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In this paper, the coupled Schrödinger-Boussinesq equations (SBE) will be solved by the sech, tanh, csch, and themodified simplest
equation method (MSEM). We obtain exact solutions of the nonlinear for bright, dark, and singular 1-soliton solution. Kerr law
nonlinearity media are studied. Results have proven that modified simple equation method does not produce the soliton solution
in general case. Solutions may find practical applications and will be important for the conservation laws for dispersive optical
solitons.

1. Introduction

All optical communications are being used for transcon-
tinental and transoceanic data transfer, through long-haul
optical fibers, at the present time. There are various aspects
of soliton communication that still need to be addressed.
One of the features is the dispersive optical solitons. In
presence of higher order dispersion terms, soliton communi-
cations are sometimes a hindrance as these dispersion terms
produce soliton radiation. Nonlinear evolution equations
have a major role in various scientific and engineering
fields, such as optical fibers. Nonlinear wave phenomena of
dispersion, dissipation, diffusion, reaction, and convection
are very important in nonlinear wave equations. In recent
years, quite a few methods for obtaining explicit traveling
and solitary wave solutions of nonlinear evolution equations
have been proposed. In recent years, exact homoclinic and
heteroclinic solutionswere proposed for someNEEs like non-
linear Schrödinger equation, Sine-Gordon equation, Davey-
Stewartson equation, Zakharov equation, and Boussinesq
equation [1–7].

In particular, the study of the coupled Schrödinger-
Boussinesq equations has attracted much attention of math-
ematicians and physicists [8–10]. The existence of the global
solution of the initial boundary problem for the equationswas
investigated in [8].The existence of a periodic solution for the

equations was considered in [9]. Kilicman and Abazari [10]
used the (𝐺󸀠/𝐺)-expansionmethod to construct periodic and
soliton solutions for the Schrödinger-Boussinesq. The inves-
tigation of nonlinear partial differential equations plays an
important role in the study of nonlinear physical phenomena
[9–12].

The nonlinear coupled Schrödinger-Boussinesq equation
(SBE) governs the propagation of optical solitons in a dis-
persive optical fiber and is a very important equation in the
area of theoretical and mathematical physics. This paper is
going to take a look at the bright, dark, and singular soliton
solutions for Kerr law nonlinearity media.

2. Governing Equations

Consider the coupled Schrödinger-Boussinesq equations
(SBE). They appeared in [13] as a special case of general
systems governing the stationary propagation of coupled
nonlinear upper hybrid and magneto sonic waves in magne-
tized plasma. These equations were in the form [14]

𝑖 𝜕𝐸𝜕𝑡 + 𝜕2𝐸𝜕𝑥2 + 𝛼1𝐸 − 𝑁𝐸 = 0,
3𝜕2𝑁𝜕𝑡2 − 𝜕4𝑁𝜕𝑥4 + 3 𝜕2𝜕𝑥2 (𝑁2) + 𝛼2 𝜕2𝑁𝜕𝑥2 − 𝜕2𝜕𝑥2 (|𝐸|2)

= 0,
(1)
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where 𝛼1, 𝛼2 are real constants, 𝐸(𝑥, 𝑡) is a complex function,
and𝑁(𝑥, 𝑡) is a real function.The complete integrability of (1)
was studied by Chowdhury et al. [15], andN-soliton solution,
homoclinic orbit solution, and rogue solution were obtained
by Hu et al. [16], Dai et al. [17–19], and Mu and Qin [20].

3. The Traveling Solution

Consider the nonlinear partial differential equation in the
form

𝐹 (𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑡𝑡, 𝑢𝑥𝑥, . . .) = 0, (2)

where 𝑢(𝑥, 𝑡) is a traveling wave solution of nonlinear partial
differential equation (2). We use the transformations

𝑢 (𝑥, 𝑡) = 𝑓 (𝜉) , (3)

where 𝜉 = 𝑥 − 𝜌𝑡 + 𝜒. This enables us to use the following
changes:

𝜕𝜕𝑡 (⋅) = −𝜌 𝑑𝑑𝜉 (⋅) ,
𝜕𝜕𝑥 (⋅) = 𝑑𝑑𝜉 (⋅) . (4)

Using (4) to transfer the nonlinear partial differential equa-
tion (2) to nonlinear ordinary differential equation,

𝑄(𝑓, 𝑓󸀠, 𝑓󸀠󸀠, 𝑓󸀠󸀠󸀠, . . .) = 0. (5)

The ordinary differential equation (5) is then integrated as
long as all terms contain derivatives, where we neglect the
integration constants.

4. Hyperbolic Function Methods

The solutions of many nonlinear equations can be expressed
in the following form.

4.1. Sech Function Method (Bright Soliton) [21]

𝑓 (𝜉) = 𝐴 sech𝛽 (𝜇𝜉) ,
𝑓󸀠 (𝜉) = −𝐴𝛽𝜇 sech𝛽 (𝜇𝜉) ⋅ tanh (𝜇𝜉) ,
𝑓󸀠󸀠 (𝜉) = −𝐴𝛽𝜇2 [(𝛽 + 1) sech𝛽+2 (𝜇𝜉)

− 𝛽 sech𝛽 (𝜇𝜉)] ,
𝑓󸀠󸀠󸀠 (𝜉) = 𝐴𝛽𝜇3 [(𝛽 + 1) (𝛽 + 2) sech𝛽+2 (𝜇𝜉)

− 𝛽2 sech𝛽 (𝜇𝜉)] tanh (𝜇𝜉) .

(6)

4.2. Tanh Function Method (Dark Soliton) [22]

𝑓 (𝜉) = 𝐴 tanh𝛽 (𝜇𝜉) , 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 ≤ 𝜋2𝜇 ,
𝑓󸀠 (𝜉) = 𝐴𝛽𝜇 [tanh𝛽−1 (𝜇𝜉) − tanh𝛽+1 (𝜇𝜉)] ,

𝑓󸀠󸀠 (𝜉) = 𝐴𝛽𝜇2 [(𝛽 − 1) tanh𝛽−2 (𝜇𝜉) − 2𝛽 tanh𝛽 (𝜇𝜉)
+ (𝛽 + 1) tanh𝛽+2 (𝜇𝜉)] ,

𝑓󸀠󸀠󸀠 (𝜉) = 𝐴𝛽𝜇3 [(𝛽 − 1) (𝛽 − 2) tanh𝛽−3 (𝜇𝜉)
− {(𝛽 − 1) (𝛽 − 2) + 2𝛽} tanh𝛽−1 (𝜇𝜉)
+ {(𝛽 + 1) (𝛽 + 2) + 2𝛽} tanh𝛽+1 (𝜇𝜉)
− (𝛽 + 1) (𝛽 + 2) tanh𝛽+3 (𝜇𝜉)] .

(7)

4.3. Csch Function Method (Singular Soliton) [21, 22]

𝑓 (𝜉) = 𝐴 csch𝛽 (𝜇𝜉) ,
𝑓󸀠 (𝜉) = −𝐴𝛽𝜇 csch𝛽 (𝜇𝜉) ⋅ coth (𝜇𝜉) ,
𝑓󸀠󸀠 (𝜉) = 𝐴𝛽𝜇2 [(𝛽 + 1) csch𝛽+2 (𝜇𝜉) + 𝛽 csch𝛽 (𝜇𝜉)] ,
𝑓󸀠󸀠󸀠 (𝜉) = −𝐴𝛽𝜇3 [(𝛽 + 1) (𝛽 + 2) csch𝛽+2 (𝜇𝜉)

+ 𝛽2 csch𝛽 (𝜇𝜉)] coth (𝜇𝜉) ,

(8)

where 𝐴 represent the amplitudes of the solitons and 𝜇
represents the solitons width.

We substitute (6), (7), or (8) into the reduced equation
(5), balance the terms of the sech, tanh, and csch functions,
and solve the resulting system of algebraic equations by using
computerized symbolic packages. We next collect all terms
with the samepower in sech𝑘(𝜇𝜉), tanh𝑘(𝜇𝜉), or csch𝑘(𝜇𝜉), set
to zero their coefficients to get a system of algebraic equations
among the unknowns 𝐴, 𝜇, and 𝛽, and solve the subsequent
system.

5. The Application

The starting hypothesis for solving (1) by the aid of traveling
waves solution is as follows: introduce the transformations

𝐸 (𝑥, 𝑡) = 𝑒𝑖𝜃(𝑥,𝑡)𝑢 (𝜉) ,
𝑁 (𝑥, 𝑡) = V (𝜉) , (9)

where 𝜃 = 𝑘𝑥 + 𝜔𝑡 + 𝜖0,
𝜉 = (𝑥 − 𝜌𝑡 + 𝜒) , (10)

where 𝑘, 𝜔, 𝜌, 𝜖0, and 𝜒 are real constants. The parameter 𝜌
represents the soliton velocity.

Substituting (9) and (10) into (1) and decomposing into
real and imaginary parts leads to

𝑢󸀠󸀠 − [𝜔 + 𝑘2 − 𝛼1] 𝑢 − 𝑢V = 0, (11)

2𝑘 − 𝜌 = 0, (12)

[12𝑘2 + 𝛼2] V󸀠󸀠 − V󸀠󸀠󸀠󸀠 + 3 (V2)󸀠󸀠 − (𝑢2)󸀠󸀠 = 0. (13)
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Substitute (12) in (10), then

𝜉 = (𝑥 − 2𝑘𝑡 + 𝜒) . (14)

Integrating (13) twice with zero constant, (13) can be written
as

[12𝑘2 + 𝛼2] V − V󸀠󸀠 + 3V2 − 𝑢2 = 0. (15)

5.1. Bright Soliton. Seeking the solution by sech function
method as in (6)

𝑢 (𝜉) = 𝐴1 sech𝛽1 (𝜇𝜉) ,
V (𝜉) = 𝐴2 sech𝛽2 (𝜇𝜉) , (16)

the system of equations in (11) and (15) becomes, respectively,

𝛽1𝜇2 [(𝛽1 + 1) sech𝛽1+2 (𝜇𝜉) − 𝛽1 sech𝛽1 (𝜇𝜉)] + [𝜔
+ 𝑘2 − 𝛼1] sech𝛽1 (𝜇𝜉) − 𝐴2 sech𝛽1+𝛽2 (𝜇𝜉) = 0, (17)

[12𝑘2 + 𝛼2] 𝐴2 sech𝛽2 (𝜇𝜉)
+ 𝐴2𝛽2𝜇2 [(𝛽2 + 1) sech𝛽2+2 (𝜇𝜉)
− 𝛽2 sech𝛽2 (𝜇𝜉)] + 3𝐴22 sech2𝛽2 (𝜇𝜉)
− 𝐴12 sech2𝛽1 (𝜇𝜉) = 0.

(18)

Equating the exponents and the coefficients of each pair of
the sech functions, we find

2𝛽1 = 𝛽2 + 2,
𝛽1 + 𝛽2 = 𝛽1 + 2, then 𝛽1 = 𝛽2 = 2. (19)

Thus setting coefficients of (17)-(18) to zero yields set system
of equations:

4𝜇2 − [𝜔 + 𝑘2 − 𝛼1] = 0,
[12𝑘2 + 𝛼2] − 4𝜇2 = 0,

6𝜇2 − 𝐴2 = 0,
6𝐴2𝜇2 + 3𝐴22 − 𝐴12 = 0.

(20)

Solving the system of equations in (20), we get

𝐴1 = ∓3 [12𝑘2 + 𝛼2] ,
𝐴2 = 32 [12𝑘2 + 𝛼2] , (21)
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Figure 1: The solitary wave of the real part of 𝐸1(𝑥, 𝑡) in (23) for−5 ≤ 𝑥 ≤ 5, 0 ≤ 𝑡 ≤ 1.

𝜇 = ∓√ [12𝑘2 + 𝛼2]4 ,
𝜔 = [11𝑘2 + 𝛼1 + 𝛼2] ,

(22)

𝐸1 (𝑥, 𝑡) = ∓3𝑒𝑖(𝑘𝑥+(11𝑘2+𝛼1+𝛼2)𝑡+𝜖0) [12𝑘2 + 𝛼2]
⋅ sech2(√[12𝑘2 + 𝛼2]4 (𝑥 − 2𝑘𝑡 + 𝜒)) , (23)

𝑁1 (𝑥, 𝑡) = 32 [12𝑘2 + 𝛼2]
⋅ sech2(√[12𝑘2 + 𝛼2]4 (𝑥 − 2𝑘𝑡 + 𝜒)) . (24)

For 𝑘 = 𝛼1 = 1, 𝛼2 = 4, 𝜖0 = 𝜒 = 0, the real part of𝐸1(𝑥, 𝑡) =48 cos(𝑥+16𝑡) sech2{2(𝑥−2𝑡)}, and𝑁1(𝑥, 𝑡) = 24 sech2{2(𝑥−2𝑡)}.
Figures 1 and 2 represent the solitary wave of the real part

of 𝐸1(𝑥, 𝑡) in (23) and 𝑁1(𝑥, 𝑡) in (24), respectively, for −5 ≤𝑥 ≤ 5, 0 ≤ 𝑡 ≤ 1.
5.2. Dark Soliton. Seeking the solution by tanh function
method as in (7)

𝑢 (𝜉) = 𝐴1 tanh𝛽1 (𝜇𝜉) ,
V (𝜉) = 𝐴2 tanh𝛽2 (𝜇𝜉) , (25)
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Figure 2: The solitary wave 𝑁1(𝑥, 𝑡) in (24) for −5 ≤ 𝑥 ≤ 5, 0 ≤ 𝑡 ≤1.

the system of equations in (11) and (15) becomes, respectively,

𝛽1𝜇2 [(𝛽1 − 1) tanh𝛽1−2 (𝜇𝜉) − 2𝛽1 tanh𝛽1 (𝜇𝜉)
+ (𝛽1 + 1) tanh𝛽1+2 (𝜇𝜉)] − [𝜔 + 𝑘2 − 𝛼1]
⋅ tanh𝛽1 (𝜇𝜉) − 𝐴2 tanh𝛽1+𝛽2 (𝜇𝜉) = 0,

(26)

[12𝑘2 + 𝛼2] 𝐴2 tanh𝛽2 (𝜇𝜉)
− 𝐴2𝛽2𝜇2 [(𝛽2 − 1) tanh𝛽2−2 (𝜇𝜉)
− 2𝛽2 tanh𝛽2 (𝜇𝜉) + (𝛽2 + 1) tanh𝛽2+2 (𝜇𝜉)]
+ 3𝐴22 tanh2𝛽2 (𝜇𝜉) − 𝐴12 tanh2𝛽1 (𝜇𝜉) = 0.

(27)

Equating the exponents and the coefficients of each pair of
the sech functions, we find

2𝛽1 = 𝛽2 + 2,
𝛽1 + 𝛽2 = 𝛽1 + 2, then 𝛽1 = 𝛽2 = 2. (28)

Thus setting coefficients of (26)-(27) to zero yields set system
of equations:

8𝜇2 + [𝜔 + 𝑘2 − 𝛼1] = 0,
[12𝑘2 + 𝛼2] + 8𝜇2 = 0,

6𝜇2 − 𝐴2 = 0,
−6𝐴2𝜇2 + 3𝐴22 − 𝐴12 = 0.

(29)

E2(x, t)

0.2

0.4

0.6

0.8
3

1

−1

−3
t

x

−3

−1

1

3

5

Figure 3: The solitary wave of the real part of 𝐸2(𝑥, 𝑡) in (32) for−5 ≤ 𝑥 ≤ 5, 0 ≤ 𝑡 ≤ 1.

Solving the system of equations in (29), we get

𝜔 = [11𝑘2 + 𝛼1 + 𝛼2] ,
𝜇 = ∓𝑖√ [12𝑘2 + 𝛼2]8 ,

(30)

𝐴1 = ±3√24 [12𝑘2 + 𝛼2] ,
𝐴2 = −34 [12𝑘2 + 𝛼2] ,

(31)

𝐸2 (𝑥, 𝑡) = ±𝑒𝑖(𝑘𝑥+(11𝑘2+𝛼1+𝛼2)𝑡+𝜖0)3√2[12𝑘2 + 𝛼2]4
⋅ sec2(√[12𝑘2 + 𝛼2]8 (𝑥 − 2𝑘𝑡 + 𝜒)) ,

(32)

𝑁2 (𝑥, 𝑡) = −3[12𝑘2 + 𝛼2]4
⋅ sec2(√[12𝑘2 + 𝛼2]8 (𝑥 − 2𝑘𝑡 + 𝜒)) .

(33)

For 𝑘 = 𝛼1 = 1, 𝛼2 = 4, 𝜖0 = 𝜒 = 0, the real part of 𝐸2(𝑥,𝑡) = 12√2 cos(𝑥 + 16𝑡) sec2{√2(𝑥 − 2𝑡)}, and 𝑁2(𝑥, 𝑡) =−12 sec2{√2(𝑥 − 2𝑡)}.
Figures 3 and 4 represent the solitary wave of the real part

of 𝐸2(𝑥, 𝑡) in (32) and 𝑁2(𝑥, 𝑡) in (33) for −5 ≤ 𝑥 ≤ 5, 0 ≤ 𝑡 ≤1.
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Figure 4: The solitary wave 𝑁2(𝑥, 𝑡) in (33) for −5 ≤ 𝑥 ≤ 5, 0 ≤ 𝑡 ≤1.
5.3. Singular Soliton. Seeking the solution by sech function
method as in (8)

𝑢 (𝜉) = 𝐴1 coth𝛽1 (𝜇𝜉) ,
V (𝜉) = 𝐴2 coth𝛽2 (𝜇𝜉) , (34)

the system of equations in (11) and (15) becomes, respectively,

𝛽1𝜇2 [(𝛽1 + 1) coth𝛽1+2 (𝜇𝜉) + 𝛽1 coth𝛽1 (𝜇𝜉)] + [𝜔
+ 𝑘2 − 𝛼1] coth𝛽1 (𝜇𝜉) − 𝐴2 coth𝛽1+𝛽2 (𝜇𝜉) = 0, (35)

[12𝑘2 + 𝛼2]𝐴2 coth𝛽2 (𝜇𝜉)
+ 𝐴2𝛽2𝜇2 [(𝛽2 + 1) coth𝛽2+2 (𝜇𝜉)
+ 𝛽2 coth𝛽2 (𝜇𝜉)] + 3𝐴22 coth2𝛽2 (𝜇𝜉)
− 𝐴12 coth2𝛽1 (𝜇𝜉) = 0.

(36)

Equating the exponents and the coefficients of each pair of
the sech functions, we find

2𝛽1 = 𝛽2 + 2,
𝛽1 + 𝛽2 = 𝛽1 + 2, then 𝛽1 = 𝛽2 = 2. (37)

Thus setting coefficients of (35)-(36) to zero yields set system
of equations:

4𝜇2 + [𝜔 + 𝑘2 − 𝛼1] = 0,
[12𝑘2 + 𝛼2] + 4𝜇2 = 0,

6𝜇2 − 𝐴2 = 0,
6𝐴2𝜇2 + 3𝐴22 − 𝐴12 = 0.

(38)
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Figure 5: The solitary wave of the real part of 𝐸3(𝑥, 𝑡) in (40) for−5 ≤ 𝑥 ≤ 5, 0 ≤ 𝑡 ≤ 1.
Solving the system of equations in (38), we get

𝐴1 = ±3 [12𝑘2 + 𝛼2] ,
𝐴2 = −3[12𝑘2 + 𝛼2]2 ,
𝜇 = ∓𝑖√ [12𝑘2 + 𝛼2]4 ,
𝜔 = 11𝑘2 + 𝛼1 + 𝛼2,

(39)

𝐸3 (𝑥, 𝑡) = ∓𝑒𝑖(𝑘𝑥+(11𝑘2+𝛼1+𝛼2)𝑡+𝜖0)6 (6𝑘2 + 1)
⋅ cot2(√6𝑘2 + 12 (𝑥 − 2𝑘𝑡 + 𝜒)) , (40)

𝑁3 (𝑥, 𝑡) = 3 (6𝑘2 + 1)
⋅ cot2(√6𝑘2 + 12 (𝑥 − 2𝑘𝑡 + 𝜒)) . (41)

For 𝑘 = 𝛼1 = 1, 𝛼2 = 4, 𝜖0 = 𝜒 = 0, the real part of𝐸3(𝑥, 𝑡) = 42 cos (𝑥 + 16𝑡) cot2{√7/2(𝑥 − 2𝑡)}, and𝑁3(𝑥, 𝑡) =21 cot2{√7/2(𝑥 − 2𝑡)}.
Figures 5 and 6 represent the solitary wave of the real part

of 𝐸3(𝑥, 𝑡) in (40) and𝑁3(𝑥, 𝑡) in (41) for −5 ≤ 𝑥 ≤ 5, 0 ≤ 𝑡 ≤1.
5.4. Modified Simple Equation Method. This section will
analyze (11) and (15) by themodified simple equationmethod;
assume that solutions are of the form [23]
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Figure 6: The solitary wave of 𝑁3(𝑥, 𝑡) in (41) for −5 ≤ 𝑥 ≤ 5, 0 ≤𝑡 ≤ 1.

𝑢 (𝜉) = 𝑚∑
𝑖=0

𝐴 𝑖 (𝜓𝜉𝜓 )𝑖 ,
V (𝜉) = 𝑛∑

𝑖=0

𝐵𝑖 (𝜓𝜉𝜓 )𝑖 ,
(42)

where the parameters 𝑚, 𝑛 can be found by balancing the
highest-order linear termwith the nonlinear terms in (11) and
(15), respectively.

In (11), we balance 𝑢󸀠󸀠 with 𝑢V, to obtain𝑚+2 = 𝑚+𝑛, and
then 𝑛 = 2. While in (15), We balance V󸀠󸀠 with 𝑢2, to obtain𝑛 + 2 = 2𝑚, and then 𝑚 = 2.

Then

𝑢 (𝜉) = 𝐴0 + 𝐴1𝜓𝜉𝜓 + 𝐴2𝜓𝜉2𝜓2 ,
𝑢𝜉 = 𝐴1𝜓𝜉𝜉𝜓 − 𝐴1𝜓𝜉2𝜓2 + 2𝐴2𝜓𝜉𝜓𝜉𝜉𝜓2 − 2𝐴2𝜓𝜉3𝜓3 ,
𝑢𝜉𝜉 = 𝐴1𝜓𝜉𝜉𝜉𝜓 + 2𝐴2𝜓𝜉𝜉2𝜓2 + 2𝐴2𝜓𝜉𝜉𝜉𝜓𝜉𝜓2

− 3𝐴1𝜓𝜉𝜓𝜉𝜉𝜓2 − 10𝐴2𝜓𝜉𝜉𝜓𝜉2𝜓3 − 2𝐴1𝜓𝜉3𝜓3
− 2𝐴2𝜓𝜉4𝜓4 ,

V (𝜉) = 𝐵0 + 𝐵1𝜓𝜉𝜓 + 𝐵2𝜓𝜉2𝜓2 ,
V𝜉 = 𝐵1𝜓𝜉𝜉𝜓 − 𝐵1𝜓𝜉2𝜓2 + 2𝐵2𝜓𝜉𝜓𝜉𝜉𝜓2 − 2𝐵2𝜓𝜉3𝜓3 ,

V𝜉𝜉 = 𝐵1𝜓𝜉𝜉𝜉𝜓 + 2𝐵2𝜓𝜉𝜉2𝜓2 + 2𝐵2𝜓𝜉𝜉𝜉𝜓𝜉𝜓2 − 3𝐵1𝜓𝜉𝜓𝜉𝜉𝜓2
− 10𝐵2𝜓𝜉𝜉𝜓𝜉2𝜓3 − 2𝐵1𝜓𝜉3𝜓3 − 2𝐵2𝜓𝜉4𝜓4 ,

(43)

where 𝐴0, 𝐴1, 𝐴2, 𝐵0, 𝐵1, and 𝐵2 are constants to be
calculated.

Substitute (43) in (11) and (15), respectively, to get

[[𝐴1𝜓𝜉𝜉𝜉𝜓 + 2𝐴2𝜓𝜉𝜉2𝜓2 + 2𝐴2𝜓𝜉𝜉𝜉𝜓𝜉𝜓2 − 3𝐴1𝜓𝜉𝜓𝜉𝜉𝜓2
− 10𝐴2𝜓𝜉𝜉𝜓𝜉2𝜓3 − 2𝐴1𝜓𝜉3𝜓3 − 2𝐴2𝜓𝜉4𝜓4 ]] − [𝜔 + 𝑘2

− 𝛼1] [𝐴0 + 𝐴1𝜓𝜉𝜓 + 𝐴2𝜓𝜉2𝜓2 ] − 𝐵0(𝐴0 + 𝐴1𝜓𝜉𝜓
+ 𝐴2𝜓𝜉2𝜓2 ) − 𝐵1(𝐴0𝜓𝜉𝜓 + 𝐴1𝜓𝜉2𝜓2 + 𝐴2𝜓𝜉3𝜓3 )
− 𝐵2(𝐴0𝜓𝜉2𝜓2 + 𝐴1𝜓𝜉3𝜓3 + 𝐴2𝜓𝜉4𝜓4 ) = 0,

[12𝑘2 + 𝛼2] [𝐵0 + 𝐵1𝜓𝜉𝜓 + 𝐵2𝜓𝜉2𝜓2 ] − [[𝐵1𝜓𝜉𝜉𝜉𝜓
+ 2𝐵2𝜓𝜉𝜉2𝜓2 + 2𝐵2𝜓𝜉𝜉𝜉𝜓𝜉𝜓2 − 3𝐵1𝜓𝜉𝜓𝜉𝜉𝜓2
− 10𝐵2𝜓𝜉𝜉𝜓𝜉2𝜓3 − 2𝐵1𝜓𝜉3𝜓3 − 2𝐵2𝜓𝜉4𝜓4 ]] + 3𝐵0(𝐵0
+ 𝐵1𝜓𝜉𝜓 + 𝐵2𝜓𝜉2𝜓2 ) + 3𝐵1(𝐵0𝜓𝜉𝜓 + 𝐵1𝜓𝜉2𝜓2
+ 𝐵2𝜓𝜉3𝜓3 ) + 3𝐵2(𝐵0𝜓𝜉2𝜓2 + 𝐵1𝜓𝜉3𝜓3 + 𝐵2𝜓𝜉4𝜓4 )
− 𝐴0(𝐴0 + 𝐴1𝜓𝜉𝜓 + 𝐴2𝜓𝜉2𝜓2 ) − 𝐴1(𝐴0𝜓𝜉𝜓
+ 𝐴1𝜓𝜉2𝜓2 + 𝐴2𝜓𝜉3𝜓3 ) − 𝐴2(𝐴0𝜓𝜉2𝜓2 + 𝐴1𝜓𝜉3𝜓3
+ 𝐴2𝜓𝜉4𝜓4 ) = 0.

(44)
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In (44) equating expressions at (𝜓𝑗 𝑗 = 0, −1, −2, −3, −4) to
zero, we get the following system of equations:

𝜓𝜉𝜉 + [2𝐴1 + 𝐴2𝐵1 + 𝐴1𝐵2]10𝐴2 𝜓𝜉 = 0,
2𝐴2𝜓𝜉𝜉2 + 2𝐴2𝜓𝜉𝜉𝜉𝜓𝜉 − 3𝐴1𝜓𝜉𝜓𝜉𝜉

− {[𝜔 + 𝑘2 − 𝛼1] 𝐴2 + 𝐴2𝐵0 + 𝐴1𝐵1 + 𝐴0𝐵2} 𝜓𝜉2
= 0,

𝜓𝜉𝜉𝜉 − [𝜔 + 𝑘2 − 𝛼1] 𝐴1 − 𝐵0𝐴1 − 𝐵1𝐴0𝐴1 𝜓𝜉 = 0,
[𝜔 + 𝑘2 − 𝛼1] + 𝐵0 = 0,
[12𝑘2 + 𝛼2] 𝐵0 + 3𝐵02 − 𝐴02 = 0,
2𝐵2 + 3𝐵22 − 𝐴22 = 0,
𝐵2 = −2,
𝜓𝜉𝜉 + {2𝐵1 + 6𝐵1𝐵2 − 2𝐴1𝐴2}10𝐵2 𝜓𝜉 = 0,
2𝐵2𝜓𝜉𝜉2 + 2𝐵2𝜓𝜉𝜉𝜉𝜓𝜉 − 3𝐵1𝜓𝜉𝜓𝜉𝜉 − {[12𝑘2 + 𝛼2] 𝐵2

+ 6𝐵0𝐵2 + 3𝐵12 − 2𝐴0𝐴2 − 𝐴12} 𝜓𝜉2 = 0,
𝐵1𝜓𝜉𝜉𝜉 − {[12𝑘2 + 𝛼2] 𝐵1 + 6𝐵1𝐵0 − 2𝐴0𝐴1} 𝜓𝜉 = 0.

(45)

Obviously when solving the system of (45), we conclude that
equations can be satisfied simultaneously for the following
constraints. Hence, the modified simple equation method
does not produce the soliton solution in general case:

𝐴0 = 0,
𝐵0 = 0,
𝐵1 = 𝐴1 = 0,
𝐴2 = 2√2,
𝐵2 = −2,
𝜔 = 𝛼1 − 𝑘2,
𝛼2 = −12𝑘2.

(46)

Then we will solve the following ordinary differential equa-
tion:

𝜓𝜉𝜉 = 0, (47)

and therefore

𝜓 = 𝑎0 + 𝑎1𝜉, (48)

where 𝑎0, 𝑎1 are arbitrary constants.

And

𝑢 (𝑥, 𝑡) = 2√2 𝑎12[𝑎0 + 𝑎1 (𝑥 − 2𝑘𝑡 + 𝜒)]2 ,
V (𝑥, 𝑡) = −2 𝑎12[𝑎0 + 𝑎1 (𝑥 − 2𝑘𝑡 + 𝜒)]2 .

(49)

Finally solutions become

𝐸4 (𝑥, 𝑡)
= 2√2𝑒𝑖(𝑘𝑥+{𝛼1−𝑘2}𝑡+𝜖0) { 𝑎12[𝑎0 + 𝑎1 (𝑥 − 2𝑘𝑡 + 𝜒)]2} ,

𝑁4 (𝑥, 𝑡) = −2{ 𝑎12[𝑎0 + 𝑎1 (𝑥 − 2𝑘𝑡 + 𝜒)]2} .
(50)

6. Conclusion

In this paper the dispersive bright, dark, and singular soliton
solutions to SBE with Kerr law of nonlinearity were studied.
The sech, tanh, csch, and the modified simplest equation
method have been successfully applied to find solitons
solutions for the coupled Schrödinger-Boussinesq equations.
Several constraint conditions were assuring the existence of
such solitons with Kerr law nonlinearity.Themodified simple
equation method does not produce the soliton solution in
general case. Solutions by threemethods are plotted in figures
for the real and imaginary parts for 𝐸(𝑥, 𝑡) and 𝑁(𝑥, 𝑡).
Compatibility in figures shape between the solutions of𝐸(𝑥, 𝑡) and𝑁(𝑥, 𝑡) by the samemethod sometimes appeared.
Solutions may be important for the conservation laws for
dispersive optical solitons. Those research outcomes will be
soon disseminated.
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