in the previous
example, with identical parameters values, initial condition,
kernel function 𝜓(𝜉), number of nodes 𝐿, and time horizon𝑇. If we choose a temporal step size 𝑘 = 2/398 ≃ 0.005025,
breaking the stability condition (27), it is clear from Figure 2
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Figure 3: Numerical solution for two space dimension in an
unbounded domain for 𝑡 = 𝑇 = 1.
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Figure 4: Numerical solution for two space dimension in an
unbounded domain when the positivity and stability condition is
broken, for 𝑡 = 𝑇 = 1.

that the behaviour of the numerical solution𝑈(𝑥, 𝑡) becomes
unstable and it reaches negatives values.

Example 3. In this example, we consider the case of two
unbounded spatial dimensions. Here, the parameters are
chosen to take the values (𝐷, 𝛽, 𝑎, 𝑏) = (0.2, 1, 1, 1).The initial
condition 𝑓(𝑥1, 𝑥2) and the kernel function 𝜓(𝜉1, 𝜉2) are
taken as

𝑓 (𝑥1, 𝑥2) = {{{
1
2 , 𝑥21 + 𝑥22 ≤ (12)

2 ,
0, otherwise, (43)

𝜓 (𝜉1, 𝜉2) = {{{
1
𝜋, 𝜉21 + 𝜉22 ≤ 1,
0, otherwise. (44)

Note that, with this data, the problem presents radial
symmetry. The spatial and temporal step sizes are chosen asℎ = 0.1 and 𝑘 = 0.005, respectively. The number of nodes
of the quadrature is 𝐿 = 10 large enough to apply results
of Section 3 because the maximum of 𝑔𝑛𝑖,𝑗 does not exceed
value 0.022 and assumption (19) is verified for 𝜖 = 1. Applying
(26), it results that the positivity and stability are guaranteed
when 𝑘 < 0.012195, which is satisfied here. Figure 3 shows
the numerical solution 𝑈(𝑥1, 𝑥2, 𝑡) at the time horizon 𝑡 =𝑇 = 1.
Example 4. Taking the same data as in Example 3, and
identical number of nodes 𝐿, if we choose a temporal step
size 𝑘 = 0.0125, that does not satisfy the condition (27),
the numerical solution 𝑈(𝑥, 𝑡) becomes unstable and it also
reaches negatives values, as shown in Figure 4.
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Figure 5: Numerical solution for two space dimension in an
unbounded domain, taking a Gaussian kernel, for 𝑡 = 𝑇 = 1.

Example 5. In this example, using the same data and step
sizes as in Example 3 and identical number of nodes 𝐿, we
take a Gaussian kernel given by the expression:

𝜓 (𝜉1, 𝜉2) = 1
2𝜋𝑒−(𝜉

2
1+𝜉
2
2)/2. (45)

The numerical solution 𝑈(𝑥, 𝑡) is stable and positive, as
shown in Figure 5.
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