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This paper is concerned with stability analysis of additive Runge-Kutta methods for delay-integro-differential equations. We show
that if the additive Runge-Kutta methods are algebraically stable, the perturbations of the numerical solutions are controlled by the
initial perturbations from the system and the methods.

1. Introduction

Spatial discretization of many nonlinear parabolic problems
usually gives a class of ordinary differential equations, which
have the stiff part and the nonstiff part; see, e.g., [1–5]. In
such cases, the most widely used time-discretizations are the
special organized numerical methods, such as the implicit-
explicit numerical methods [6, 7], the additive Runge-Kutta
methods [8–12], and the linearized methods [13, 14]. When
applying the split numerical methods to numerically solve
the equations, it is important to investigate the stability of the
numerical methods.

In this paper, it is assumed that the spatial discretization
of time-dependent partial differential equations yields the
following nonlinear delay-integro-differential equations:

𝑦 (𝑡)
= 𝑓[1] (𝑡, 𝑦 (𝑡))

+ 𝑓[2] (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏) , ∫𝑡
𝑡−𝜏

𝑔 (𝑡, 𝑠, 𝑦 (𝑠)) 𝑑𝑠) ,
𝑡 > 0,

𝑦 (𝑡) = 𝜓 (𝑡) , − 𝜏 ≤ 𝑡 ≤ 0.

(1)

Here 𝜏 is a positive delay term, 𝜓(𝑡) is continuous, 𝑓[1]:[𝑡0, +∞]×𝑋 → 𝑋, and𝑓[2]: [𝑡0, +∞]×𝑋×𝑋×𝑋 → 𝑋, such
that problem (1) owns a unique solution, where𝑋 is a real or
complex Hilbert space. Particularly, when 𝑔 ≡ 0, problem (1)
is reduced to the nonlinear delay differential equations.When
the delay term 𝜏 = 0, problem (1) is reduced to the ordinary
differential equations.

The investigation on stability analysis of different numer-
ical methods for problem (1) has fascinated generations of
researchers. For example, Torelli [15] considered stability
of Euler methods for the nonautonomous nonlinear delay
differential equations. Hout [16] studied the stability of
Runge-Kutta methods for systems of delay differential equa-
tions. Baker and Ford [17] discussed stability of continuous
Runge-Kutta methods for integrodifferential systems with
unbounded delays. Zhang and Vandewalle [18] discussed the
stability of the general linear methods for integrodifferential
equations with memory. Li and Zhang obtained the stability
and convergence of the discontinuous Galerkin methods
for nonlinear delay differential equations [19, 20]. More
references for this topic can be found in [21–30].However, few
works have been found on the stability of splitting methods
for the proposed methods.

In the present work, we present the additive Runge-
Kutta methods with some appropriate quadrature rules
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to numerically solve the nonlinear delay-integrodifferential
equations (1). It is shown that if the additive Runge-Kutta
methods are algebraically stable, the obtained numerical
solutions are globally and asymptotically stable under the
given assumptions, respectively. The rest of the paper is
organized as follows. In Section 2, we present the numerical
methods for problems (1). In Section 3, we consider stability
analysis of the numerical schemes. Finally, we present some
extensions in Section 4.

2. The Numerical Methods

In this section, we present the additive Runge-Kutta methods
with the appropriate quadrature rules to numerically solve
problem (1).

The coefficients of the additive Runge-Kutta methods can
be organized in Buther tableau as follows (cf. [31]):

𝑐 𝐴[1] 𝐴[2](𝑏[1])𝑇 (𝑏[2])𝑇 ,
(2)

where 𝑐 = [𝑐𝑙, ⋅ ⋅ ⋅ , 𝑐𝑠]𝑇, 𝑏[𝑘] = [𝑏[𝑘]1 , ⋅ ⋅ ⋅ , 𝑏[𝑘]𝑠 ]𝑇, and 𝐴[𝑘] =(𝑎[𝑘]𝑖𝑗 )𝑠𝑖,𝑗=1 for 𝑘 = 1, 2.
Then, the presented ARKMs for problem (1) can be

written by

𝑦𝑛+1 = 𝑦𝑛 + ℎ 𝑠∑
𝑗=1

𝑏[1]𝑗 𝑓[1] (𝑡𝑛 + 𝑐𝑗ℎ, 𝑦(𝑛)𝑗 )
+ ℎ 𝑠∑
𝑗=1

𝑏[2]𝑗 𝑓[2] (𝑡𝑛 + 𝑐𝑗ℎ, 𝑦(𝑛)𝑗 , 𝑦(𝑛)𝑗 ) ,
𝑦(𝑛)𝑖 = 𝑦𝑛 + ℎ 𝑠∑

𝑗=1

𝑎[1]𝑖𝑗 𝑓[1] (𝑡𝑛 + 𝑐𝑗ℎ, 𝑦(𝑛)𝑗 )
+ ℎ 𝑠∑
𝑗=1

𝑎[2]𝑖𝑗 𝑓[2] (𝑡𝑛 + 𝑐𝑗ℎ, 𝑦(𝑛)𝑗 , 𝑦(𝑛−𝑚)𝑗 , 𝑦(𝑛)𝑗 ) ,
𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑠,

(3)

where 𝑦𝑛 and 𝑦(𝑛)𝑖 are approximations to the analytic solution𝑦(𝑡𝑛) and 𝑦(𝑡𝑛 + 𝑐𝑖ℎ), respectively, 𝑦𝑛 = 𝜓(𝑡𝑛) for 𝑛 ≤ 0, 𝑦(𝑛)𝑖 =𝜓(𝑡𝑛+𝑐𝑖ℎ) for 𝑡𝑛+𝑐𝑖ℎ ≤ 0, and 𝑦(𝑛)𝑖 denotes the approximation
to ∫𝑡𝑛+𝑐𝑖ℎ
𝑡𝑛+𝑐𝑖ℎ−𝜏

𝑔(𝑡𝑛 + 𝑐𝑖ℎ, 𝜉, 𝑦(𝜉))𝑑𝜉, which can be computed by
some appropriate quadrature rules

𝑦(𝑛)𝑖 = ℎ 𝑚∑
𝑘=0

𝑝𝑘𝑔 (𝑡𝑛 + 𝑐𝑖ℎ, 𝑡𝑛−𝑘 + 𝑐𝑖ℎ, 𝑦(𝑛−𝑘)𝑖 ) ,
𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑠.

(4)

For example, we usually adopt the repeated Simpson’s rule or
Newton-Cotes rule, etc., according to the requirement of the
convergence of the method (cf. [18]).

3. Stability Analysis

In this section, we consider the numerical stability of the
proposed methods. First, we introduce a perturbed problem,
whose solution satisfies

𝑧 (𝑡)
= 𝑓[1] (𝑡, 𝑧 (𝑡))

+ 𝑓[2] (𝑡, 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜏) , ∫𝑡
𝑡−𝜏

𝑔 (𝑡, 𝑠, 𝑧 (𝑠)) 𝑑𝑠) ,
𝑡 > 0,

𝑦 (𝑡) = 𝜙 (𝑡) , − 𝜏 ≤ 𝑡 ≤ 0.

(5)

It is assumed that there exist some inner product < ⋅, ⋅ > and
the induced norm ‖ ⋅ ‖ such that

Re ⟨𝑦 − 𝑧, 𝑓[1] (𝑡, 𝑦) − 𝑓[1] (𝑡, 𝑧)⟩ ≤ 𝛼 𝑦 − 𝑧2 ,
Re ⟨𝑦 − 𝑧, 𝑓[2] (𝑡, 𝑦, 𝑢1, V1) − 𝑓[2] (𝑡, 𝑧, 𝑢2, V2)⟩

≤ 𝛽1 𝑦 − 𝑧2 + 𝛽2 𝑢1 − 𝑢22 + 𝛾 V1 − V2
2 ,𝑔 (𝑡, V, 𝑠1) − 𝑔 (𝑡, V, 𝑠2) ≤ 𝜃 𝑠1 − 𝑠2 ,

(6)

where 𝛼 < 0, 𝛽1 < 0, 𝛽2 > 0, 𝛾 > 0, and 𝜃 > 0 are constants.
It is remarkable that the conditions can be equivalent to the
assumptions in [32, 33] (see. [34] 𝑅𝑒𝑚𝑎𝑟𝑘 2.1).
Definition 1 (cf. [9]). An additive Runge-Kutta method is
called algebraically stable if the matrices

𝐵] fl diag (𝑏[]]1 , ⋅ ⋅ ⋅ , 𝑏[]]𝑠 ) , V = 1, 2,
𝑀]𝜇 fl 𝐵]𝐴[𝜇] + 𝐴[]]𝑇𝐵𝜇 − 𝑏[]]𝑏[𝜇]𝑇 (7)

are nonnegative.

Theorem 2. Assume an additive Runge-Kutta method is
algebraically stable and 𝛽1 + 𝛽2 + 4𝛾𝜏2𝜂2𝜃2 < 0, where 𝜂 =
max{𝑝1, 𝑝2. ⋅ ⋅ ⋅ , 𝑝𝑘}. Then, it holds that

𝑦𝑛 − 𝑧𝑛 ≤ √(1 + 2 𝑠∑
𝑖=1

𝜏𝑏[2]𝑖 𝛽2 + 4𝛾𝜏2𝜂2𝜃2)
⋅ max
−𝜏≤𝑡≤0

𝜓 (𝑡) − 𝜙 (𝑡) ,
(8)

where 𝑦𝑛 and 𝑧𝑛 are numerical approximations to problems (1)
and (5), respectively.
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Proof. Let {𝑦𝑛, 𝑦(𝑛)𝑖 , 𝑦(𝑛)𝑖 )} and {𝑧𝑛, 𝑧(𝑛)𝑖 , �̃�(𝑛)𝑖 )} be two
sequences of approximations to problems (1) and (5),
respectively, by ARKMs with the same stepsize ℎ and write

𝑈(𝑛)𝑖 = 𝑦(𝑛)𝑖 − 𝑧(𝑛)𝑖 ,
�̃�(𝑛)𝑖 = 𝑦(𝑛)𝑖 − �̃�(𝑛)𝑖 ,
𝑈(𝑛)0 = 𝑦𝑛 − 𝑧𝑛,
𝑊[1]𝑖 = ℎ [𝑓[1] (𝑡𝑛 + 𝑐[1]𝑖 ℎ, 𝑦(𝑛)𝑖 )

− 𝑓[1] (𝑡𝑛 + 𝑐[1]𝑖 ℎ, 𝑧(𝑛)𝑖 )] ,
𝑊[2]𝑖 = ℎ [𝑓[2] (𝑡𝑛 + 𝑐[2]𝑖 ℎ, 𝑦(𝑛)𝑖 , 𝑦(𝑛−𝑚)𝑖 , 𝑦(𝑛)𝑖 )

− 𝑓[2] (𝑡𝑛 + 𝑐[2]𝑖 ℎ, 𝑧(𝑛)𝑖 , 𝑧(𝑛−𝑚)𝑖 , �̃�(𝑛)𝑖 )] .

(9)

With the notation, the ARKMs for (1) and (5) yield

𝑈(𝑛+1)0 = 𝑈𝑛0 + 2∑
𝜇=1

𝑠∑
𝑗=1

𝑏[𝜇]𝑗 𝑊[𝜇]𝑗 ,
𝑈(𝑛)𝑖 = 𝑈(𝑛)0 + 2∑

𝜇=1

𝑠∑
𝑗=1

𝑎[𝜇]𝑖𝑗 𝑊[𝜇]𝑗 , 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑠.
(10)

Thus, we have

𝑈(𝑛+1)0 2 = ⟨𝑈(𝑛)0 + 2∑
𝜇=1

𝑠∑
𝑗=1

𝑏[𝜇]𝑗 𝑊[𝜇]𝑗 , 𝑈(𝑛)0
+ 2∑

]=1

𝑠∑
𝑖=1

𝑏[]]𝑖 𝑊[]]𝑖 ⟩ = 𝑈(𝑛)0 2 + 2 2∑
𝜇=1

𝑠∑
𝑖=1

𝑏[𝜇]𝑖
⋅ Re ⟨𝑈(𝑛)0 ,𝑊[𝜇]𝑖 ⟩ + 2∑

𝜇,]=1

𝑠∑
𝑖,𝑗=1

𝑏[𝜇]𝑖 𝑏[]]𝑗 ⟨𝑊[𝜇]𝑖 ,𝑊[]]𝑗 ⟩
= 𝑈(𝑛)0 2 + 2 2∑

𝜇=1

𝑠∑
𝑖=1

𝑏[𝜇]𝑖
⋅ Re⟨𝑈(𝑛)𝑖 − 2∑

]=1

𝑠∑
𝑗=1

𝑎[]]𝑖𝑗 𝑊[]]𝑗 ,𝑊[𝜇]𝑖 ⟩
+ 2∑
𝜇,]=1

𝑠∑
𝑖,𝑗=1

𝑏[𝜇]𝑖 𝑏[]]𝑗 ⟨𝑊[𝜇]𝑖 ,𝑊[]]𝑗 ⟩ = 𝑈(𝑛)0 2

+ 2 2∑
𝜇=1

𝑠∑
𝑖=1

𝑏[𝜇]𝑖 Re ⟨𝑈(𝑛)𝑖 ,𝑊[𝜇]𝑖 ⟩
− 2∑
𝜇,]=1

𝑠∑
𝑖,𝑗=1

(𝑏[𝜇]𝑖 𝑎[]]𝑖𝑗 + 𝑎[𝜇]𝑗𝑖 𝑏[]]𝑗 − 𝑏[𝜇]𝑖 𝑏[]]𝑗 )
⋅ ⟨𝑊[𝜇]𝑖 ,𝑊[]]𝑗 ⟩ .

(11)

Since that the matrixM is a nonnegative matrix, we obtain

− 2∑
𝜇,]=1

𝑠∑
𝑖,𝑗=1

(𝑏[𝜇]𝑖 𝑎[]]𝑖𝑗 + 𝑎[𝜇]𝑗𝑖 𝑏[]]𝑗 − 𝑏[𝜇]𝑖 𝑏[]]𝑗 ) ⟨𝑊[𝜇]𝑖 ,𝑊[]]𝑗 ⟩
≤ 0.

(12)

Furthermore, by conditions (6), we find

Re ⟨𝑈(𝑛)𝑖 ,𝑊[1]𝑖 ⟩ ≤ 𝛼ℎ 𝑈(𝑛)𝑖 2 , (13)

and

Re ⟨𝑈(𝑛)𝑖 ,𝑊[2]𝑖 ⟩ ≤ 𝛽1ℎ 𝑈(𝑛)𝑖 2 + 𝛽2ℎ 𝑈(𝑛−𝑚)𝑖 2
+ 𝛾ℎ �̃�(𝑛)𝑖 2 .

(14)

Together with (11), (12), (13), and (14), we get

𝑈(𝑛+1)0 2 ≤ 𝑈(𝑛)0 2 + 2 𝑠∑
𝑖=1

ℎ𝑏[1]𝑖 𝛼 𝑈(𝑛)𝑖 2

+ 2 𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 𝑈(𝑛)𝑖 2 + 𝛽2 𝑈(𝑛−𝑚)𝑖 2

+ 𝛾 �̃�(𝑛)𝑖 2) ≤ 𝑈(𝑛)0 2 + 2 𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 𝑈(𝑛)𝑖 2
+ 𝛽2 𝑈(𝑛−𝑚)𝑖 2 + 𝛾 �̃�(𝑛)𝑖 2) .

(15)

Note that

�̃�(𝑛)𝑖 2 =
ℎ
𝑚∑
𝑘=0

𝑝𝑘 [𝑔 (𝑡𝑛 + 𝑐𝑖ℎ, 𝑡𝑛−𝑘 + 𝑐𝑖ℎ, 𝑦𝑛−𝑘𝑖 )
− 𝑔 (𝑡𝑛 + 𝑐𝑖ℎ, 𝑡𝑛−𝑘 + 𝑐𝑖ℎ, 𝑧𝑛−𝑘𝑖 )]

2 ≤ (𝑚 + 1)
⋅ 𝜂2𝜃2ℎ2 𝑚∑

𝑘=0

𝑈(𝑛−𝑘)𝑖 2 .
(16)

Then, we obtain

𝑈(𝑛+1)0 2 ≤ 𝑈(𝑛)0 2 + 2 𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 𝑈(𝑛)𝑖 2

+ 𝛽2 𝑈(𝑛−𝑚)𝑖 2 + 𝛾 (𝑚 + 1) 𝜂2𝜃2ℎ2 𝑚∑
𝑘=0

𝑈(𝑛−𝑘)𝑖 2)
≤ 𝑈(0)0 2 + 2 𝑛∑

𝑗=0

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 𝑈(𝑗)𝑖 2

+ 𝛽2 𝑈(𝑗−𝑚)𝑖 2 + 𝛾 (𝑚 + 1) 𝜂2𝜃2ℎ2 𝑚∑
𝑘=0

𝑈(𝑗−𝑘)𝑖 2)
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≤ 𝑈(0)0 2 + 2 𝑛∑
𝑗=0

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 𝑈(𝑗)𝑖 2 + 𝛽2 𝑈(𝑗)𝑖 2

+ 𝛾 (𝑚 + 1)2 ℎ2𝜂2𝜃2 𝑈(𝑗)𝑖 2)
+ 2 −1∑
𝑗=−𝑚

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽2 𝑈(𝑗)𝑖 2

+ 𝛾 (𝑚 + 1)2 ℎ2𝜂2𝜃2 𝑈(𝑗)𝑖 2) ≤ 𝑈(0)0 2
+ 2 𝑛∑
𝑗=0

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 + 𝛽2 + 4𝛾𝜏2𝜂2𝜃2) 𝑈(𝑗)𝑖 2

+ 2 −1∑
𝑗=−𝑚

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽2 + 4𝛾𝜏2𝜂2𝜃2) 𝑈(𝑗)𝑖 2 ≤ 𝑈(0)0 2

+ 2 −1∑
𝑗=−𝑚

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽2 + 4𝛾𝜏2𝜂2𝜃2) 𝑈(𝑗)𝑖 2 ≤ 𝑈(0)0 2

+ 2 𝑠∑
𝑖=1

𝑚ℎ𝑏[2]𝑖 (𝛽2 + 4𝛾𝜏2𝜂2𝜃2) max
−𝑚≤𝑗≤−1

𝑈(𝑗)𝑖 2 .
(17)

Hence,

𝑈(𝑛+1)0 2 ≤ 𝐶max
−𝜏≤𝑡≤0

𝜓 (𝑡) − 𝜙 (𝑡)2 , (18)

where 𝐶 = [(1 + 2∑𝑠𝑖=1 𝜏𝑏[2]𝑖 𝛽2 + 4𝛾𝜏2𝜂2𝜃2)]. This completes
the proof.

Theorem 3. Assume an additive Runge-Kutta method is
algebraically stable and 𝛽1 + 𝛽2 + 4𝛾𝜏2𝜂2𝜃2 < 0. Then, it holds
that

lim
𝑛→∞

𝑈(𝑛)0  = 0. (19)

Proof. Similar to the proof of Theorem 2, it holds that

𝑈(𝑛+1)0 2
≤ 𝑈(0)0 2

+ 2 𝑛∑
𝑗=0

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽1 + 𝛽2 + 4𝛾𝜏2𝜂2𝜃2) 𝑈(𝑗)𝑖 2

+ 2 −1∑
𝑗=−𝑚

𝑠∑
𝑖=1

ℎ𝑏[2]𝑖 (𝛽2 + 4𝛾𝜏2𝜂2𝜃2) 𝑈(𝑗)𝑖 2 .

(20)

Note that 𝛽1 + 𝛽2 + 4𝛾𝜏2𝜂2𝜃2 < 0 and 𝑏[2]𝑖 > 0; we have
lim
𝑛→∞

𝑠∑
𝑖=1

𝑏[2]𝑖 𝑈(𝑛)𝑖  = 0. (21)

On the other hand,𝑊[1]𝑖  = ℎ [𝑓[1] (𝑡𝑛 + 𝑐[1]𝑖 ℎ, 𝑦(𝑛)𝑖 )
− 𝑓[1] (𝑡𝑛 + 𝑐[1]𝑖 ℎ, 𝑧(𝑛)𝑖 )] ≤ 𝐿1 𝑈(𝑛)𝑖  (22)

𝑊[2]𝑖  = ℎ [𝑓[2] (𝑡𝑛 + 𝑐[2]𝑖 ℎ, 𝑦(𝑛)𝑖 , 𝑦(𝑛−𝑚)𝑖 , 𝑦(𝑛)𝑖 )
− 𝑓[2] (𝑡𝑛 + 𝑐[2]𝑖 ℎ, 𝑧(𝑛)𝑖 , 𝑧(𝑛−𝑚)𝑖 , �̃�(𝑛)𝑖 )] ≤ 𝐿2 (𝑈(𝑛)𝑖 
+ 𝑈(𝑛−𝑚)𝑖  + 𝑦(𝑛)𝑖 − �̃�(𝑛)𝑖 ) .

(23)

Now, in view of (10), (21), (22), and (23), we obtain

lim
𝑛→∞

𝑈(𝑛)0  = 0. (24)

This completes the proof.

Remark 4. In [35], Yuan et al. also discussed nonlinear
stability of additive Runge-Kutta methods for multidelay-
integro-differential equations. However, the main results are
different. The main reason is that the results in [35] imply
that the perturbations of the numerical solutions tend to
infinity when the time increase, while the stability results
in present paper indicate that the perturbations of the
numerical solutions are independent of the time. Besides, the
asymptotical stability of the methods is also discussed in the
present paper.

4. Conclusion

The additive Runge-Kutta methods with some appropriate
quadrature rules are applied to solve the delay-integro-
differential equations. It is shown that if the additive Runge-
Kutta methods are algebraically stable, the obtained numer-
ical solutions can be globally and asymptotically stable,
respectively. In the future works, we will apply the methods
to solve more real-world problems.
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