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A numerical simulation on a two-dimensional atmospheric diffusion equation of an air pollution measurementmodel is proposed.
	e considered area is separated into two parts that are an industrial zone and an urban zone. In this research, the air pollution
measurement by releasing the pollutant from multiple point sources above an industrial zone to the other area is simulated.
	e governing partial differential equation of air pollutant concentration is approximated by using a finite difference technique.
	e approximate solutions of the air pollutant concentration on both areas are compared. 	e air pollutant concentration levels
influenced by multiple point sources are also analyzed.

1. Introduction

A rapid growth of industrial sector can explain that air
pollution affects the health of human being who lives around
industrial areas. 	e air pollution has become a major
problem of human life and environment. 	e purpose of this
research was to study the air pollution assessment problem
in two adjacent zones: industrial and urban zones by using
the atmospheric diffusion model. In [1], the simulation of
two-dimensional advection-diffusion model with a point
sourcewas presented.	enumerical solutions were solved by
using the finite difference techniques. In [2], the researchers
used the mathematical model to simulate the dispersion of
sulfur dioxide concentration with the wind and diffusion
parameters regarding the reference atmospheric stability.
In [3], the mass transport model consisted of the stream
function, vorticity, and convection-diffusion equation. 	e
smoke dispersion which released into the atmosphere from
one and two-point sources was considered with obstacle
domain. 	e approximated solutions were solved by using
the finite element techniques. In [4], the researchers studied
the smoke dispersion model in a two-dimensional space
by considering two and three point sources with a two

obstacles in the domain. In [5], the two-dimensional
advection-diffusion equation with mesoscale wind, eddy
diffusivity profiles, and removal mechanisms was introduced.
	en, the primary pollutant released into the atmosphere
from an area source, which was also considered. In [6], the
researchers studied the two-dimensional advection-diffusion
equation of primary and secondary pollutants. 	e area
source with removal mechanisms and the point source
considering on the boundary were proposed. 	e solutions
of air pollution in [5, 6] were estimated by using the Crank-
Nicolson implicit methods. In [7], the air-quality model in
the three-dimensional with variations of the atmospheric
stability classes and wind velocities from multiple sources
was analyzed. 	e fractional step methods were used in
order to predict the air pollutant concentration in [2, 4,
7]. In [8], the atmospheric diffusion model was used to
describe the dispersion of air pollutant concentration near an
industrial zone. 	e problem was considered by controlling
the air pollution emission under a point source. From the
numerical experiments, it was indicated that the air pollution
control was necessary for air-quality management. In [9], the
researchers studied the dispersion behavior of air pollution
in the tunnel under a Bangkok sky train platform by using
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the simulation of a three-dimensional air-quality model.	is
model was considered varied cases on the wind inflow with
obstacles. In [10], the three-dimensional advection-diffusion
equation was considered to approximate the concentration
of air pollutant in a heavy traffic area under the Bangkok
sky train station. 	e numerical simulations were studied for
three cases that were the average of source or sink emissions,
themoving of source or sink emissions, and themix of source
and sink emissions. 	e explicit finite difference scheme was
used to solve the air pollutant concentration in [8–10].

	e source that is smokestack of industrial factory or
power plant discharges the air pollution into the system.
	e genesis of air pollution is the cause of problems. In this
research, the simple finite difference methods are used for
solving the atmospheric diffusion equation.

2. Governing Equation

2.1.TheAtmosphericDiffusion Equation. 	ediffusionmodel
generally uses Gaussian plume idea, which is the well-known
atmospheric diffusion equation. It represents the behavior of
air pollution in industrial areas. 	e dispersion of pollutant
concentration frommultiple point sources is described by the
following three-dimensional advection-diffusion equation:

𝜕𝑐𝜕𝑡 + 𝑢 𝜕𝑐𝜕𝑥 + V
𝜕𝑐𝜕𝑦 + 𝑤 𝜕𝑐𝜕𝑧 = 𝑘𝑥 𝜕2𝑐𝜕𝑥2 + 𝑘𝑦 𝜕2𝑐𝜕𝑦2 + 𝑘𝑧 𝜕2𝑐𝜕𝑧2 + 𝑠, (1)

where 𝑐 = 𝑐(𝑥, 𝑦, 𝑧, 𝑡) is the concentration of air pollutant
at (𝑥, 𝑦, 𝑧) and time 𝑡 (𝑘𝑔/𝑚3), 𝑢, V, and 𝑤 are the wind
velocity component (𝑚/𝑠𝑒𝑐) in 𝑥-, 𝑦-, 𝑧-directions, respec-
tively, 𝑘𝑥, 𝑘𝑦, and 𝑘𝑧 are the diffusion coefficient (𝑚2/𝑠𝑒𝑐) in𝑥-, 𝑦-, 𝑧-directions respectively, and 𝑠 is the sink rate of air
pollutants (𝑠𝑒𝑐−1).

	e assumptions of (1) are defined that the concentrations
of air pollutant are emitted from continued point sources.	e
advection and diffusion in 𝑦-direction are laterally averaged.
By the assumption, we can also eliminate all terms in 𝑦-
direction. 	erefore, the governing equation can be written
as

𝜕𝑐𝜕𝑡 + 𝑢 𝜕𝑐𝜕𝑥 + 𝑤 𝜕𝑐𝜕𝑧 = 𝑘𝑥 𝜕2𝑐𝜕𝑥2 + 𝑘𝑧 𝜕2𝑐𝜕𝑧2 + 𝑠. (2)

	e initial condition is assumed under the cold start assump-
tion. 	at is,

𝑐 (𝑥, 𝑧, 0) = 0, (3)

for all 𝑥 > 0 and 𝑧 > 0.	e boundary conditions are assumed
that

𝑐 (0, 𝑧, 𝑡) = 0, (4)

𝜕𝑐𝜕𝑥 (𝐿, 𝑧, 𝑡) = 0, (5)

𝜕𝑐𝜕𝑧 (𝑥, 0, 𝑡) = 0, (6)

𝜕𝑐𝜕𝑧 (𝑥, 𝐻, 𝑡) = 0, (7)

for all 𝑡 > 0where𝐿 is the length of the domain in 𝑥-direction
and 𝐻 is the height of the inversion layer. 	e concentration
at the point sources is assumed to be the constant variables as

𝑐 (𝑥𝑝, 0, 𝑡) = 𝑐𝑠𝑝 , (8)

for 𝑝 = 1, 2 where 𝑥𝑝 is the position of the point source 𝑝 in
the 𝑥-direction and 𝑐𝑠𝑝 is the concentration value at the point
source of 𝑝.
2.2. The Nondimensional Form Equation. Now, we introduce
the dimensionless form of equation (2). 	e nondimensional
variables are denoted by letting 𝐶 = 𝑐/𝑐max, 𝑋 = 𝑥/𝑙𝑥,𝑍 = 𝑧/𝑙𝑧, 𝑇 = 𝑡/𝑡max, 𝐷𝑥 = 𝑘𝑥/𝑙𝑥𝑢max, 𝐷𝑧 = 𝑘𝑧/𝑙𝑧𝑢max, 𝑈 =𝑢/𝑢max, and 𝑊 = 𝛽𝑤max/𝑢max when 𝛽 = 𝑤/𝑤max. We define𝑐max = max{𝑐(𝑥, 𝑧, 𝑡) : 0 ⩽ 𝑥 ⩽ 𝐿, 0 ⩽ 𝑧 ⩽ 𝐻, 0 ⩽ 𝑡 ⩽ 𝑡max},𝑢max = max{𝑢(𝑥, 𝑧, 𝑡) : 0 ⩽ 𝑥 ⩽ 𝐿, 0 ⩽ 𝑧 ⩽ 𝐻, 0 ⩽ 𝑡 ⩽ 𝑡max},𝑤max = max{𝑤(𝑥, 𝑧, 𝑡) : 0 ⩽ 𝑥 ⩽ 𝐿, 0 ⩽ 𝑧 ⩽ 𝐻, 0 ⩽ 𝑡 ⩽𝑡max}, and 𝑡max is a stationary time. 	us the nondimensional
equation of air pollution is as follows:

1𝑆𝑇 𝜕𝐶𝜕𝑇 + 𝑈 𝜕𝐶𝜕𝑋 + 𝑊𝜕𝐶𝜕𝑍 = 𝐷𝑥 𝜕2𝐶𝜕𝑋2 + 𝐷𝑧 𝜕2𝐶𝜕𝑍2 + 𝑆, (9)

where 𝑙 = max{𝑙𝑥, 𝑙𝑧} and 𝑆𝑇 = 𝑡max𝑢max/𝑙 when 𝑆 < 0 that
means the air pollutant concentrations are absorbed from the
atmosphere by the chemical reaction.

3. Numerical Methods

We use the finite difference methods for calculating the
nondimensional form of the atmospheric diffusion equation.
In (9), we get the concentration of𝐶 at each time𝑇𝑛+1 from𝑇𝑛
when Δ𝑇 is a time increment. 	e solution of concentration
at (𝑋, 𝑍, 𝑇) is denoted by 𝐶(𝑋𝑖, 𝑍𝑗, 𝑇𝑛) = 𝐶𝑛𝑖,𝑗. 	e domain is
divided by the grid spacing in 𝑋-direction and 𝑍-direction
which are Δ𝑋 and Δ𝑍, respectively, where 𝑋𝑖 = 𝑖Δ𝑋 and𝑍𝑗 = 𝑗Δ𝑍. 	e approximate solutions are obtained by using
the following methods.

3.1. Forward Time Central Space Scheme. 	e first method,
we use the forward difference in transient term that is

𝜕𝐶𝜕𝑇 = 𝐶𝑛+1𝑖,𝑗 − 𝐶𝑛𝑖,𝑗Δ𝑇 . (10)

	en, the centered difference for the advection and diffusion
in 𝑋-direction and 𝑍-direction is applied as follows:

𝜕𝐶𝜕𝑋 = 𝐶𝑛𝑖+1,𝑗 − 𝐶𝑛𝑖−1,𝑗2Δ𝑋 , (11)

𝜕𝐶𝜕𝑍 = 𝐶𝑛𝑖,𝑗+1 − 𝐶𝑛𝑖,𝑗−12Δ𝑍 , (12)

𝜕2𝐶𝜕𝑋2 = 𝐶𝑛𝑖+1,𝑗 − 2𝐶𝑛𝑖,𝑗 + 𝐶𝑛𝑖−1,𝑗
(Δ𝑋)2 , (13)

𝜕2𝐶𝜕𝑍2 = 𝐶𝑛𝑖,𝑗+1 − 2𝐶𝑛𝑖,𝑗 + 𝐶𝑛𝑖,𝑗−1
(Δ𝑍)2 , (14)
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respectively. We substitute (10)-(14) into (9). It will be

1𝑆𝑇 (𝐶𝑛+1𝑖,𝑗 − 𝐶𝑛𝑖,𝑗Δ𝑇 ) + 𝑈 (𝐶𝑛𝑖+1,𝑗 − 𝐶𝑛𝑖−1,𝑗2Δ𝑋 )

+ 𝑊 (𝐶𝑛𝑖,𝑗+1 − 𝐶𝑛𝑖,𝑗−12Δ𝑍 )

= 𝐷𝑥 (𝐶𝑛𝑖+1,𝑗 − 2𝐶𝑛𝑖,𝑗 + 𝐶𝑛𝑖−1,𝑗
(Δ𝑋)2 )

+ 𝐷𝑧 (𝐶𝑛𝑖,𝑗+1 − 2𝐶𝑛𝑖,𝑗 + 𝐶𝑛𝑖,𝑗−1
(Δ𝑍)2 ) + 𝑆.

(15)

	us, the forward time central space (FTCS) scheme of the
nondimensional mathematical model is

𝐶𝑛+1𝑖,𝑗 = (𝑑𝑥 − 𝐴𝑥) 𝐶𝑛𝑖+1,𝑗 + (𝑑𝑥 + 𝐴𝑥) 𝐶𝑛𝑖−1,𝑗
+ (1 − 2𝑑𝑥 − 2𝑑𝑧) 𝐶𝑛𝑖,𝑗 + (𝑑𝑧 + 𝐴𝑧) 𝐶𝑛𝑖,𝑗−1
+ (𝑑𝑧 − 𝐴𝑧) 𝐶𝑛𝑖,𝑗+1 + 𝑆𝑇 (Δ𝑇) 𝑆,

(16)

where 𝐴𝑥 = 𝑆𝑇(Δ𝑇)𝑈/2Δ𝑋, 𝐴𝑧 = 𝑆𝑇(Δ𝑇)𝑊/2Δ𝑍, 𝑑𝑥 =𝑆𝑇(Δ𝑇)𝐷𝑥/(Δ𝑋)2, 𝑑𝑧 = 𝑆𝑇(Δ𝑇)𝐷𝑧/(Δ𝑍)2. 	e stability of
the forward time central space scheme can be investigated by
using von Neumann stability analysis. We can obtain that the
stability condition is 0 ⩽ 2𝑑𝑥 + 𝐴𝑥 + 𝐴𝑧 ⩽ 1.
3.2. Backward Time Central Space Scheme. 	e second
method,we use the backward difference in transient term that
is

𝜕𝐶𝜕𝑇 = 𝐶𝑛𝑖,𝑗 − 𝐶𝑛−1𝑖,𝑗Δ𝑇 . (17)

	en, the centered difference for the advection and diffusion
in 𝑋-direction and 𝑍-direction is utilized as follows:

𝜕𝐶𝜕𝑋 = 𝐶𝑛𝑖+1,𝑗 − 𝐶𝑛𝑖−1,𝑗2Δ𝑋 , (18)

𝜕𝐶𝜕𝑍 = 𝐶𝑛𝑖,𝑗+1 − 𝐶𝑛𝑖,𝑗−12Δ𝑍 , (19)

𝜕2𝐶𝜕𝑋2 = 𝐶𝑛𝑖+1,𝑗 − 2𝐶𝑛𝑖,𝑗 + 𝐶𝑛𝑖−1,𝑗
(Δ𝑋)2 , (20)

𝜕2𝐶𝜕𝑍2 = 𝐶𝑛𝑖,𝑗+1 − 2𝐶𝑛𝑖,𝑗 + 𝐶𝑛𝑖,𝑗−1
(Δ𝑍)2 , (21)

respectively. We substitute (17)-(21) into (9). It obtains that

1𝑆𝑇 (𝐶𝑛𝑖,𝑗 − 𝐶𝑛−1𝑖,𝑗Δ𝑇 ) + 𝑈 (𝐶𝑛𝑖+1,𝑗 − 𝐶𝑛𝑖−1,𝑗2Δ𝑋 )

+ 𝑊 (𝐶𝑛𝑖,𝑗+1 − 𝐶𝑛𝑖,𝑗−12Δ𝑍 )

= 𝐷𝑥 (𝐶𝑛𝑖+1,𝑗 − 2𝐶𝑛𝑖,𝑗 + 𝐶𝑛𝑖−1,𝑗
(Δ𝑋)2 )

+ 𝐷𝑧(𝐶𝑛𝑖,𝑗+1 − 2𝐶𝑛𝑖,𝑗 + 𝐶𝑛𝑖,𝑗−1
(Δ𝑍)2 ) + 𝑆.

(22)

	erefore, the backward time central space (BTCS) scheme
of this research becomes

(𝐴𝑥 − 𝑑𝑥) 𝐶𝑛+1𝑖+1,𝑗 + (𝐴𝑥 + 𝑑𝑥) 𝐶𝑛+1𝑖−1,𝑗
+ (1 + 2𝑑𝑥 + 2𝑑𝑧) 𝐶𝑛+1𝑖,𝑗 − (𝐴𝑧 + 𝑑𝑧) 𝐶𝑛+1𝑖,𝑗−1
+ (𝐴𝑧 − 𝑑𝑧) 𝐶𝑛+1𝑖,𝑗+1 = 𝐶𝑛𝑖,𝑗 + 𝑆𝑇 (Δ𝑇) 𝑆.

(23)

	e stability of the implicit backward time central space
scheme can be investigated by using von Neumann stability
analysis. We can obtain that the method is an unconditionally
stable method.

4. Numerical Experiment

	e two-dimensional atmospheric diffusion equation (9)
with a dimension 1, 000 × 1, 000 𝑚2 will be considered. 	e
uniform wind velocities and constant diffusion coefficients
are introduced. We choose that the wind velocities in 𝑥-
direction and 𝑧-direction are 0.1 and 0.05 𝑚/𝑠𝑒𝑐, respectively.
	e diffusion coefficients in 𝑥-direction and 𝑧-direction are4.5×10−1 and 4.5×10−5𝑚2/𝑠𝑒𝑐, respectively.	e grid spacing
is Δ𝑥 = Δ𝑧 = 25m. and the time interval is 20 𝑠𝑒𝑐. In this
research, we present two cases.	e first case considers a point
source when the concentration is 0.5 𝑘𝑔/𝑚3. 	e second case
considers two-point source when the concentration is 0.25
and 0.25 𝑘𝑔/𝑚3.	e air pollutants in (8) are released into our
system. 	ese examples are solved by using the forward time
central space and the backward time central space schemes
in (16) and (23), respectively, with the initial and boundary
conditions (3) to (7).

In Figure 1, model of the problem is shown. 	e physical
problem composed of two zones: an industrial zone and an
urban zone with the stable wind along the 𝑥-axis and 𝑧-
axis. 	e point sources are laid along the 𝑥-axis. We assume
that the primary air pollutants are released from a factory
smokestack by a single point source and coupled point
sources on industrial zone. 	e emissions of air pollution
are influenced on the urban zone by the rate of air pollutant
absorption. In the numerical experiment, the considered
domain of solutions is shown in Figure 2.

5. Discussion

	e air pollutant emission frommultiple point sources above
an industrial zone to the urban area is presented. 	e finite
difference techniques introduced twomethods for calculating
the air pollutant concentrations. Figures 3 and 4 compare the
air pollutant concentrations between two cases: a single point
source and coupled point sources, respectively. From the both
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Figure 1: Model of the problem.
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Figure 2: Domain of solutions.

figures, it is apparent that the results of the forward time
central space scheme are close to the results of the backward
time central space scheme, when there is no sink of pollutant
absorption (𝑠 = 0). Figures 5 and 6 illustrate that the sink of
pollutant absorption (𝑠 = 10−4) is added to the base of urban
zone.	e air pollutant concentration near human living goes
down and the two methods also give the close result. In
Figures 7 and 8, the computed approximate solutions which
are calculated by using the forward time central space and the
backward time central space schemes are compared. We can
see that the results of added sink case and without sink case
are quite similar. 	ese graphs also indicate that the forward
time central space scheme gives the computed solutions close
to the backward time central space scheme.

Figures 9 and 10 demonstrate that the air pollutant
concentration at the height 𝑧 = 25m. and 𝑧 = 50m. are
solved by using the forward time central space scheme. 	e
added sink case is less concentration than the without sink
case.	erefore, the sink can lower the overall pollutant levels.
Figure 11 establishes the various concentrations when we take
more sink rate into our system.	e comparison of computing

Table 1: Computing time comparison of forward time central space
and backward time central space schemes.

Simulation Time FTCS (sec.) BTCS (sec.)
30 minutes 1.49 22.48
1 hour 1.68 42.66
2 hours 2.05 84.18

time shows that the forward time central space is faster than
the backward time central space scheme in Table 1.

6. Conclusion

	e simple air pollution measurement models which are
released air pollutants by a single point source and coupled
point sources are proposed. 	e traditional finite difference
methods such as forward time central space and backward
time central space schemes can be used to approximate the air
pollutant levels for each points and times. 	e results of this
study show that the air pollutant concentrations of forward
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Figure 3: 	e air pollutant concentration levels a�er 2 hours passed which are computed by the forward time central space scheme (𝑠 = 0):
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Figure 4:	e air pollutant concentration levels a�er 2 hours passed which are computed by the backward time central space scheme (𝑠 = 0):
(a) one-point source and (b) two-point source.
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Figure 5:	e air pollutant concentration levels a�er 2 hours passed which are computed by the forward time central space scheme (𝑠 = 10−4):
(a) one-point source and (b) two-point source.
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Figure 6: 	e air pollutant concentration levels a�er 2 hours passed which are computed by the backward time central space scheme (𝑠 =10−4): (a) one-point source and (b) two-point source.

time central space are close to the air pollutant concentrations
of backward time central space. In the case of a coupled
point sources problem, the overall concentration levels of
air pollution are less than a single point source problem.
	erefore, the influence of multiple point sources and the

variable rate of sink are also considered. It obtains that the
higher sink rate does decrease pollutant levels around human
living.	eboth finite differencemethods are used to compute
the numerical solutions of air pollution by MATLAB. 	e
forward time central space has advantages that the method
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Figure 7:	e air pollutant concentration between the forward time
central space and the backward time central space schemes (𝑠 = 0)
at 𝑧 = 0m. and 𝑥 = 600m.
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Figure 8:	e air pollutant concentration between the forward time
central space and the backward time central space schemes (𝑠 =10−4) at 𝑧 = 0m. and 𝑥 = 400m.

gives less computing time than the backward time central
space computing time. On the other hand, the forward time
central space also has disadvantages that are the limitation of
the grid spacing due to the stability condition.

Data Availability

	e calculated air pollution measurement data used to
support the findings of this study are available from the
corresponding author upon request.
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Figure 9: 	e air pollutant concentration between 2 cases: added
sink and without sink (computed by the forward time central space
scheme) at 𝑧 = 25m. and 𝑥 = 600m.
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Figure 10: 	e air pollutant concentration between 2 cases: added
sink and without sink (computed by the forward time central space
scheme) at 𝑧 = 50m. and 𝑥 = 600m.
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