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A mathematical model is proposed and analysed to study the dynamics of two-prey one predator system of fishery model with
Holling type II function response. The effect of harvesting was incorporated to both populations and thoroughly analysed. We
study the ecological dynamics of the Nile perch, cichlid, and tilapia fishes as prey-predator system of lake Victoria fishery in
Tanzania. In both cases, by nondimensionalization of the system, the equilibrium points are computed and conditions for local and
global stability of the system are obtained. Condition for local stability was obtained by eigenvalue approach and Routh-Hurwitz
Criterion. Moreover, the global stability of the coexistence equilibrium point is proved by defining appropriate Lyapunov function.
Bioeconomic equilibrium is analysed and numerical simulations are also carried out to verify the analytical results. The numerical
results indicate that the three species would coexist if cichlid and tilapia fishes will not be overharvested as these populations
contribute to the growth rates of Nile perch population. The fishery control management should be exercised to avoid overharvesting

of cichlid and tilapia fishes.

1. Introduction

In today’s life, the relationship between predator and prey
became an important aspect to discuss in ecology. The prey-
predator system has attracted many researchers to study
the interaction between the species [1]. Thus, we use math-
ematical ecology aspect to study the interacting species.
The current study considers lake Victoria fishery found in
Tanzania as a case study. However we have not gone to the
field, but the current trends on the dynamics of species in the
lake have been obtained from reading different literature such
as NPFMP [2], FAO [3], LVFO [4], Barack [5], and Barilwa
[6]. This literature explains the current trend of the lake
and the fishery management of the lake Victoria. The lake is
comprised of a lot of species such as stocked Nile perch, Lates
niloticus, tilapia fish, Oreochromis niloticus, the cyprinid,
Rastrineobola argentea, catfishes, insects, cichlids, crocodiles,
and many zooplanktons and phytoplanktons NPFMP [2].
The particular study focuses on Nile perch as the predator
while cichlid fishes and tilapia fishes are considered as prey

populations. All three species are encountering the harvesting
aspect. However harvesting without limitations may have
detrimental effects on fish population because it decreases
the population and sometimes leads a certain species to
extinction, Ganguli [7]. The lake Victoria fishery today is
either overexploited or in a state of full exploitation because
of greater fishing effort and increased competition between
fishers, vessels, or nations over the resource. The particular
study intends to apply mathematical techniques to ensure the
sustainability of the species in lake Victoria without com-
promising the biological, economic, and social objectives for
the benefit of present and future generations. Prey-predator
model in fishery was also studied by Kar [8], Chakraborty [9],
and Yunfei and Yongzhen [10], while studies by Tapas et al.
[11], Ganguli at el [7], Kar [8], Gian [12], Chaudhuri and Kar
[13], and Kar [8] analysed the bioeconomic aspect of prey-
predator system and observed that increasing harvesting
efforts result in population decreases. The particular study
intends to analyse the bioeconomic impact for the lake
Victoria fishery activities in Tanzania.
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2. Materials and Methods

2.1. Model Description, Formulation, and Analysis. It will be
assumed that the Nile perch depends completely on cichlid
and tilapia fishes as their favorite food (because of easy
to capture and their taste) where cichlid and tilapia fishes
have unlimited sources of food. The dynamics therefore
follow the Holling type II function response. In this case,
x,(t), x,(t), and x;(t) represent the population of cichlid
fish, tilapia fish, and Nile perch, respectively, at any time ¢,
where all species involved in modeling are also encountering
harvesting aspect. The growth rate of cichlid fishes and
tilapia fishes follows the logistic law and the birth rate
should always be positive. Terms representing interspecific
competition among the prey species are included in the
model and the model is then divided into three nonlinear
autonomous ordinary differential equations describing how
the population densities of the three species would vary
with time. The following assumptions are made in order to
construct the model:

(i) Cichlid and tilapia fishes have an unlimited food
supply in the lake Victoria.

(ii) The Nile perch is completely dependent on the cichlid
and tilapia fishes as the only favorite food source.

(iil) Interspecific competition among tilapia and cichlid
fishes is exploitative.

(iv) In absence of the predator, prey species grow logis-
tically. That is, the population of the cichlid and
tilapia fishes would increase exponentially until it
reaches the maximum density of the Lake, which is
its environmental carrying capacity K.

(v) The predation functional response of the Nile perch
towards both cichlid fishes x; and tilapia fishes x,
is assumed to follow Michaelis-Menten kinetics and
is modeled using a Holling type II functional form
with predation coeflicients 5 and «,; and the half
saturation constants 3 and y.

By considering the underlying assumptions of the incor-
porated populations, we formulate the system of model
equations as:

dx, < x ) 03X X

o dxg (1o 2 ) —apxx, - 223 0 Eox

dr 1%1 K, 12X1%2 1+ Bx, q1 1%,
dx, Y <1 X, ) 0y3 Xy X5 E W
—= =A,x — == ) =y X Xy — - X

dr 2% K, 23%X1%) 1+ yx, G L%,
dx; X13X1X3 %y3X)X3

— = -wx; t«& - qzEsx

dr 3 311+[5’x1 321+yx2 q3L3X3

with initial data values x,(0) > 0, x,(0) >0, x;(0) > 0.

All parameters in the model are assumed to be positive
and A, and A, are per capita intrinsic growth rates of
cichlid and tilapia fishes, respectively, while K; and K, are
environmental carrying capacities of cichlid and tilapia fishes,
respectively, «;, and a,, are coeflicients for interspecific
competition, &, ; and a5 are predation coeflicients for cichlid
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fishes and tilapia fishes, respectively, E,, E,, and E; are effort
harvesting rates, w is natural mortality rate of Nile perch, and
a5, and a4, are conversion parameters for cichlid fishes and
tilapia fishes by Nile perch, while g, g,, and g5 are catchability
coeflicients.

For ease of computation, we are rescaling model (1)
to reduce the number of parameters as follows: take x =
x,/K;, y = x,/K,, z = wx;, then the system of model (1)
becomes

dx Pxz

i AMx(1-x)-0,xy— I +1Q1x -rXx

dy P,yz

2 = 1—v) - - —

i M) ey -y @
@ — wzs e,xz eyz ryz

dt 1+Qx 1+Qyy

with initial values x(0) > 0, y(0) > 0, and z(0) > 0.

2.2. Equilibrium Points of System (2). The equilibrium states
of the model are obtained by setting dx/dt = dy/dt =
dz/dt = 0 and we assume that the predator has positive
mortality rate w. The following are the possible equilibrium
points of the system P,(x*,0,0), P,(0, y*,0), P;(x", y*,0),
P,(x",0,2%), Ps(0, y*,2z"), and Ps(x", y*,z"). Therefore,

(i) The equilibrium point P,(x",0,0) with x* > 0

From system (2), in the absence of tilapia fish and Nile
perch we have P, (x*,0,0) = P,((A, —r,)/A,,0,0) and
this exists when r; < A4

(i) The equilibrium point P,(0, y*,0) with y* > 0

From system (2), in the absence of cichlid fishes and
Nile perch (x = 0 and z = 0) we have P,(0, y*,0) =
P,((A, —1,)/A,,0,0) and this exists if r, < A,

(iii) The equilibrium point Py(x*, y*,0) with x* > 0 and
y* >0
From system (2), in the absence of Nile perch (z = 0)
we have

Ay ()‘1 - ”1) — 0 (/\2 - 7’2)
MA, =00,

>

P, (", y",0) P(
(3)

A (A —13) +0, (= Ay) 0
MA, - 010, '

This exists if, for r; < A; andr, < A,, A,(A; — 1) >
01(Ay = 1)) = L, (A —qiEy) > ap, Ky (A, — q,E5)

Also Py(x™, y*,0) exists if, for A, < r, andr, < A,,
o,(ry —Ay) > -1 (A, —1y)

(iv) The equilibrium point P,(x*,0,z") with x* > 0 and
z">0
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From system (2), in the absence of tilapia fishes (y =
0) we have

P, (x",0,2")

_»p ( W+ -4 Q; (w+r3)2
=ry s Us 2
e, —Q (w-r;) Pe-Q(w-r)) (4

+ (MQ, —1Q, - A)) (w+rs) + A —r1>
P1(51_Q1(w_”3)) Py

This exists if

(w+7r3) [-4,Q, (w+713)
= (MQ = 1Q = Ay) (e —wQ — Q)] +(er  (5)
~wQ, - 1,Q) (A, -1) >0

which is possible when r; > —wand A, > r,

In terms of original parameter it implies E;q; > —w
and A, > Eq,

(v) The equilibrium point P5(0, y*,2") with y* > 0 and
z" > 0. From system (2), in the absence of cichlid
fishes (x = 0) we have

P5(0,y",27)

w1y -1,Q, (w+ r3)2

=P |0, >
5( e, —Q, (w-r3) Pz(ez—Qz(w—r3))2 (6)

+ (A,Q, —1Q, = Ay) (w+13) + Ay—1y )

Py (e, - Q (w—r3)) P,

This exists if (w +73)[-1,Q,(w +13) — (1,Q, —1,Q, —
1) (e, —wQ, —1,Q,)]+ (e, —wQ, —73Q,) (A, —1,) > 0
and this is possible when ; > —wand A, > r, In
terms of original parameter it means E;g; > —w and
A, > E,q,. The condition implies that E; > —w and
A, > E,

(vi) Coexistence equilibrium point Py(x™, y*,z")

Following the procedure by Dubey [14], the endemic equilib-
rium point is obtained as follows:

P xz
Ax(1—-x)—o0yxy— 1+1Q1x -rx=0 (7)
P,xz
Ay (1 —x)—0o,xy— 1+2Q1x—r2y=0 (8)
—wz + X2 )z _ rz=0 9)
1+Qix  1+Q,y

From (7) we have

. (A (1-x)-0yy—7](1+Qx)
Py

(10)

From (8) we have

. [Az(l_)’)_azg_rz](lJsz)/) ()
2

From (8) and (9) we have

A (1-y)—ox-r+w+r](1+Qy)-ey
P,

(12)
ex(1+Qy)
P, (1+Qx

From (10) and (11) we have

fxy)

_ [(w+73) (1+Qyp) —e;y] (1+Qx) —e;x (1+Q,y) (13)

- P, (1+Q;x)
and from (10) and (12) we get

g(xy)

_ (A (1-y)—ox —ry+w+r] (1+Q,y) —eyy
PZ

_ erx (1+Q,y) (14)
P, (1+Q;x

(A (1-x) -0,y -] (1+Q;x)
Py

Equations (13) and (14) are two functions of x and y. To prove
the existence of Py(x", y*,z"), the conditions under which
f(x, ) and g(x, y) meet in the interior of the positive (x, y)
plane at the point (x*, y*) are found. Now the values of x*,
y* and z" can be obtained from (7), then from (9) we observe
that, as x — 0, y tends to y;. y; is the value of y at which
the function f(x, y) would cut the y axis in the (x, y) plane.
So yy is given by

B w1y
e, —Quw-Qyr;

We notice that y is the same as y of P;(0, y*,z"). From (8),
as x — 0, y tends to y, given by

_ =D, +[D} - 4D, D, 16)

yg_

Yr (15)

2D,
where
-A
D, = —;QZ
2
D, = -A, +4,Q, - azri: wQ, +1;Q, — e, N %1 1)
2 1
P(w+ry—r,+ A, + P, (r; — A,
D; =

PP,

y5 and y,, are the points at which the functions f(x, y) and
g(x, y) would cut the y-axis in the (x, y) plane, respectively.
Also from (13), dy/dx = —(0f /0x)/(0f /0y) where
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of ) (1+Q) [((w+1r;) (1+Qyy) —ey) Q] b [(w+7r;) (1+Qyy) —e) (1 + Qix —eyx (1 +Qyy) ] (18)
0x PF(1+Qx)’ P2 (1+Qx)’

and A** g x _Plx

! 1+Q;x
% _ (WQ, +13Q, — ;) (1 +Qx) — €,Qyx (19) J(P) = —0,y B** _—hy (23)
oy P, (1+Q;x) . 1+Qyy
1% €2 C**
2 2

We note that dy/dx > 0 if f/ox > 0 and df/dy < 0 (1+Qx)" (1+Qy)

and this requires r; > —w and A, > r,. Similarly dy/dx =

—(0dg/0x)/(0g/0y) from (14) where where

og -o,(1+ 1+
_g: 02( QZy)+ el( QZ}/Z A**:AI_ZAIX_O'ly_ PIZ 2_7_1,
0x P Py (1+Qx) (1+Qx)
(20)
_thzoymn)=d - 24Qux B = -2hy o - — ()
P, (1+Q)
and C" = w2 9V r3
1+Qx 1+Q,y
99 _ (Wtrs—n-0x)Q,  e,Qyx 21
dy P, P, (1+Q;x)

We also note that dy/dx < 0if dg/0x < 0 and dg/dy < 0
and this requires r; > —w and r; > r,. Since for f(x, y), we
have dy/dx > 0 and for g(x.y), we have dy/dx < 0, then
f(x, y) and g(x, y) will meet if y; < y,. We therefore state
the existence of the positive equilibrium point Pg(x*, y*,z")
in the following theorem.

Theorem 1. The positive equilibrium point Py(x”, y*,2") will
exist if the following conditions are satisfied:

r3 > W,

Ay >,
(22)
3 > 1y,

yf < Yg
where y and y, are as defined in (15) and (16), respectively.

In terms of original parameter, A, > r; implies that
Ay > E,q;; ie., the growth rate of cichlid fishes must be
greater than the harvesting effort imparted. Conditionr; > r,
gives g3 E; > g, E,. That is, the harvesting rate of Nile perch
should be greater than the harvesting rate of tilapia fishes.
For economic purpose the condition r; > w needs to be
satisfied which implies that the rate at which the Nile perch is
harvested must be greater than its death rate.

2.3. Local Stability of Equilibrium Points. To analyse the local
stability of the equilibrium point we consider the Jacobian
matrix;

(i) P,(0,0,0), the Jacobian matrix evaluated at J (P,) gives
the eigenvalues, A, —r,, A, —7,, and —(w + ;). We see
that (A, —r,) > 0and (A, —r;) > 0 are always positive
and so Py(0, 0, 0) is unstable.

(ii) P;(x*,0,0) = ((A, = 11)/A,,0,0).

The Jacobian matrix (23) is evaluated at P, with the
following eigenvalues:

L, =-A -1,
‘72(11"’1) Pz()H"’l)
L,=A, - - — 7y,
2o A A 2 (25)
Ly=-w Pl("l_rl) _

- 7.
A +Qp (A —1y) ’

The eigenvalues are negative if A, > r; and A, > (g, —
P)(A, —r)/AL.

Hence, the equilibrium point P,(x,0,0) is locally
asymptotically stable if the following conditions hold:
A > 1, Qy > Pyand Ay > (Q, — P)(A, —1)/A,.
The condition A, > r; implies E; < A,. For the local
stability of P, (x, 0, 0), E,, the harvesting rate of cichlid
fishes must be less than their intrinsic growth rate.
Other inequalities show parameters that are vital for
the local stability of P, (x, 0, 0).

(i) P,(0, y*,0) = (0, (A, — 1,)/A5,0).



Journal of Applied Mathematics

The Jacobian matrix (23) is evaluated at P, and the
following eigenvalues obtained:

o (A -1,
P W -k R
1 1 A 1
LZ = r2 - AZ’ (26)
Ly=-w Py(,-1)

- 7,
Ay +Qy(Ay—1,y) ’

The eigenvalues above are negative if A, > r,.
Hence, the equilibrium point P,(x,0,0) is locally
asymptotically stable if conditions A, > r, hold. The
condition A, > r, implies E, < A,. For the local
stability of P, (x, 0, 0), E,, the harvesting rate of tilapia
fishes must be less than their intrinsic growth rate.

(iv) Py(x*, y*,0) = (A, (A, — 1) — 0,(A, — 1))/ (AA, —
0,0,), A (A, = 1,) + 0,(r — 1))/ (XA, — 0,0,),0).
The eigenvalues of J(P;) are obtained by solving the
characteristic equation;

X - (A" +E +GH))\
+(A"G"+E'G"+AE"-D'B")A  (27)
+G'D'B"-G"A"E" =0

where A" = A, =20, x" —oyy" =1, B" = -0,)",
Cc* = _Plx*/(l + le*)’ D* = —01)/*,15* — )Lz _
20,y =0y x" =1y, F* = =P,y" [(1+Q,y"),and G* =
—w+ex [(1+Qx") + e,y [(1+ Quy™) — 15

This can be expressed in form of

P ra M +ad+a;=0 (28)

By Routh-Hurwitz criteria (Murray, 1989), the A's are
negative ifa; > 0,a; > 0,a,a, —a; > 0.

(v) P,(x",0,z") = P((w + ry)/le; - wQ -
r3Q)), 0, =1, Q; (w+r3)* /Py (e, ~wQ, -13Q))*+(1,Q, —
rQy—A)(w+r;)/Pi(e; —wQ; —13Qp) + (A, —1,)/Py).
The eigenvalues J(P,) are obtained by solving the
characteristics equation;

L~ (A, +B;+C;) L
Pex*z"

+ AL (B, +C;) +B,C; +
2( 2 2) 22 (1+Q1x*)3 (29)

* % ok B;Plelx*z*
~ALBIC, - 2T E
(1+Qx*)
where
* * PZ*
Ay=M-r —2dx" - ——,
(1+Qx*)
By =L, —0,x" = Pz" —r1,, (30)
. e x”
Cl=-w+ 2%

1+Q;x*

5

The characteristic equation is in the form
L’ +aLl*>+a,L+a,=0 (31)
where a, = —(A} + B} + C)), a, = AL(B; +

C;) + B;C, + Peyx™z"/(1 + le*)3, and a; =
-ASB,C, — ByPe;x*z"/(1 + Q;x")". By Rouths
stability criterion, the equilibrium point P, is stable if
(i)a, > 0,a, > 0,and a; > 0; (ii) a,a, > a,. Otherwise
it is unstable.

(vi) P;(0,y",2") = P((w + ry)/le, — wQ, -
r3Qy), 0, =1,Q, (w+r3)* Py (e,~wQ,~15Q,)* +(A,Q,~
1,Qy = A (w+13)/Py(e, —wQ, —1,Q,) + (A, —1,)/P,).
The eigenvalues evaluated at J(P;) are obtained by
solving the characteristic equation

L~ (A +Bi+C)) L

* *
Pe,z"y

+|B;C; + A5 (B} +C;) + L
33 3 3 3) (1 +Q2y*)3 (32)

* ¥ o~k PzeZZ*y*
- AiB;C; - —2E 2 — =0
(1+Qy%)

where A3 = A, —0,y" - Pz" —r,B;, =, -1, -
20,y = Pz" (1 + Q,x*)? and C,=-w+ey"/(1+
Q,y") — r;. The characteristic equation is in the form
L’ +a*+aL+a;=0;

where a; = —(A} + B; +C;), a, = B;C; + A5(B] +
C3) + Pz y™ /(1 + sz*)3, and a; = -AB;C; -
Pye,z*y* /(1 + Q,y")’. By Rouths stability criterion,
the equilibrium point P; is stable if (i) ¢, > 0, a, > 0,
and a; > 0 and (ii) a,a, > a;. Otherwise it is unstable.

2.4. Global Stability of the Coexistence Equilibrium Point
Py(x*, y*,2"). To analyse global stability of coexistence
equilibrium point, a suitable Lyapunov function is chosen,
from which conditions for the global asymptotic stability
of the coexistence point Py(x*,y",z") are derived. The
approach is based on work by Chaudhuri [13] and Dubey [14].

Theorem 2. The coexistence equilibrium point Pg(x*, y*,z")
is globally asymptotically stable if

(i) Ay > 0,A, >0, (ii)) P, > e, P, > e,, and (ii) A{A, >
(0, + 0y)".

Proof. Consider the following Lyapunov function:
V(x32) = (e-x") - xlog () + (- y)
. y .
-y log<F>+(z—z ) (33)

-z log<zi*)



Simplifying the above Lyapunov function,

V(x,y,2) =x—x" - (x"logx — x" logx™) + y
—y = (ylogy-y'logy") +z
-z" = (2" logz —z" logz™)
(34)

V(x,y,z) =x—x"—x"logx+x"logx" +y—y"

-y'logy+y“logy" +z-2z"

-z"logz +z" logz"

where 0V/ox =1 —x"/x = (x —x")/x,0V /oy =1 - y" [y =
(y-y")/yandoV/oz=1-z"/z = (z-2")/z.
Differentiating V with respect to time, i.e.,

dv_ovdx ovdy ovde
dt  0oxdt Odydt Ozdt

d_V_x—x* [/\x(l—x)—ox _ _hxz
dt  «x ! 1%y 1+Q;x
-y P,xz
—rlx] +y [)tzy(l—x)—azxy— 1+2Q1x
B z-z" [ e,xz e,z
rzy]+ [ wz+l+Q1x 1+Q,y

-1z

d «
d—Y=(x—x )[Al(l—x)—oly—

Pz ]
-
1+Q;x

N z
+(y-y )[Az(l—x)—o'zx— 1+2le—r2]
ax ey —”3]

1+Qx  1+Qyy

+(z-2") [—w+

dv "
E:(x—x )[M_Alx_‘fl)’_

Pz
1+Q;x

- =M

Pz

—tAx oy ————
! ! 1+Q;x*

+r1]+(y-y*)[lz

P,z
1+Q,y

- Ay —0,x— —ry = Ay + A,y +0yx”

Pz"
t—
1+Qyy

e e x” e,y
2) w2 . 2) .
1+Q,y 1+Qx 1+Q,y

o]

e x
1+Q;x

+r2] +(z-2") [—w+
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av * * *
=) L D) v (2 -]+
* 2 * PZ(Z*_Z)
) et -+ BE 2]
RSN PICEE e
1+Q;x 1+Q,y
(35)
which simplifies to
dV * ® *
Z:—(x—x)2/11—(96—36)(}")’)(‘71_02)

% * Pl_el
_(x—x)(z—z)<l+Q1x> 6
~(-y VA
e ) (2 [ P

-2 (12 )

Thus, dV/dt is a quadratic form which can be expressed as
dv/dt = -XTAX, where XT = (x — x*,y—-y*,z—z")and A
is symmetric matrix given by

ap Gy a3
A=\ ap ay a; (37)
a3 Gy3 0433

witha,; = A,,a,, = 0,-0,,a;5 = (Pi—e;)/(1+Q,x),ay, = A,
a3 = (P, —e,)/(1+Q,y), and a3; = 0. We note that the point
P (x*, y*,2") is globally asymptotically stable if dV/dt < 0;
that is, the matrix A is positive definite Chaudhuri [13]. Now
the matrix A is positive if a;; > 0, a;5 = 0,a;, > 0,a,, > 0,
ay; = 0,and a;,ay, —ap, > 0.a;; > 0gives A, > 0,a;5 = 0
gives P, = e, a,, > 0 gives 0, > 0,, a,, > 0 gives A, > 0, and
ay,ay, — al, > 0 gives \;A, > (0, + 0,)°. This completes the
proof. O

2.5. Bioeconomic Equilibrium. The term bionomic equilib-
rium is an amalgamation of the concepts of biological
equilibrium as well as economic equilibrium Kar [8]. From
system (2), a biological equilibrium is given by dx/dt =
dy/dt = dz/dt = 0. The economic equilibrium is said to
be achieved when the total revenue obtained by selling the
harvested biomass (TR) equals the total cost for the effort
devoted to harvesting (TC).

Let ¢, be the fishing cost per unit effort for cichlid fishes,
¢, the fishing cost per unit effort for tilapia fishes, ¢; the
fishing cost per unit effort for Nile perch, p, the price per
unit biomass of cichlid fishes, p, the price per unit biomass of
tilapia fishes, and p; the price per unit biomass of Nile perch;
41> 95> and g5 are catchability coefficients of cichlid fishes,
tilapia fishes, and Nile perch, respectively.

Then we have 7, = (p,g,x - ¢))E}, 71, = (p2g,y — G)E,,
and 715 = (p3q3x — &) Es.

7y, 7y, and 715 are the economic rent (net revenue) of
cichlid fishes, tilapia fishes, and Nile perch, respectively.



Journal of Applied Mathematics

Therefore, the economic rent (net revenue) at any time is
given by 7w = 71, + 7, + 715, which is
m=(pidix =) Ey + (P45 - &) Ey

+(p3q32 — ;) E5

(38)

Since y., = 6/p,q, and zo, = ¢;/p;q5, then (44) can be
written in quadratic form as

Alleio - </\1Q1 -A - UlQ_lQ) Xoo + Ay — NG

J 2L P29
Then P(Xoys Yoo» Zoos E1co> E200» E300) 1S the bioeconomic P (45)
equilibrium where X, ¥oo» Zog» E1co> Eaco> @a0d E5 are the - -9
bioeconomic values of cichlid fishes, tilapia fishes, Nile perch, P45
harvesting effort of cichlid fishes, harvesting effort of tilapia
fishes, and harvesting effort of Nile perch, respectively, and it
is given by the simultaneous equation: Therefore
AMAQ-x)-0,y- ! -q,E, =0 (39)
1+Q,x _ 2 _
) 1 o R, + \|R2 - 4R|R, (46)
z oo 2R
A, (1-y)- -—2  _4,E,=0 3
2(1-y) —oyx 1+Qy PR (40)
e;x e,y B
Y 1 ~ 45 =0 (41)  where R; = 1,Q, Ry = (4,Q1 P29, = A1 P29 — 01Q16)/ 2o
+Qx +Qy _
Ry = Ay = 016/p,q, — P&/ p3qs.
T From (46),
= (P11x - ) E1 + (P22 - &) E, (42)
A o P,z
+(p3q3z2—¢)E; =0 E_=22(1- 22, 2% 47
(P35 3) B3 lco qz( Yoo) 5 5 (1+Qy) (47)
In order to determine the bioeconomic equilibrium, we now
consider the following cases.
Therefore, E,, > 0 if
Case I. If ¢, > p,q,, that is, the fishing cost per unit effort
for cichlid fishes is greater than the revenue in the cichlid
fish fishery, then fishermen will be in loss and naturally they 0o
 J. j2
would withdraw their participation from cichlid fish and the APz = 12 5 %22 > 2P2925 (48)
fishery will be closed (E; = 0). Only tilapia fish and Nile perch P24, P333292 — QP393
fishery remain operational (i.e., ¢, < p,q,y and ¢; < p;q;2).
Now we have y, = ¢,/p,q, and z, = &/p;q;. From (39)
when E; = 0, we have Also,
Pz,
A= AMXgo = 01 Yoo — 1510 x_ (lleoo =0 L _weex e,y2
A (14 Quxo) = Aion (14 Q%) g g+ Qx g3+ Qs
~ 01 Yoo (1 + QXgo = Pi2oo =0 wey e,6x™°
) (43) P R o gy (49)
A+ 4Qu X)) = Ao, + A1 Qux2 — 01 Voo P35 P3q5 + QiPsgsX
€260GP29,
+01Q1 X Voo — P12oo =0
o 1 P343P395 + QuP2a2P395%
— M Quxl, + (MQ1 = A~ 01Q1Ye) Xeo + Ay
(44)
=01 Yo = P25 =0 Thus, E,, > 0 if
;x> (P;quﬂg + QszQzPsqgcz) T 0GP (p3q§ + lesquoo) . WG (50)

2222

(P393 — Qup333x®) (P34345 3 + QP22 P3955:) P35

Therefore, the bioeconomic equilibrium exists if conditions
(48) and (50) hold.

Case II. If ¢, > p,q,, that is, the fishing cost per unit effort
for tilapia fishes is greater than the revenue in the tilapia



fish fishery, then fishermen will be in loss and naturally, they
would withdraw their participation from tilapia fish fishery
and the fishery will be closed (E, = 0). Only cichlid fishes and
Nile perch fishery remain operational (i.e., ¢, < p;q,x and

G < Ps3qsz). Now we have x, = ¢;/p,q, and z, = ¢/ p;3g;-
From (46) when E, = 0, we have

PZZoo _
1+ Qlyoo

A (14 Qu¥e0) = AaYeo (1+ Quyeo)

— 02X (1 +Q2yoo - PZZoo =0

Ay = M Yoo = 03X

(51)

Ay +2Q0500) = AaYeo + /\zQz)’éo — 02X
+ OZQZxooyoo - PZZoo =0
- )‘2Q2)’<2>o +(A,Q = Ay - 0,Q5%0,) Yoo + Aa

— 03X — PyZo =0

(52)
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where
N /\2Q2
S — Q0191 — Ao pigy — 0,Qx0
, =
J2U (55)
Sy= A, - 29 Ll
a1 P3gs
From (39),
P,z
A (1= X)) = 0y Yy — — 1209 g E, =0
(1= %) = 01 Y00 1+ Qxy 9110
. (56)
E. = A b oy Pipia,6
-
“a pqg q P3:P19r — Qi Pag3a
E o > 0if

Pipigic

Mgy py = Ay —01p1q, Y S

Since xo, = ¢/p1q; and zo, = &/ psq;> then (52) can be 3 — (57)
written in quadratic form as hd P3dsPin ~ QiP3ds
Also,
0,Q,c¢ 0,C
/lez)’éo - (AzQz —-Ay - 2—;1> ot AL qul E. - _WE,_ aX% )z
o o (53) g gt Qux g3+ Qudsy
_ha we, eey™
P43 =- + L (58)
p@ @+ Qupagiy™
Therefore . €266 P14
22 2 2
e =S, £ 1/S% - 4S,S, (54) P41 P393 + QP19 23956
v 255 Thus, E,, > 0if
€6y (P%‘ﬁpﬂg + Q1P1Q1P3‘1§C1) T eaGP 1% (P3Q§ + Q2P3CI§)’OO) L W (59)
(P35 = Qups33y™) (PIa145 3 + QuP141 P3d51) psa
Therefore, the bioeconomic equilibrium exists if conditions ~ Thus, E;, > 0if
(57) and (59) hold.
Case I1I. If c; > p;qs, that is, the fishing cost per unit effort A 1 g
for Nile perch is greater than the revenue in the Nile perch "\ q, "
fishery, then fishermen will be in loss and naturally, they (61)
would withdraw their participation from Nile perch fishery 016 ( qui - qulcl) + P1 qui P29,2%°
. s 1.1s o >
and the ﬁshery will be'closed'. Only cichlid fish and tilapia fish 200 (7@ - Qi
fishery remain operational (i.e., ¢, < p;q;x and ¢, < p,4,2).
Now we have x, = ¢;/p;q; and y, = ¢,/ p,q,. Substituting
Xoo and y. in (44), we get Also,
1 c 1 o}
Eloo:)‘1<__ 12) EZoo:A1<__ 2)
a1 P4y a1 P9
(60) (62)

05 (Pl‘ﬁ - qulcl) + PlPl‘J%Pz%ZOO
P29 (143 — Qi

_ 04 (leﬁ - Qz‘b‘é) + Pszqul%Zoo
21919 (P23 — Q0426
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Thus, E,, > 0if

1 oy )
I
2<‘12 225

(61) and (63) hold.

the whole fishery will be closed.

have xo, = ¢,/ P191> Yoo = &/ P29a> and zo, = 63/ p3q3, then

1 C
.
' ' a1 g

9
Thus, E,, > 0, if
A, (i _ 4 2)
a1 P4
: (65)
N 016 (Pl‘hps% - les%‘hcl) + P piqic
5 ) (63) P21 (PsqsPig; — Qip3qsqicy)
(o]
036G (Pz% - Qz‘izcz) +P2p,q, 1912
> > And,
P10 (P23 — Q26
1 G
-
2\
Therefore, the bioeconomic equilibrium exists if conditions 5 (66)
_ 04 (PZQzP3‘13 - QzPa%‘]zQ) +Pyprdhcs
2
-Q
Case IV. If ¢; > piqyx,¢, > p,q,y and ¢ > p;qs2, then the P10z (332t = QuPsds9:2)
fishing cost is greater than revenues for all three species and  Thus, E,., > 0,
1 )
Case V. If ¢; < pig1%,6 < p,q,y and ¢ < ps3g5z, then the A q_ - P
fishing cost is less than revenues for all three species; that is, 2 2 (67)
the fishery is more profitable and hence it would attract more 0, ( PP — B Cz) + P, pygscy
fishermen and the whole fishery will be in operation. Now we > >
P1919: (Psq: 295 — QuP30:026,)
Also,
g = _YG 166019
300 T 242
P43 P191Ps93 + P393 P191G (68)
(64) €66
2 2
019 (Pl‘ﬁpﬂa - Q1P3Q3‘11C1) +Ppiqi6 P393P39; ~ P393 P292%
P20 (P333P1di — Q1 p3d391c1) Thus, E;y, > 0if
22 2 2
e1aGp1q (P3‘Z3P2‘Z2 Paqapz‘b%) + 660609, (P1‘11P3‘Z3 + P3‘Z3P1‘Z1C1) -0 (69)

(P1aiPsas + P33 019:61) (P39 P55 — P3932926)

Thus, the nontrivial bioeconomic equilibrium point P, (x,
Yoo» Zoo» E1o0s E2co> E30o) €xists if and only if conditions (65),
(67), and (69) hold together.

3. Results and Discussion

3.1. Numerical Results. The model system is simulated using
the inbuilt ODE solvers coded in Matlab programming
language and figures are plotted using parameter values
presented in Table 1.

Figure 1 presents the dynamics of the population inter-
action with respect to time. The figure indicates that cichlid
fishes population grows faster compared to other species.
The dynamics was also visualized in 3D as presented in
Figure 2. Figure 3 shows the impact in harvesting cichlid fish
population; it is observed that increasing harvesting effort
leads to decrease Nile perch population as well. In Figure 4
the same scenario happens when tilapia fish population

harvested tends also to decrease Nile perch population while
increasing harvesting effort in Nile perch population tends
to increase cichlid and tilapia fishes as presented in Figure 5.
Figure 6 presents the exponential growth rate of cichlid and
tilapia fishes in absence of Nile perch population.

3.2. Discussion. A mathematical model was proposed and
analysed to study the dynamics of a two-prey-one predator
system with harvesting aspects. The model was used to study
the ecological dynamics of the Nile perch-cichlid-tilapia
fishes prey-predator system of the lake Victoria fishery. The
harvesting rate was found to play a crucial role in stabilizing
the system. Figures 3 and 4 show that cichlid and tilapia fishes
tend to extinction when the harvesting rates E, and E, exceed
their intrinsic growth rates A, and A,. For sustainability
harvesting of cichlid and tilapia fishes their intrinsic growth
rates should be kept smaller. However, harvesting of the three
species at a rate much lower than their intrinsic growth rate
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Population Densities

—— Cichlid fish
—— Nile perch
——— Tilapia

Time

FIGURE 1: Graph of prey x, and x, and predator x, against time (in years). It shows the variation of population density with time.

Nile perch fish

10

Cichlid fish

60
40
20

Tilapia fish

FIGURE 2: Graph of prey x; and x, and predator x, against time (in years). The limit cycle shows that population density will slightly change

but not oscillate the boundary.

would not lead to collapse of the system. This result is similar
to one obtained by Chaudhuri and Kar [13] on the existence
conditions for the system they studied. In absence of the
predator, the two prey species can coexist and are stable if
the interspecific competition among them is maintained at
minimum level or negligible also if both prey species are
not harvested beyond its intrinsic growth rate. Numerical
analysis results indeed confirmed this as shown in Figure 6.
Theorem 1 showed that the three species would coexist
if cichlid and tilapia fishes were not harvested beyond their
intrinsic growth rates; the Nile perch converted the biomass
of cichlid and tilapia fishes into fertility at a rate greater than
the Nile perch’s natural mortality rate and the time it took

to handle the cichlid or tilapia fish. The findings of Dubey
and Upadhyay [14] indicated that the predator’s mortality
rate and food conversion coefficients played a crucial role
in determining the stability behaviour of the equilibrium
points.

In order for the bioeconomic equilibrium to exist, the
fishing cost per unity effort for all species, price per unity
biomass, catchability coefficient, harvesting effort, intrinsic
growth rate of prey species, and the mortality rate of predator
play a vital role. Hence for the bioeconomic equilibrium to
exist, the fishing cost per unity effort for all three species
should be less than the revenue in their fishery. Similar results
were also obtained by Ganguli and Kar [7] when they studied
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FIGURE 3: Variation of the fishes population with different harvesting efforts in cichlid E1 with fixed values of E2 and E3.

cichlid fish population

Nile perch population

50 80 . . . .
g
45t ] g
<
=
&
40 | ] g
R
35| | @
H
30 L L L n
0 2 4 6 8 10
50 -
80
40 |
60
30t ] g
20 | )l S 40t
a,
1)
10 | . 220
0 . 0 .
0 2 4 6 8 10 0 2 4 6 8 10
Time (years) Time (years)
— E2=10 Cichlid
—— E2=15 ——— Tilapia
—— E2=20 ——— Nile perch

FIGURE 4: The effect of Tilapia harvest with different values of E2 with fixed values of E1 and E3.

1



Journal of Applied Mathematics

140

120

100

80

Tilapia population

60

40

140

120

100

80

60

population

40 +

20

0 2 4 6 8 10

Time (years)

Cichlid
—— Tilapia
—— Nile perch

FIGURE 5: The effect of Nile perch harvest with different values of E3 with fixed values of E1 and E2.
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TABLE 1: Parameter Values of the model.
Parameter Value source
A 2.07 (13]
A, 2.09 (13]
K, 200 (13]
K, 100 (13]
a, 0.001 (15]
a, 0.02 (15]
ay, 0.002 (16]
a, 0.03 (16]
ay, 15 (17]
B 0.1 17]
y 02 (17]
q 0.14 [17]
9 0.13 [18]
4 0.125 (18]
w 1 [17]

the optimal harvesting of a prey-predator model with variable
carrying capacity.

One of the major observations from numerical simulation
results is that the predator population density increased
significantly when the harvesting rate of both prey species

50 — T T T T T T T T T
45 R
40 + g
35 g
30 R
25+ R
20 | g
15 R
10 R

Proportions of Cichlid fish population

0 I I I I I I I I I
30 32 34 36 38 40 42 44 46 48 50

Proportions of Tilapia fish population

FIGURE 6: The interaction between cichlid and tilapia fishes in
absence of Nile perch.

decreased. This implies that a gradual increase in the number
of cichlid and tilapia fishes would result in significant increase
in the number of Nile perch and vice versa, which would in
the long term lead the population density of the cichlid and
tilapia fishes to fall to a level lower than the original one. Kar
and Chaudhuri [16] also discovered that predator population
density can increase significantly when the harvesting rate of
prey species is decreased.
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4. Conclusion

We deduce from both analytical and numerical results that
if the harvesting rate of the cichlid and tilapia fishes exceeds
their intrinsic growth rate, the population of the cichlid,
tilapia fishes, and Nile perch would become extinct with
time. However, analytical and numerical results also show
that harvesting of the three species at a rate much lower than
their intrinsic growth rate would not lead to collapse of the
system. Thus, in order to use fish as a resource and produce
maximum economic benefit while maintaining sustainable
fishery species, the harvesting rate of species should never be
allowed to exceed their growth rate.
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