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A mathematical model is proposed and analysed to study the dynamics of two-prey one predator system of fishery model with
Holling type II function response. The effect of harvesting was incorporated to both populations and thoroughly analysed. We
study the ecological dynamics of the Nile perch, cichlid, and tilapia fishes as prey-predator system of lake Victoria fishery in
Tanzania. In both cases, by nondimensionalization of the system, the equilibrium points are computed and conditions for local and
global stability of the system are obtained. Condition for local stability was obtained by eigenvalue approach and Routh-Hurwitz
Criterion. Moreover, the global stability of the coexistence equilibrium point is proved by defining appropriate Lyapunov function.
Bioeconomic equilibrium is analysed and numerical simulations are also carried out to verify the analytical results. The numerical
results indicate that the three species would coexist if cichlid and tilapia fishes will not be overharvested as these populations
contribute to the growth rates ofNile perch population.Thefishery controlmanagement should be exercised to avoid overharvesting
of cichlid and tilapia fishes.

1. Introduction

In today’s life, the relationship between predator and prey
became an important aspect to discuss in ecology. The prey-
predator system has attracted many researchers to study
the interaction between the species [1]. Thus, we use math-
ematical ecology aspect to study the interacting species.
The current study considers lake Victoria fishery found in
Tanzania as a case study. However we have not gone to the
field, but the current trends on the dynamics of species in the
lake have been obtained from reading different literature such
as NPFMP [2], FAO [3], LVFO [4], Barack [5], and Barilwa
[6]. This literature explains the current trend of the lake
and the fishery management of the lake Victoria. The lake is
comprised of a lot of species such as stocked Nile perch, Lates
niloticus, tilapia fish, Oreochromis niloticus, the cyprinid,
Rastrineobola argentea, catfishes, insects, cichlids, crocodiles,
and many zooplanktons and phytoplanktons NPFMP [2].

The particular study focuses onNile perch as the predator
while cichlid fishes and tilapia fishes are considered as prey

populations. All three species are encountering the harvesting
aspect. However harvesting without limitations may have
detrimental effects on fish population because it decreases
the population and sometimes leads a certain species to
extinction, Ganguli [7]. The lake Victoria fishery today is
either overexploited or in a state of full exploitation because
of greater fishing effort and increased competition between
fishers, vessels, or nations over the resource. The particular
study intends to apply mathematical techniques to ensure the
sustainability of the species in lake Victoria without com-
promising the biological, economic, and social objectives for
the benefit of present and future generations. Prey-predator
model in fishery was also studied byKar [8], Chakraborty [9],
and Yunfei and Yongzhen [10], while studies by Tapas et al.
[11], Ganguli at el [7], Kar [8], Gian [12], Chaudhuri and Kar
[13], and Kar [8] analysed the bioeconomic aspect of prey-
predator system and observed that increasing harvesting
efforts result in population decreases. The particular study
intends to analyse the bioeconomic impact for the lake
Victoria fishery activities in Tanzania.
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2. Materials and Methods

2.1. Model Description, Formulation, and Analysis. It will be
assumed that the Nile perch depends completely on cichlid
and tilapia fishes as their favorite food (because of easy
to capture and their taste) where cichlid and tilapia fishes
have unlimited sources of food. The dynamics therefore
follow the Holling type II function response. In this case,𝑥1(𝑡), 𝑥2(𝑡), and 𝑥3(𝑡) represent the population of cichlid
fish, tilapia fish, and Nile perch, respectively, at any time 𝑡,
where all species involved in modeling are also encountering
harvesting aspect. The growth rate of cichlid fishes and
tilapia fishes follows the logistic law and the birth rate
should always be positive. Terms representing interspecific
competition among the prey species are included in the
model and the model is then divided into three nonlinear
autonomous ordinary differential equations describing how
the population densities of the three species would vary
with time. The following assumptions are made in order to
construct the model:

(i) Cichlid and tilapia fishes have an unlimited food
supply in the lake Victoria.

(ii) TheNile perch is completely dependent on the cichlid
and tilapia fishes as the only favorite food source.

(iii) Interspecific competition among tilapia and cichlid
fishes is exploitative.

(iv) In absence of the predator, prey species grow logis-
tically. That is, the population of the cichlid and
tilapia fishes would increase exponentially until it
reaches the maximum density of the Lake, which is
its environmental carrying capacity 𝐾�푖.

(v) The predation functional response of the Nile perch
towards both cichlid fishes 𝑥1 and tilapia fishes 𝑥2
is assumed to follow Michaelis-Menten kinetics and
is modeled using a Holling type II functional form
with predation coefficients 𝛼13 and 𝛼23 and the half
saturation constants 𝛽 and 𝛾.

By considering the underlying assumptions of the incor-
porated populations, we formulate the system of model
equations as:𝑑𝑥1𝑑𝑡 = 𝜆1𝑥1 (1 − 𝑥1𝐾1) − 𝛼12𝑥1𝑥2 − 𝛼13𝑥1𝑥31 + 𝛽𝑥1 − 𝑞1𝐸1𝑥1𝑑𝑥2𝑑𝑡 = 𝜆2𝑥2 (1 − 𝑥2𝐾2) − 𝛼23𝑥1𝑥2 − 𝛼23𝑥2𝑥31 + 𝛾𝑥2 − 𝑞2𝐸2𝑥2𝑑𝑥3𝑑𝑡 = −𝑤𝑥3 + 𝛼31 𝛼13𝑥1𝑥31 + 𝛽𝑥1 + 𝛼32 𝛼23𝑥2𝑥31 + 𝛾𝑥2 − 𝑞3𝐸3𝑥3

(1)

with initial data values 𝑥1(0) ⩾ 0, 𝑥2(0) ⩾ 0, 𝑥3(0) ⩾ 0.
All parameters in the model are assumed to be positive

and 𝜆1 and 𝜆2 are per capita intrinsic growth rates of
cichlid and tilapia fishes, respectively, while 𝐾1 and 𝐾2 are
environmental carrying capacities of cichlid and tilapia fishes,
respectively, 𝛼12 and 𝛼21 are coefficients for interspecific
competition, 𝛼13 and 𝛼23 are predation coefficients for cichlid

fishes and tilapia fishes, respectively, 𝐸1, 𝐸2, and 𝐸3 are effort
harvesting rates,𝑤 is natural mortality rate of Nile perch, and𝛼31 and 𝛼32 are conversion parameters for cichlid fishes and
tilapia fishes byNile perch, while 𝑞1, 𝑞2, and 𝑞3 are catchability
coefficients.

For ease of computation, we are rescaling model (1)
to reduce the number of parameters as follows: take 𝑥 =𝑥1/𝐾1, 𝑦 = 𝑥2/𝐾2, 𝑧 = 𝑤𝑥3, then the system of model (1)
becomes 𝑑𝑥𝑑𝑡 = 𝜆1𝑥 (1 − 𝑥) − 𝜎1𝑥𝑦 − 𝑃1𝑥𝑧1 + 𝑄1𝑥 − 𝑟1𝑥𝑑𝑦𝑑𝑡 = 𝜆2𝑦 (1 − 𝑦) − 𝜎2𝑥𝑦 − 𝑃2𝑦𝑧1 + 𝑄2𝑦 − 𝑟2𝑦𝑑𝑧𝑑𝑡 = −𝑤𝑧 + 𝑒1𝑥𝑧1 + 𝑄1𝑥 + 𝑒2𝑦𝑧1 + 𝑄2𝑦 − 𝑟3𝑧

(2)

with initial values 𝑥(0) ⩾ 0, 𝑦(0) ⩾ 0, and 𝑧(0) ⩾ 0.
2.2. Equilibrium Points of System (2). The equilibrium states
of the model are obtained by setting 𝑑𝑥/𝑑𝑡 = 𝑑𝑦/𝑑𝑡 =𝑑𝑧/𝑑𝑡 = 0 and we assume that the predator has positive
mortality rate 𝑤. The following are the possible equilibrium
points of the system 𝑃1(𝑥∗, 0, 0), 𝑃2(0, 𝑦∗, 0), 𝑃3(𝑥∗, 𝑦∗, 0),𝑃4(𝑥∗, 0, 𝑧∗), 𝑃5(0, 𝑦∗, 𝑧∗), and 𝑃6(𝑥∗, 𝑦∗, 𝑧∗). Therefore,

(i) �e equilibrium point 𝑃1(𝑥∗, 0, 0) with 𝑥∗ > 0
From system (2), in the absence of tilapia fish andNile
perch we have 𝑃1(𝑥∗, 0, 0) = 𝑃1((𝜆1 −𝑟1)/𝜆1, 0, 0) and
this exists when 𝑟1 < 𝜆1

(ii) �e equilibrium point 𝑃2(0, 𝑦∗, 0) with 𝑦∗ > 0
From system (2), in the absence of cichlid fishes and
Nile perch (𝑥 = 0 and 𝑧 = 0) we have 𝑃2(0, 𝑦∗, 0) =𝑃2((𝜆2 − 𝑟2)/𝜆2, 0, 0) and this exists if 𝑟2 < 𝜆2

(iii) �e equilibrium point 𝑃3(𝑥∗, 𝑦∗, 0) with 𝑥∗ > 0 and𝑦∗ > 0
From system (2), in the absence of Nile perch (𝑧 = 0)
we have

𝑃3 (𝑥∗, 𝑦∗, 0) = 𝑃3 (𝜆2 (𝜆1 − 𝑟1) − 𝜎1 (𝜆2 − 𝑟2)𝜆1𝜆2 − 𝜎1𝜎2 ,
𝜆1 (𝜆2 − 𝑟2) + 𝜎2 (𝑟1 − 𝜆1)𝜆1𝜆2 − 𝜎1𝜎2 , 0) (3)

This exists if, for 𝑟1 < 𝜆1 and 𝑟2 < 𝜆2, 𝜆2(𝜆1 − 𝑟1) >𝜎1(𝜆2 − 𝑟2) ⇒ 𝜆2(𝜆1 − 𝑞1𝐸1) > 𝛼12𝐾2(𝜆2 − 𝑞2𝐸2)
Also 𝑃3(𝑥∗, 𝑦∗, 0) exists if, for 𝜆1 < 𝑟1 and 𝑟2 < 𝜆2,𝜎2(𝑟1 − 𝜆1) > −𝜆1(𝜆2 − 𝑟2)

(iv) �e equilibrium point 𝑃4(𝑥∗, 0, 𝑧∗) with 𝑥∗ > 0 and𝑧∗ > 0
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From system (2), in the absence of tilapia fishes (𝑦 =0) we have𝑃4 (𝑥∗, 0, 𝑧∗)
= 𝑃4( 𝑤 + 𝑟3𝑒1 − 𝑄1 (𝑤 − 𝑟3) , 0, −𝜆1𝑄1 (𝑤 + 𝑟3)2𝑃1 (𝑒1 − 𝑄1 (𝑤 − 𝑟3))2
+ (𝜆1𝑄1 − 𝑟1𝑄1 − 𝜆1) (𝑤 + 𝑟3)𝑃1 (𝑒1 − 𝑄1 (𝑤 − 𝑟3)) + 𝜆1 − 𝑟1𝑃1 )

(4)

This exists if(𝑤 + 𝑟3) [−𝜆1𝑄1 (𝑤 + 𝑟3)− (𝜆1𝑄1 − 𝑟1𝑄1 − 𝜆1) (𝑒1 − 𝑤𝑄1 − 𝑟3𝑄1)] + (𝑒1− 𝑤𝑄1 − 𝑟3𝑄1)2 (𝜆1 − 𝑟1) > 0 (5)

which is possible when 𝑟3 > −𝑤 and 𝜆1 > 𝑟1
In terms of original parameter it implies 𝐸3𝑞3 > −𝑤
and 𝜆1 > 𝐸1𝑞1

(v) �e equilibrium point 𝑃5(0, 𝑦∗, 𝑧∗) with 𝑦∗ > 0 and𝑧∗ > 0. From system (2), in the absence of cichlid
fishes (𝑥 = 0) we have𝑃5 (0, 𝑦∗, 𝑧∗)

= 𝑃5(0, 𝑤 + 𝑟3𝑒2 − 𝑄2 (𝑤 − 𝑟3) , −𝜆2𝑄2 (𝑤 + 𝑟3)2𝑃2 (𝑒2 − 𝑄2 (𝑤 − 𝑟3))2
+ (𝜆2𝑄2 − 𝑟2𝑄2 − 𝜆2) (𝑤 + 𝑟3)𝑃2 (𝑒2 − 𝑄2 (𝑤 − 𝑟3)) + 𝜆2 − 𝑟2𝑃2 )

(6)

This exists if (𝑤+ 𝑟3)[−𝜆2𝑄2(𝑤+ 𝑟3) − (𝜆2𝑄2 − 𝑟2𝑄2 −𝜆2)(𝑒2−𝑤𝑄2−𝑟3𝑄2)]+(𝑒2−𝑤𝑄2−𝑟3𝑄2)2(𝜆2−𝑟2) > 0
and this is possible when 𝑟3 > −𝑤 and 𝜆2 > 𝑟2 In
terms of original parameter it means 𝐸3𝑞3 > −𝑤 and𝜆2 > 𝐸2𝑞2. The condition implies that 𝐸3 > −𝑤 and𝜆2 > 𝐸2

(vi) Coexistence equilibrium point 𝑃6(𝑥∗, 𝑦∗, 𝑧∗)
Following the procedure by Dubey [14], the endemic equilib-
rium point is obtained as follows:𝜆1𝑥 (1 − 𝑥) − 𝜎1𝑥𝑦 − 𝑃1𝑥𝑧1 + 𝑄1𝑥 − 𝑟1𝑥 = 0 (7)

𝜆2𝑦 (1 − 𝑥) − 𝜎2𝑥𝑦 − 𝑃2𝑥𝑧1 + 𝑄1𝑥 − 𝑟2𝑦 = 0 (8)

−𝑤𝑧 + 𝑒1𝑥𝑧1 + 𝑄1𝑥 + 𝑒2𝑦𝑧1 + 𝑄2𝑦 − 𝑟3𝑧 = 0 (9)

From (7) we have

𝑧 = [𝜆1 (1 − 𝑥) − 𝜎1𝑦 − 𝑟1] (1 + 𝑄1𝑥)𝑃1 (10)

From (8) we have𝑧 = [𝜆2 (1 − 𝑦) − 𝜎2𝑥 − 𝑟2] (1 + 𝑄2𝑦)𝑃2 (11)

From (8) and (9) we have𝑧 = [𝜆2 (1 − 𝑦) − 𝜎2𝑥 − 𝑟2 + 𝑤 + 𝑟3] (1 + 𝑄2𝑦) − 𝑒2𝑦𝑃2− 𝑒1𝑥 (1 + 𝑄1𝑦)𝑃2 (1 + 𝑄1𝑥
(12)

From (10) and (11) we have𝑓 (𝑥, 𝑦)
= [(𝑤 + 𝑟3) (1 + 𝑄2𝑦) − 𝑒2𝑦] (1 + 𝑄1𝑥) − 𝑒1𝑥 (1 + 𝑄2𝑦)𝑃2 (1 + 𝑄1𝑥) (13)

and from (10) and (12) we get𝑔 (𝑥, 𝑦)
= [𝜆2 (1 − 𝑦) − 𝜎2𝑥 − 𝑟2 + 𝑤 + 𝑟3] (1 + 𝑄2𝑦) − 𝑒2𝑦𝑃2− 𝑒1𝑥 (1 + 𝑄1𝑦)𝑃2 (1 + 𝑄1𝑥− [𝜆1 (1 − 𝑥) − 𝜎1𝑦 − 𝑟1] (1 + 𝑄1𝑥)𝑃1

(14)

Equations (13) and (14) are two functions of 𝑥 and 𝑦. To prove
the existence of 𝑃6(𝑥∗, 𝑦∗, 𝑧∗), the conditions under which𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) meet in the interior of the positive (𝑥, 𝑦)
plane at the point (𝑥∗, 𝑦∗) are found. Now the values of 𝑥∗,𝑦∗ and 𝑧∗ can be obtained from (7), then from (9) we observe
that, as 𝑥 → 0, 𝑦 tends to 𝑦�푓. 𝑦�푓 is the value of 𝑦 at which
the function 𝑓(𝑥, 𝑦) would cut the 𝑦 axis in the (𝑥, 𝑦) plane.
So 𝑦�푓 is given by 𝑦�푓 = 𝑤 + 𝑟3𝑒2 − 𝑄2𝑤 − 𝑄2𝑟3 (15)

We notice that 𝑦�푓 is the same as 𝑦 of 𝑃5(0, 𝑦∗, 𝑧∗). From (8),
as 𝑥 → 0, y tends to 𝑦�푔 given by

𝑦�푔 = −𝐷2 + √𝐷22 − 4𝐷1𝐷32𝐷1 (16)

where𝐷1 = −𝜆2𝑄2𝑃2𝐷2 = −𝜆2 + 𝜆2𝑄2 − 𝜎2𝑟2 + 𝑤𝑄2 + 𝑟3𝑄2 − 𝑒2𝑃2 + 𝜎1𝑃1𝐷3 = 𝑃1 (𝑤 + 𝑟3 − 𝑟2 + 𝜆2 + 𝑃2 (𝑟1 − 𝜆2𝑃1𝑃2
(17)

𝑦�푓 and 𝑦�푔 are the points at which the functions 𝑓(𝑥, 𝑦) and𝑔(𝑥, 𝑦) would cut the y-axis in the (𝑥, 𝑦) plane, respectively.
Also from (13), 𝑑𝑦/𝑑𝑥 = −(𝜕𝑓/𝜕𝑥)/(𝜕𝑓/𝜕𝑦) where
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𝜕𝑓𝜕𝑥 = 𝑃2 (1 + 𝑄1) [((𝑤 + 𝑟3) (1 + 𝑄2𝑦) − 𝑒2𝑦)𝑄1]𝑃22 (1 + 𝑄1𝑥)2 − 𝑃2𝑄1 [((𝑤 + 𝑟3) (1 + 𝑄2𝑦) − 𝑒2𝑦) (1 + 𝑄1𝑥 − 𝑒1𝑥 (1 + 𝑄2𝑦)]𝑃22 (1 + 𝑄1𝑥)2 (18)

and 𝜕𝑓𝜕𝑦 = (𝑤𝑄2 + 𝑟3𝑄2 − 𝑒2) (1 + 𝑄1𝑥) − 𝑒2𝑄2𝑥𝑃2 (1 + 𝑄1𝑥) (19)

We note that 𝑑𝑦/𝑑𝑥 > 0 if 𝜕𝑓/𝜕𝑥 > 0 and 𝜕𝑓/𝜕𝑦 < 0
and this requires 𝑟3 > −𝑤 and 𝜆1 > 𝑟1. Similarly 𝑑𝑦/𝑑𝑥 =−(𝜕𝑔/𝜕𝑥)/(𝜕𝑔/𝜕𝑦) from (14) where𝜕𝑔𝜕𝑥 = −𝜎2 (1 + 𝑄2𝑦)𝑃2 + 𝑒1 (1 + 𝑄2𝑦𝑃2 (1 + 𝑄1𝑥)2

− 𝑄1 (𝜆1 − 𝜎1𝑦 − 𝑟1) − 𝜆1 − 2𝜆1𝑄1𝑥𝑃1
(20)

and 𝜕𝑔𝜕𝑦 = (𝑤 + 𝑟3 − 𝑟2 − 𝜎2𝑥)𝑄2𝑃2 − 𝑒1𝑄2𝑥𝑃2 (1 + 𝑄1𝑥) (21)

We also note that 𝑑𝑦/𝑑𝑥 < 0 if 𝜕𝑔/𝜕𝑥 < 0 and 𝜕𝑔/𝜕𝑦 < 0
and this requires 𝑟3 > −𝑤 and 𝑟3 > 𝑟2. Since for 𝑓(𝑥, 𝑦), we
have 𝑑𝑦/𝑑𝑥 > 0 and for 𝑔(𝑥.𝑦), we have 𝑑𝑦/𝑑𝑥 < 0, then𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) will meet if 𝑦�푓 < 𝑦�푔. We therefore state
the existence of the positive equilibrium point 𝑃6(𝑥∗, 𝑦∗, 𝑧∗)
in the following theorem.

Theorem 1. �e positive equilibrium point 𝑃6(𝑥∗, 𝑦∗, 𝑧∗) will
exist if the following conditions are satisfied:𝑟3 > 𝑤,𝜆1 > 𝑟1,𝑟3 > 𝑟2,𝑦�푓 < 𝑦�푔

(22)

where 𝑦�푓 and 𝑦�푔 are as defined in (15) and (16), respectively.

In terms of original parameter, 𝜆1 > 𝑟1 implies that𝜆1 > 𝐸1𝑞1; i.e., the growth rate of cichlid fishes must be
greater than the harvesting effort imparted. Condition 𝑟3 > 𝑟2
gives 𝑞3𝐸3 > 𝑞2𝐸2. That is, the harvesting rate of Nile perch
should be greater than the harvesting rate of tilapia fishes.
For economic purpose the condition 𝑟3 > 𝑤 needs to be
satisfied which implies that the rate at which the Nile perch is
harvested must be greater than its death rate.

2.3. Local Stability of Equilibrium Points. To analyse the local
stability of the equilibrium point we consider the Jacobian
matrix;

𝐽 (𝑃�푖) = (
(

𝐴∗∗ 𝜎1𝑥 −𝑃1𝑥1 + 𝑄1𝑥−𝜎1𝑦 𝐵∗∗ −𝑃2𝑦1 + 𝑄2𝑦𝑒1𝑧(1 + 𝑄1𝑥)2 𝑒2𝑧(1 + 𝑄2𝑦)2 𝐶∗∗ )
)

(23)

where

𝐴∗∗ = 𝜆1 − 2𝜆1𝑥 − 𝜎1𝑦 − 𝑃1𝑧(1 + 𝑄1𝑥)2 − 𝑟1,
𝐵∗∗ = 𝜆2 − 2𝜆2𝑦 − 𝜎2𝑥 − 𝑃2𝑧(1 + 𝑄2𝑦)2 − 𝑟2
𝐶∗∗ = −𝑤 + 𝑒1𝑥1 + 𝑄1𝑥 + 𝑒2𝑦1 + 𝑄2𝑦 − 𝑟3

(24)

(i) 𝑃0(0, 0, 0), the Jacobianmatrix evaluated at 𝐽(𝑃0) gives
the eigenvalues, 𝜆1 −𝑟1, 𝜆2 −𝑟2, and −(𝑤+𝑟3). We see
that (𝜆2 −𝑟2) > 0 and (𝜆1 −𝑟1) > 0 are always positive
and so 𝑃0(0, 0, 0) is unstable.

(ii) 𝑃1(𝑥∗, 0, 0) = ((𝜆1 − 𝑟1)/𝜆1, 0, 0).
The Jacobian matrix (23) is evaluated at 𝑃1 with the
following eigenvalues:

𝐿1 = −𝜆1 − 𝑟1,𝐿2 = 𝜆2 − 𝜎2 (𝜆1 − 𝑟1)𝜆1 − 𝑃2 (𝜆1 − 𝑟1)𝜆1 − 𝑟2,
𝐿3 = −𝑤 − 𝑃1 (𝜆1 − 𝑟1)𝜆1 + 𝑄1 (𝜆1 − 𝑟1) − 𝑟3.

(25)

The eigenvalues are negative if 𝜆1 > 𝑟1 and 𝜆2 > (𝜎2 −𝑃2)(𝜆1 − 𝑟1)/𝜆1.
Hence, the equilibrium point 𝑃1(𝑥, 0, 0) is locally
asymptotically stable if the following conditions hold:𝜆1 > 𝑟1, 𝑄2 > 𝑃2, and 𝜆2 > (𝑄2 − 𝑃2)(𝜆1 − 𝑟1)/𝜆1.
The condition 𝜆1 > 𝑟1 implies 𝐸1 < 𝜆1. For the local
stability of𝑃1(𝑥, 0, 0),𝐸1, the harvesting rate of cichlid
fishes must be less than their intrinsic growth rate.
Other inequalities show parameters that are vital for
the local stability of 𝑃1(𝑥, 0, 0).

(iii) 𝑃2(0, 𝑦∗, 0) = (0, (𝜆2 − 𝑟2)/𝜆2, 0).
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The Jacobian matrix (23) is evaluated at 𝑃2 and the
following eigenvalues obtained:𝐿1 = 𝜆1 − 𝜎1 (𝜆2 − 𝑟2𝜆2 − 𝑟1,𝐿2 = 𝑟2 − 𝜆2,𝐿3 = −𝑤 − 𝑃2 (𝜆2 − 𝑟2)𝜆2 + 𝑄2 (𝜆2 − 𝑟2) − 𝑟3.

(26)

The eigenvalues above are negative if 𝜆2 > 𝑟2.
Hence, the equilibrium point 𝑃1(𝑥, 0, 0) is locally
asymptotically stable if conditions 𝜆2 > 𝑟2 hold. The
condition 𝜆2 > 𝑟2 implies 𝐸2 < 𝜆2. For the local
stability of 𝑃1(𝑥, 0, 0), 𝐸2, the harvesting rate of tilapia
fishes must be less than their intrinsic growth rate.

(iv) 𝑃3(𝑥∗, 𝑦∗, 0) = ((𝜆2(𝜆1 − 𝑟1) − 𝜎1(𝜆2 − 𝑟2))/(𝜆1𝜆2 −𝜎1𝜎2), (𝜆1(𝜆2 − 𝑟2) + 𝜎2(𝑟1 − 𝜆1))/(𝜆1𝜆2 − 𝜎1𝜎2), 0).
The eigenvalues of 𝐽(𝑃3) are obtained by solving the
characteristic equation;𝜆3 − (𝐴∗ + 𝐸∗ + 𝐺∗) 𝜆2+ (𝐴∗𝐺∗ + 𝐸∗𝐺∗ + 𝐴∗𝐸∗ − 𝐷∗𝐵∗) 𝜆+ 𝐺∗𝐷∗𝐵∗ − 𝐺∗𝐴∗𝐸∗ = 0 (27)

where 𝐴∗ = 𝜆1 − 2𝜆1𝑥∗ − 𝜎1𝑦∗ − 𝑟1, 𝐵∗ = −𝜎1𝑦∗,𝐶∗ = −𝑃1𝑥∗/(1 + 𝑄1𝑥∗), 𝐷∗ = −𝜎1𝑦∗, 𝐸∗ = 𝜆2 −2𝜆2𝑦∗ −𝜎2𝑥∗ − 𝑟2, 𝐹∗ = −𝑃2𝑦∗/(1 +𝑄2𝑦∗), and 𝐺∗ =−𝑤 + 𝑒1𝑥∗/(1 + 𝑄1𝑥∗) + 𝑒2𝑦∗/(1 + 𝑄2𝑦∗) − 𝑟3.
This can be expressed in form of𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3 = 0 (28)

By Routh-Hurwitz criteria (Murray, 1989), the 𝜆�耠𝑠 are
negative if 𝑎1 > 0, 𝑎3 > 0, 𝑎1𝑎2 − 𝑎3 > 0.

(v) 𝑃4(𝑥∗, 0, 𝑧∗) = 𝑃4((𝑤 + 𝑟3)/(𝑒1 − 𝑤𝑄1 −𝑟3𝑄1), 0, −𝜆1𝑄1(𝑤+𝑟3)2/𝑃1(𝑒1−𝑤𝑄1−𝑟3𝑄1)2+(𝜆1𝑄1−𝑟1𝑄1−𝜆1)(𝑤+𝑟3)/𝑃1(𝑒1−𝑤𝑄1−𝑟3𝑄1)+(𝜆1−𝑟1)/𝑃1).
The eigenvalues 𝐽(𝑃4) are obtained by solving the
characteristics equation;𝐿3 − (𝐴∗2 + 𝐵∗2 + 𝐶∗2 ) 𝐿2
+ [𝐴∗2 (𝐵∗2 + 𝐶∗2 ) + 𝐵∗2𝐶∗2 + 𝑃1𝑒1𝑥∗𝑧∗(1 + 𝑄1𝑥∗)3]𝐿
− 𝐴∗2𝐵∗2𝐶∗2 − 𝐵∗2𝑃1𝑒1𝑥∗𝑧∗(1 + 𝑄1𝑥∗)∗ = 0

(29)

where𝐴∗2 = 𝜆1 − 𝑟1 − 2𝜆1𝑥∗ − 𝑃1𝑧∗(1 + 𝑄1𝑥∗)2 ,𝐵∗2 = 𝜆2 − 𝜎2𝑥∗ − 𝑃2𝑧∗ − 𝑟2,𝐶∗2 = −𝑤 + 𝑒1𝑥∗1 + 𝑄1𝑥∗ − 𝑟3.
(30)

The characteristic equation is in the form𝐿3 + 𝑎1𝐿2 + 𝑎2𝐿 + 𝑎3 = 0 (31)

where 𝑎1 = −(𝐴∗2 + 𝐵∗2 + 𝐶∗2 ), 𝑎2 = 𝐴∗2(𝐵∗2 +𝐶∗2 ) + 𝐵∗2𝐶∗2 + 𝑃1𝑒1𝑥∗𝑧∗/(1 + 𝑄1𝑥∗)3, and 𝑎3 =−𝐴∗2𝐵∗2𝐶∗2 − 𝐵∗2𝑃1𝑒1𝑥∗𝑧∗/(1 + 𝑄1𝑥∗)∗. By Rouths
stability criterion, the equilibrium point 𝑃4 is stable if
(i) 𝑎1 > 0, 𝑎2 > 0, and 𝑎3 > 0; (ii) 𝑎1𝑎2 > 𝑎3. Otherwise
it is unstable.

(vi) 𝑃5(0, 𝑦∗, 𝑧∗) = 𝑃5((𝑤 + 𝑟3)/(𝑒2 − 𝑤𝑄2 −𝑟3𝑄2), 0, −𝜆2𝑄2(𝑤+𝑟3)2/𝑃2(𝑒2−𝑤𝑄2−𝑟3𝑄2)2+(𝜆2𝑄2−𝑟2𝑄2−𝜆2)(𝑤+𝑟3)/𝑃2(𝑒2−𝑤𝑄2−𝑟3𝑄2)+(𝜆2−𝑟2)/𝑃2).
The eigenvalues evaluated at 𝐽(𝑃5) are obtained by
solving the characteristic equation𝐿3 − (𝐴∗3 + 𝐵∗3 + 𝐶∗3 ) 𝐿2
+ [𝐵∗3𝐶∗3 + 𝐴∗3 (𝐵∗3 + 𝐶∗3 ) + 𝑃2𝑒2𝑧∗𝑦∗(1 + 𝑄2𝑦∗)3]𝐿
− 𝐴∗3𝐵∗3𝐶∗3 − 𝑃2𝑒2𝑧∗𝑦∗(1 + 𝑄2𝑦∗)3 = 0

(32)

where 𝐴∗3 = 𝜆1 − 𝜎1𝑦∗ − 𝑃1𝑧∗ − 𝑟1, 𝐵∗3 = 𝜆2 − 𝑟2 −2𝜆2𝑦∗ − 𝑃2𝑧∗/(1 + 𝑄2𝑥∗)2, and 𝐶∗3 = −𝑤 + 𝑒2𝑦∗/(1 +𝑄2𝑦∗) − 𝑟3. The characteristic equation is in the form𝐿3 + 𝑎1𝐿2 + 𝑎2𝐿 + 𝑎3 = 0;
where 𝑎1 = −(𝐴∗3 + 𝐵∗3 + 𝐶∗3 ), 𝑎2 = 𝐵∗3𝐶∗3 + 𝐴∗3(𝐵∗3 +𝐶∗3 ) + 𝑃2𝑒2𝑧∗𝑦∗/(1 + 𝑄2𝑦∗)3, and 𝑎3 = −𝐴∗3𝐵∗3𝐶∗3 −𝑃2𝑒2𝑧∗𝑦∗/(1 + 𝑄2𝑦∗)3. By Rouths stability criterion,
the equilibrium point 𝑃5 is stable if (i) 𝑎1 > 0, 𝑎2 > 0,
and 𝑎3 > 0 and (ii) 𝑎1𝑎2 > 𝑎3. Otherwise it is unstable.

2.4. Global Stability of the Coexistence Equilibrium Point𝑃6(𝑥∗, 𝑦∗, 𝑧∗). To analyse global stability of coexistence
equilibrium point, a suitable Lyapunov function is chosen,
from which conditions for the global asymptotic stability
of the coexistence point 𝑃6(𝑥∗, 𝑦∗, 𝑧∗) are derived. The
approach is based onwork byChaudhuri [13] andDubey [14].

Theorem 2. �e coexistence equilibrium point 𝑃6(𝑥∗, 𝑦∗, 𝑧∗)
is globally asymptotically stable if

(i) 𝜆1 > 0, 𝜆2 > 0, (ii) 𝑃1 > 𝑒1, 𝑃2 > 𝑒2, and (ii) 𝜆1𝜆2 >(𝜎1 + 𝜎2)2.
Proof. Consider the following Lyapunov function:

𝑉 (𝑥, 𝑦, 𝑧) = (𝑥 − 𝑥∗) − 𝑥∗ log( 𝑥𝑥∗ ) + (𝑦 − 𝑦∗)
− 𝑦∗ log( 𝑦𝑦∗) + (𝑧 − 𝑧∗)
− 𝑧∗ log( 𝑧𝑧∗ )

(33)



6 Journal of Applied Mathematics

Simplifying the above Lyapunov function,

𝑉 (𝑥, 𝑦, 𝑧) = 𝑥 − 𝑥∗ − (𝑥∗ log𝑥 − 𝑥∗ log𝑥∗) + 𝑦− 𝑦∗ − (𝑦∗ log𝑦 − 𝑦∗ log𝑦∗) + 𝑧− 𝑧∗ − (𝑧∗ log 𝑧 − 𝑧∗ log 𝑧∗)𝑉 (𝑥, 𝑦, 𝑧) = 𝑥 − 𝑥∗ − 𝑥∗ log𝑥 + 𝑥∗ log𝑥∗ + 𝑦 − 𝑦∗− 𝑦∗ log𝑦 + 𝑦∗ log𝑦∗ + 𝑧 − 𝑧∗− 𝑧∗ log 𝑧 + 𝑧∗ log 𝑧∗
(34)

where 𝜕𝑉/𝜕𝑥 = 1 − 𝑥∗/𝑥 = (𝑥 − 𝑥∗)/𝑥, 𝜕𝑉/𝜕𝑦 = 1 − 𝑦∗/𝑦 =(𝑦 − 𝑦∗)/𝑦,and 𝜕𝑉/𝜕𝑧 = 1 − 𝑧∗/𝑧 = (𝑧 − 𝑧∗)/𝑧.
Differentiating 𝑉 with respect to time, i.e.,

𝑑𝑉𝑑𝑡 = 𝜕𝑉𝜕𝑥 𝑑𝑥𝑑𝑡 + 𝜕𝑉𝜕𝑦 𝑑𝑦𝑑𝑡 + 𝜕𝑉𝜕𝑧 𝑑𝑧𝑑𝑡𝑑𝑉𝑑𝑡 = 𝑥 − 𝑥∗𝑥 [𝜆1𝑥 (1 − 𝑥) − 𝜎1𝑥𝑦 − 𝑃1𝑥𝑧1 + 𝑄1𝑥− 𝑟1𝑥] + 𝑦 − 𝑦∗𝑦 [𝜆2𝑦 (1 − 𝑥) − 𝜎2𝑥𝑦 − 𝑃2𝑥𝑧1 + 𝑄1𝑥− 𝑟2𝑦] + 𝑧 − 𝑧∗𝑧 [−𝑤𝑧 + 𝑒1𝑥𝑧1 + 𝑄1𝑥 + 𝑒2𝑦𝑧1 + 𝑄2𝑦− 𝑟3𝑧]𝑑𝑉𝑑𝑡 = (𝑥 − 𝑥∗) [𝜆1 (1 − 𝑥) − 𝜎1𝑦 − 𝑃1𝑧1 + 𝑄1𝑥 − 𝑟1]
+ (𝑦 − 𝑦∗) [𝜆2 (1 − 𝑥) − 𝜎2𝑥 − 𝑃2𝑧1 + 𝑄1𝑥 − 𝑟2]
+ (𝑧 − 𝑧∗) [−𝑤 + 𝑒1𝑥1 + 𝑄1𝑥 + 𝑒2𝑦1 + 𝑄2𝑦 − 𝑟3]𝑑𝑉𝑑𝑡 = (𝑥 − 𝑥∗) [𝜆1 − 𝜆1𝑥 − 𝜎1𝑦 − 𝑃1𝑧1 + 𝑄1𝑥 − 𝑟1 − 𝜆1
− +𝜆1𝑥∗ + 𝜎1𝑦∗ + 𝑃1𝑧∗1 + 𝑄1𝑥∗ + 𝑟1] + (𝑦 − 𝑦∗) [𝜆2
− 𝜆2𝑦 − 𝜎2𝑥 − 𝑃2𝑧1 + 𝑄2𝑦 − 𝑟2 − 𝜆2 + 𝜆2𝑦∗ + 𝜎2𝑥∗
+ 𝑃2𝑧∗1 + 𝑄2𝑦∗ + 𝑟2] + (𝑧 − 𝑧∗) [−𝑤 + 𝑒1𝑥1 + 𝑄1𝑥+ 𝑒2𝑦1 + 𝑄2𝑦 − 𝑟3 + 𝑤 − 𝑒1𝑥∗1 + 𝑄1𝑥∗ − 𝑒2𝑦∗1 + 𝑄2𝑦∗+ 𝑟3]

𝑑𝑉𝑑𝑡 = (𝑥 − 𝑥∗) [𝜆1 (𝑥∗ − 𝑥) + 𝜎1 (𝑍∗ − 𝑧)] + (𝑦
− 𝑦∗) [𝜆2 (𝑦2 − 𝑦) + 𝜎2 (𝑥∗ − 𝑥) + 𝑃2 (𝑧∗ − 𝑧)1 + 𝑄2𝑦 ]
+ (𝑧∗ − 𝑧) [𝑒1 (𝑥 − 𝑥∗1 + 𝑄1𝑥 + 𝑒2 (𝑦 − 𝑦∗)1 + 𝑄2𝑦 ]

(35)

which simplifies to𝑑𝑉𝑑𝑡 = − (𝑥 − 𝑥∗)2 𝜆1 − (𝑥 − 𝑥∗) (𝑦 − 𝑦∗) (𝜎1 − 𝜎2)
− (𝑥 − 𝑥∗) (𝑧 − 𝑧∗) ( 𝑃1 − 𝑒11 + 𝑄1𝑥)
− (𝑦 − 𝑦∗)2 𝜆2− (𝑦 − 𝑦∗) (𝑧 − 𝑧∗) ( 𝑃2 − 𝑒21 + 𝑄2𝑦)

(36)

Thus, 𝑑𝑉/𝑑𝑡 is a quadratic form which can be expressed as𝑑𝑉/𝑑𝑡 = −𝑋�푇𝐴𝑋, where𝑋�푇 = (𝑥 − 𝑥∗, 𝑦 − 𝑦∗, 𝑧 − 𝑧∗) and A
is symmetric matrix given by

𝐴 = (𝑎11 𝑎12 𝑎13𝑎12 𝑎22 𝑎23𝑎13 𝑎23 𝑎33) (37)

with 𝑎11 = 𝜆1, 𝑎12 = 𝜎1−𝜎2, 𝑎13 = (𝑃1−𝑒1)/(1+𝑄1𝑥), 𝑎22 = 𝜆2,𝑎23 = (𝑃2 − 𝑒2)/(1 +𝑄2𝑦), and 𝑎33 = 0. We note that the point𝑃6(𝑥∗, 𝑦∗, 𝑧∗) is globally asymptotically stable if 𝑑𝑉/𝑑𝑡 < 0;
that is, the matrix A is positive definite Chaudhuri [13]. Now
the matrix A is positive if 𝑎11 > 0, 𝑎13 = 0, 𝑎12 > 0, 𝑎22 > 0,𝑎23 = 0, and 𝑎11𝑎22 − 𝑎212 > 0. 𝑎11 > 0 gives 𝜆1 > 0, 𝑎13 = 0
gives 𝑃1 = 𝑒1, 𝑎12 > 0 gives 𝜎1 > 𝜎2, 𝑎22 > 0 gives 𝜆2 > 0, and𝑎11𝑎22 − 𝑎212 > 0 gives 𝜆1𝜆2 > (𝜎1 + 𝜎2)2. This completes the
proof.

2.5. Bioeconomic Equilibrium. The term bionomic equilib-
rium is an amalgamation of the concepts of biological
equilibrium as well as economic equilibrium Kar [8]. From
system (2), a biological equilibrium is given by 𝑑𝑥/𝑑𝑡 =𝑑𝑦/𝑑𝑡 = 𝑑𝑧/𝑑𝑡 = 0. The economic equilibrium is said to
be achieved when the total revenue obtained by selling the
harvested biomass (TR) equals the total cost for the effort
devoted to harvesting (TC).

Let 𝑐1 be the fishing cost per unit effort for cichlid fishes,𝑐2 the fishing cost per unit effort for tilapia fishes, 𝑐3 the
fishing cost per unit effort for Nile perch, 𝑝1 the price per
unit biomass of cichlid fishes, 𝑝2 the price per unit biomass of
tilapia fishes, and 𝑝3 the price per unit biomass of Nile perch;𝑞1, 𝑞2, and 𝑞3 are catchability coefficients of cichlid fishes,
tilapia fishes, and Nile perch, respectively.

Then we have 𝜋1 = (𝑝1𝑞1𝑥 − 𝑐1)𝐸1, 𝜋2 = (𝑝2𝑞2𝑦 − 𝑐2)𝐸2,
and 𝜋3 = (𝑝3𝑞3𝑥 − 𝑐3)𝐸3.𝜋1, 𝜋2, and 𝜋3 are the economic rent (net revenue) of
cichlid fishes, tilapia fishes, and Nile perch, respectively.



Journal of Applied Mathematics 7

Therefore, the economic rent (net revenue) at any time is
given by 𝜋 = 𝜋1 + 𝜋2 + 𝜋3, which is𝜋 = (𝑝1𝑞1𝑥 − 𝑐1) 𝐸1 + (𝑝2𝑞2𝑦 − 𝑐2) 𝐸2+ (𝑝3𝑞3𝑧 − 𝑐3) 𝐸3 (38)

Then 𝑃(𝑥∞, 𝑦∞, 𝑧∞, 𝐸1∞, 𝐸2∞, 𝐸3∞) is the bioeconomic
equilibrium where 𝑥∞, 𝑦∞, 𝑧∞, 𝐸1∞, 𝐸2∞, and 𝐸3∞ are the
bioeconomic values of cichlid fishes, tilapia fishes, Nile perch,
harvesting effort of cichlid fishes, harvesting effort of tilapia
fishes, and harvesting effort of Nile perch, respectively, and it
is given by the simultaneous equation:

𝜆1 (1 − 𝑥) − 𝜎1𝑦 − 𝑃1𝑧1 + 𝑄1𝑥 − 𝑞1𝐸1 = 0 (39)

𝜆2 (1 − 𝑦) − 𝜎2𝑥 − 𝑃2𝑧1 + 𝑄2𝑦 − 𝑞2𝐸2 = 0 (40)

− 𝑤 + 𝑒1𝑥1 + 𝑄1𝑥 + 𝑒2𝑦1 + 𝑄2𝑦 − 𝑞3𝐸3 = 0 (41)𝜋 = (𝑝1𝑞1𝑥 − 𝑐1) 𝐸1 + (𝑝2𝑞2𝑦 − 𝑐2) 𝐸2+ (𝑝3𝑞3𝑧 − 𝑐3) 𝐸3 = 0 (42)

In order to determine the bioeconomic equilibrium, we now
consider the following cases.

Case I. If 𝑐1 > 𝑝1𝑞1, that is, the fishing cost per unit effort
for cichlid fishes is greater than the revenue in the cichlid
fish fishery, then fishermen will be in loss and naturally they
would withdraw their participation from cichlid fish and the
fisherywill be closed (𝐸1 = 0). Only tilapia fish andNile perch
fishery remain operational (i.e., 𝑐2 < 𝑝2𝑞2𝑦 and 𝑐3 < 𝑝3𝑞3𝑧).
Now we have 𝑦∞ = 𝑐2/𝑝2𝑞2 and 𝑧∞ = 𝑐3/𝑝3𝑞3. From (39)
when 𝐸1 = 0, we have

𝜆1 − 𝜆1𝑥∞ − 𝜎1𝑦∞ − 𝑃1𝑧∞1 + 𝑄1𝑥∞ = 0𝜆1 (1 + 𝑄1𝑥∞) − 𝜆1𝑥∞ (1 + 𝑄1𝑥∞)− 𝜎1𝑦∞ (1 + 𝑄1𝑥∞ − 𝑃1𝑧∞ = 0𝜆1 + 𝜆1𝑄1𝑥∞) − 𝜆1𝑥∞ + 𝜆1𝑄1𝑥2∞ − 𝜎1𝑦∞+ 𝜎1𝑄1𝑥∞𝑦∞ − 𝑃1𝑧∞ = 0
(43)

− 𝜆1𝑄1𝑥2∞ + (𝜆1𝑄1 − 𝜆1 − 𝜎1𝑄1𝑦∞) 𝑥∞ + 𝜆1− 𝜎1𝑦∞ − 𝑃1𝑧∞ = 0 (44)

Since 𝑦∞ = 𝑐2/𝑝2𝑞2 and 𝑧∞ = 𝑐3/𝑝3𝑞3, then (44) can be
written in quadratic form as

𝜆1𝑄1𝑥2∞ − (𝜆1𝑄1 − 𝜆1 − 𝜎1𝑄1𝑐2𝑝2𝑞2 )𝑥∞ + 𝜆1 − 𝜎1𝑐2𝑝2𝑞2− 𝑃1𝑐3𝑝3𝑞3 = 0 (45)

Therefore

𝑥∞1,2 = −𝑅2 ± √𝑅22 − 4𝑅1𝑅22𝑅3 (46)

where 𝑅1 = 𝜆1𝑄1, 𝑅2 = (𝜆1𝑄1𝑝2𝑞2 − 𝜆1𝑝2𝑞2 − 𝜎1𝑄1𝑐2)/𝑝2𝑞2,𝑅3 = 𝜆1 − 𝜎1𝑐2/𝑝2𝑞2 − 𝑃1𝑐3/𝑝3𝑞3.
From (46),

𝐸1∞ = 𝜆2𝑞2 (1 − 𝑦∞) − 𝜎2𝑞2 𝑥∞ − 𝑃2𝑧∞𝑞2 (1 + 𝑄2𝑦∞) (47)

Therefore, 𝐸1∞ > 0 if
𝜆2𝑞2𝑝2 − 𝜆2𝑐2 − 𝜎2𝑝2𝑞2𝑥∞𝑝2𝑞22 > 𝑃2𝑝2𝑞2𝑐3𝑝3𝑞3𝑝2𝑞2 − 𝑄2𝑝3𝑞3𝑐2 (48)

Also,

𝐸2∞ = −𝑤𝑧𝑞3 + 𝑒1𝑥𝑧𝑞3 + 𝑄1𝑞3𝑥 + 𝑒2𝑦𝑧𝑞3 + 𝑄2𝑞3𝑦= − 𝑤𝑐3𝑝3𝑞23 + 𝑒1𝑐3𝑥∞𝑝3𝑞23 + 𝑄1𝑝3𝑞23𝑥∞+ 𝑒2𝑐2𝑐3𝑝2𝑞2𝑝22𝑞22𝑝3𝑞23 + 𝑄2𝑝2𝑞2𝑝3𝑞23𝑐2
(49)

Thus, 𝐸2∞ > 0 if
𝑒1𝑐3𝑥∞ (𝑝22𝑞22𝑝3𝑞23 + 𝑄2𝑝2𝑞2𝑝3𝑞23𝑐2) + 𝑒2𝑐2𝑐3𝑝2𝑞2 (𝑝3𝑞23 + 𝑄1𝑝3𝑞23𝑥∞)(𝑝3𝑞23 − 𝑄1𝑝3q23𝑥∞) (𝑝22𝑞22𝑞23𝑝3 + 𝑄2𝑝2𝑞2𝑝3𝑞23𝑐2) > 𝑤𝑐3𝑝3𝑞23 (50)

Therefore, the bioeconomic equilibrium exists if conditions
(48) and (50) hold.

Case II. If 𝑐2 > 𝑝2𝑞2, that is, the fishing cost per unit effort
for tilapia fishes is greater than the revenue in the tilapia
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fish fishery, then fishermen will be in loss and naturally, they
would withdraw their participation from tilapia fish fishery
and the fishery will be closed (𝐸2 = 0). Only cichlid fishes and
Nile perch fishery remain operational (i.e., 𝑐1 < 𝑝1𝑞1𝑥 and𝑐3 < 𝑝3𝑞3𝑧). Now we have 𝑥∞ = 𝑐1/𝑝1𝑞1 and 𝑧∞ = 𝑐3/𝑝3𝑞3.
From (46) when 𝐸2 = 0, we have

𝜆2 − 𝜆1𝑦∞ − 𝜎2𝑥∞ − 𝑃2𝑧∞1 + 𝑄1𝑦∞ = 0
𝜆2 (1 + 𝑄2𝑦∞) − 𝜆2𝑦∞ (1 + 𝑄2𝑦∞)− 𝜎2𝑥∞ (1 + 𝑄2𝑦∞ − 𝑃2𝑧∞ = 0𝜆2 + 𝜆2𝑄2𝑦∞) − 𝜆2𝑦∞ + 𝜆2𝑄2𝑦2∞ − 𝜎2𝑥∞+ 𝜎2𝑄2𝑥∞𝑦∞ − 𝑃2𝑧∞ = 0

(51)

− 𝜆2𝑄2𝑦2∞ + (𝜆2𝑄2 − 𝜆2 − 𝜎2𝑄2𝑥∞) 𝑦∞ + 𝜆2− 𝜎2𝑥∞ − 𝑃2𝑧∞ = 0 (52)

Since 𝑥∞ = 𝑐1/𝑝1𝑞1 and 𝑧∞ = 𝑐3/𝑝3𝑞3, then (52) can be
written in quadratic form as

𝜆2𝑄2𝑦2∞ − (𝜆2𝑄2 − 𝜆2 − 𝜎2𝑄2𝑐1𝑝1𝑞1 )𝑦∞ + 𝜆1 − 𝜎2𝑐1𝑝1𝑞1− 𝑃2𝑐3𝑝3𝑞3 = 0 (53)

Therefore

𝑦∞ = −𝑆2 ± √𝑆22 − 4𝑆1𝑆22𝑆3 (54)

where 𝑆1 = 𝜆2𝑄2𝑆2 = 𝜆2𝑄2𝑝1𝑞1 − 𝜆2𝑝1𝑞1 − 𝜎2𝑄2𝑐1𝑝1𝑞1𝑆3 = 𝜆2 − 𝜎2𝑐1𝑝1𝑞1 − 𝑃2𝑐3𝑝3𝑞3
(55)

From (39),

𝜆1 (1 − 𝑥∞) − 𝜎1𝑦∞ − 𝑃1𝑧∞1 + 𝑄1𝑥∞ − 𝑞1𝐸1∞ = 0
𝐸1∞ = 𝜆1𝑞1 − 𝜆1𝑐1𝑝1𝑞21 − 𝜎1𝑦∞𝑞1 − 𝑃1𝑝1𝑞1𝑐3𝑝3𝑞3𝑝1𝑞1 − 𝑄1𝑝3𝑞3𝑐1 (56)

𝐸1∞ > 0 if𝜆1𝑞1𝑝1 − 𝜆1𝑐1 − 𝜎1𝑝1𝑞1𝑦∞𝑝1𝑞21 > 𝑃1𝑝1𝑞1𝑐3𝑝3𝑞3𝑝1𝑞1 − 𝑄1𝑝3𝑞3𝑐1 (57)

Also,

𝐸3∞ = −𝑤𝑧𝑞3 + 𝑒1𝑥𝑧𝑞3 + 𝑄1𝑞3𝑥 + 𝑒2𝑦𝑧𝑞3 + 𝑄2𝑞3𝑦= − 𝑤𝑐3𝑝3𝑞23 + 𝑒1𝑐3𝑦∞𝑝3𝑞23 + 𝑄2𝑝3𝑞23𝑦∞+ 𝑒2𝑐1𝑐3𝑝1𝑞1𝑝21𝑞21𝑝3𝑞23 + 𝑄1𝑝1𝑞1𝑝3𝑞23𝑐1
(58)

Thus, 𝐸2∞ > 0 if
𝑒2𝑐3𝑦∞ (𝑝21𝑞21𝑝3𝑞23 + 𝑄1𝑝1𝑞1𝑝3𝑞23𝑐1) + 𝑒2𝑐1𝑐3𝑝1𝑞1 (𝑝3𝑞23 + 𝑄2𝑝3𝑞23𝑦∞)(𝑝3𝑞23 − 𝑄2𝑝3𝑞23𝑦∞) (𝑝21𝑞21𝑞23𝑝3 + 𝑄1𝑝1𝑞1𝑝3𝑞23𝑐1) > 𝑤𝑐3𝑝3𝑞23 (59)

Therefore, the bioeconomic equilibrium exists if conditions
(57) and (59) hold.

Case III. If 𝑐3 > 𝑝3𝑞3, that is, the fishing cost per unit effort
for Nile perch is greater than the revenue in the Nile perch
fishery, then fishermen will be in loss and naturally, they
would withdraw their participation from Nile perch fishery
and the fishery will be closed. Only cichlid fish and tilapia fish
fishery remain operational (i.e., 𝑐1 < 𝑝1𝑞1𝑥 and 𝑐2 < 𝑝2𝑞2𝑧).
Now we have 𝑥∞ = 𝑐1/𝑝1𝑞1 and 𝑦∞ = 𝑐2/𝑝2𝑞2. Substituting𝑥∞ and 𝑦∞ in (44), we get

𝐸1∞ = 𝜆1 ( 1𝑞1 − 𝑐1𝑝1𝑞21)
− 𝜎1𝑐2 (𝑝1𝑞21 − 𝑄1𝑞1𝑐1) + 𝑃1𝑝1𝑞21𝑝2𝑞2𝑧∞𝑝2𝑞2𝑞1 (𝑝1𝑞21 − 𝑄1𝑞1𝑐1

(60)

Thus, 𝐸1∞ > 0 if
𝜆1 ( 1𝑞1 − 𝑐1𝑝1𝑞21)

> 𝜎1𝑐2 (𝑝1𝑞21 − 𝑄1𝑞1𝑐1) + 𝑃1𝑝1𝑞21𝑝2𝑞2𝑧∞𝑝2𝑞2𝑞1 (𝑝1𝑞21 − 𝑄1𝑞1𝑐1
(61)

Also,

𝐸2∞ = 𝜆1 ( 1𝑞1 − 𝑐2𝑝2𝑞22)
− 𝜎2𝑐1 (𝑝2𝑞22 − 𝑄2𝑞2𝑐2) + 𝑃2𝑝2𝑞22𝑝1𝑞1𝑧∞𝑝1𝑞1𝑞2 (𝑝2𝑞22 − 𝑄2𝑞2𝑐2

(62)
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Thus, 𝐸2∞ > 0 if
𝜆2 ( 1𝑞2 − 𝑐2𝑝2𝑞22)

> 𝜎2𝑐1 (𝑝2𝑞22 − 𝑄2𝑞2𝑐2) + 𝑃2𝑝2𝑞22𝑝1𝑞1𝑧∞𝑝1𝑞1𝑞2 (𝑝2𝑞22 − 𝑄2𝑞2𝑐2
(63)

Therefore, the bioeconomic equilibrium exists if conditions
(61) and (63) hold.

Case IV. If 𝑐1 > 𝑝1𝑞1𝑥, 𝑐2 > 𝑝2𝑞2𝑦 and 𝑐3 > 𝑝3𝑞3𝑧, then the
fishing cost is greater than revenues for all three species and
the whole fishery will be closed.

Case V. If 𝑐1 < 𝑝1𝑞1𝑥, 𝑐2 < 𝑝2𝑞2𝑦 and 𝑐3 < 𝑝3𝑞3𝑧, then the
fishing cost is less than revenues for all three species; that is,
the fishery is more profitable and hence it would attract more
fishermen and the whole fishery will be in operation. Nowwe
have 𝑥∞ = 𝑐1/𝑝1𝑞1, 𝑦∞ = 𝑐2/𝑝2𝑞2, and 𝑧∞ = 𝑐3/𝑝3𝑞3, then

𝐸1∞ = 𝜆1 ( 1𝑞1 − 𝑐1𝑝1𝑞21)
− 𝜎1𝑐2 (𝑝1𝑞21𝑝3𝑞3 − 𝑄1𝑝3𝑞3𝑞1𝑐1) + 𝑃1𝑝1𝑞1𝑐3𝑝2𝑞2𝑞1 (𝑝3𝑞3𝑃1𝑞21 − 𝑄1𝑝3𝑞3𝑞1𝑐1)

(64)

Thus, 𝐸1∞ > 0, if
𝜆1 ( 1𝑞1 − 𝑐1𝑝1𝑞21)

> 𝜎1𝑐2 (𝑝1𝑞21𝑝3𝑞3 − 𝑄1𝑝3𝑞3𝑞1𝑐1) + 𝑃1𝑝1𝑞1𝑐3𝑝2𝑞2𝑞1 (𝑃3q3𝑃1𝑞21 − 𝑄1𝑝3𝑞3𝑞1𝑐1)
(65)

And,

𝐸2∞ = 𝜆2 ( 1𝑞2 − 𝑐2𝑝2𝑞22)
− 𝜎2𝑐1 (𝑝2𝑞22𝑝3𝑞3 − 𝑄2𝑝3𝑞3𝑞2𝑐2) + 𝑃2𝑝2𝑞2𝑐3𝑝1𝑞1𝑞2 (𝑝3𝑞3𝑝2𝑞22 − 𝑄2𝑝3𝑞3𝑞2𝑐2)

(66)

Thus, 𝐸2∞ > 0,
𝜆2 ( 1𝑞2 − 𝑐2𝑝2𝑞22)

> 𝜎2𝑐1 (𝑝2𝑞22𝑝3𝑞3 − 𝑄2𝑝3𝑞3𝑞2𝑐2) + 𝑃2𝑝2𝑞2𝑐3𝑝1𝑞1𝑞2 (𝑃3𝑞3𝑝2𝑞22 − 𝑄2𝑝3𝑞3𝑞2𝑐2)
(67)

Also, 𝐸3∞ = − 𝑤𝑐3𝑝3𝑞3 + 𝑒1𝑐1𝑐3𝑝1𝑞1𝑝21𝑞21𝑝3𝑞3 + 𝑝3𝑞3𝑝1𝑞1𝑐1+ 𝑒2𝑐2𝑐3𝑝2𝑞2𝑝3𝑞3𝑝22𝑞22 − 𝑝3𝑞3𝑝2𝑞2𝑐2 (68)

Thus, 𝐸3∞ > 0 if
𝑒1𝑐1𝑐3𝑝1𝑞1 (𝑝3𝑞3𝑝22𝑞22 − 𝑝3𝑞3𝑝2𝑞2𝑐2) + 𝑒2𝑐2𝑐3𝑝2𝑞2 (𝑝21𝑞21𝑝3𝑞3 + 𝑝3𝑞3𝑝1𝑞1𝑐1)(𝑝21𝑞21𝑝3𝑞3 + 𝑝3𝑞3𝑝1𝑞1𝑐1) (𝑝3𝑞3𝑝22𝑞22 − 𝑝3𝑞3𝑝2𝑞2𝑐2) > 0 (69)

Thus, the nontrivial bioeconomic equilibrium point 𝑃∞(𝑥∞,𝑦∞, 𝑧∞, 𝐸1∞, 𝐸2∞, 𝐸3∞) exists if and only if conditions (65),
(67), and (69) hold together.

3. Results and Discussion

3.1. Numerical Results. The model system is simulated using
the inbuilt ODE solvers coded in Matlab programming
language and figures are plotted using parameter values
presented in Table 1.

Figure 1 presents the dynamics of the population inter-
action with respect to time. The figure indicates that cichlid
fishes population grows faster compared to other species.
The dynamics was also visualized in 3𝐷 as presented in
Figure 2. Figure 3 shows the impact in harvesting cichlid fish
population; it is observed that increasing harvesting effort
leads to decrease Nile perch population as well. In Figure 4
the same scenario happens when tilapia fish population

harvested tends also to decrease Nile perch population while
increasing harvesting effort in Nile perch population tends
to increase cichlid and tilapia fishes as presented in Figure 5.
Figure 6 presents the exponential growth rate of cichlid and
tilapia fishes in absence of Nile perch population.

3.2. Discussion. A mathematical model was proposed and
analysed to study the dynamics of a two-prey-one predator
system with harvesting aspects. The model was used to study
the ecological dynamics of the Nile perch-cichlid-tilapia
fishes prey-predator system of the lake Victoria fishery. The
harvesting rate was found to play a crucial role in stabilizing
the system. Figures 3 and 4 show that cichlid and tilapia fishes
tend to extinctionwhen the harvesting rates𝐸1 and𝐸2 exceed
their intrinsic growth rates 𝜆1 and 𝜆2. For sustainability
harvesting of cichlid and tilapia fishes their intrinsic growth
rates should be kept smaller. However, harvesting of the three
species at a rate much lower than their intrinsic growth rate
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Figure 1: Graph of prey 𝑥1 and 𝑥2 and predator 𝑥3 against time (in years). It shows the variation of population density with time.
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Figure 2: Graph of prey 𝑥1 and 𝑥2 and predator 𝑥3 against time (in years). The limit cycle shows that population density will slightly change
but not oscillate the boundary.

would not lead to collapse of the system.This result is similar
to one obtained by Chaudhuri and Kar [13] on the existence
conditions for the system they studied. In absence of the
predator, the two prey species can coexist and are stable if
the interspecific competition among them is maintained at
minimum level or negligible also if both prey species are
not harvested beyond its intrinsic growth rate. Numerical
analysis results indeed confirmed this as shown in Figure 6.

Theorem 1 showed that the three species would coexist
if cichlid and tilapia fishes were not harvested beyond their
intrinsic growth rates; the Nile perch converted the biomass
of cichlid and tilapia fishes into fertility at a rate greater than
the Nile perch’s natural mortality rate and the time it took

to handle the cichlid or tilapia fish. The findings of Dubey
and Upadhyay [14] indicated that the predator’s mortality
rate and food conversion coefficients played a crucial role
in determining the stability behaviour of the equilibrium
points.

In order for the bioeconomic equilibrium to exist, the
fishing cost per unity effort for all species, price per unity
biomass, catchability coefficient, harvesting effort, intrinsic
growth rate of prey species, and the mortality rate of predator
play a vital role. Hence for the bioeconomic equilibrium to
exist, the fishing cost per unity effort for all three species
should be less than the revenue in their fishery. Similar results
were also obtained by Ganguli and Kar [7] when they studied
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Figure 3: Variation of the fishes population with different harvesting efforts in cichlid 𝐸1 with fixed values of 𝐸2 and 𝐸3.
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Figure 4: The effect of Tilapia harvest with different values of 𝐸2 with fixed values of 𝐸1 and 𝐸3.
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Figure 5: The effect of Nile perch harvest with different values of 𝐸3 with fixed values of 𝐸1 and 𝐸2.
Table 1: Parameter Values of the model.

Parameter Value source𝜆1 2.07 [13]𝜆2 2.09 [13]𝐾1 200 [13]𝐾2 100 [13]𝛼12 0.001 [15]𝛼13 0.02 [15]𝛼21 0.002 [16]𝛼23 0.03 [16]𝛼31 1.5 [17]𝛽 0.1 [17]𝛾 0.2 [17]𝑞1 0.14 [17]𝑞2 0.13 [18]𝑞3 0.125 [18]𝑤 1 [17]

the optimal harvesting of a prey-predatormodel with variable
carrying capacity.

One of themajor observations fromnumerical simulation
results is that the predator population density increased
significantly when the harvesting rate of both prey species
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Figure 6: The interaction between cichlid and tilapia fishes in
absence of Nile perch.

decreased.This implies that a gradual increase in the number
of cichlid and tilapia fisheswould result in significant increase
in the number of Nile perch and vice versa, which would in
the long term lead the population density of the cichlid and
tilapia fishes to fall to a level lower than the original one. Kar
and Chaudhuri [16] also discovered that predator population
density can increase significantly when the harvesting rate of
prey species is decreased.
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4. Conclusion

We deduce from both analytical and numerical results that
if the harvesting rate of the cichlid and tilapia fishes exceeds
their intrinsic growth rate, the population of the cichlid,
tilapia fishes, and Nile perch would become extinct with
time. However, analytical and numerical results also show
that harvesting of the three species at a rate much lower than
their intrinsic growth rate would not lead to collapse of the
system. Thus, in order to use fish as a resource and produce
maximum economic benefit while maintaining sustainable
fishery species, the harvesting rate of species should never be
allowed to exceed their growth rate.
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