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We investigate an efficient numerical method for solving a class of nonlinear Volterra integro-differential equations, which is a
combination of the parametric iteration method and the spectral collocation method.The implementation of the modified method
is demonstrated by solving several nonlinear Volterra integro-differential equations. The results reveal that the developed method
is easy to implement and avoids the additional computational work. Furthermore, the method is a promising approximate tool to
solve this class of nonlinear equations and provides us with a convenient way to control and modify the convergence rate of the
solution.

1. Introduction

Many physical phenomena in different fields of sciences and
engineering have been formulated using integro-differential
equations. The nonlinear integro-differential equations play
a crucial role to describe many process like fluid dynamics,
biological models and chemical kinetics, population, poten-
tial theory, polymer theology, and drop wise condensation
(see [1–4] and the references cited therein). In fact analytical
solutions of integro-differential equations either do not exist
or they are hard to compute. Eventually an exact solution is
computable, the required calculations may be tedious, or the
resulting solution may be difficult to interpret. Due to this,
it is required to obtain an efficient numerical solution. In
literature there exist several numerical methods for solving
integro-differential equations such as successive approxima-
tion method, meshless method [5], Taylor polynomial [6],
Tau method [4], wavelet-Galerkin method [7], Adomain
decomposition method [8], Homotopy perturbation method
[9], Homotopy analysis method [10], Sinc collocation [11],
Legendre polynomials [12], and Taylor collocation method
[13]. The monograph by Bruner [14] includes a wealth of
material on the theory and numerical methods for Volterra
integro-differential equations.

The parametric iteration method (PIM) is an analytic
approximate method that provides the solution of linear and

nonlinear problem as a sequence of iterations. In fact, the
PIM as a fixed- point iteration method is a reconstruction of
variational iteration method [15]. The PIM, however, suffers
from a number of restrictive measures, such as the resulting
integrals in its iterative relation which may not be performed
analytically. Also, the implementation of the PIM generally
leads to calculation of unneeded terms, in which more time
is consumed in repeated calculations for series solutions.

In order to overcome these shortcomings, a useful
improvement of the PIM was proposed in [16]. Therefore,
the strategy that will be pursued in this work rests mainly on
establishing a simple algorithm, requiring no tedious compu-
tational work, based on the improved PIM and the spectral
collocation technique for obtaining an accurate solution for
the following nonlinearVolterra integro-differential equation
(VIDE):

𝑢󸀠 (𝑡) = 𝑓 (𝑡) + ∫𝑡
0
𝑘 (𝑡, 𝑠) 𝐺 (𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇]

𝑢 (0) = 𝑢0,
(1)

where the kernels 𝑘(𝑡, 𝑠), 𝑓(𝑡) and 𝐺(𝑢(𝑠)) are smooth func-
tions.The existence and uniqueness of the solution for (1) are
presented in [17].

To demonstrate the utility of the proposed method,
some examples of the nonlinear VIDEs are given, which are
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solved using the established method. The obtained results
are compared with the numerical solutions. In all cases, the
present algorithm performed excellently.

2. The Basic Idea of the PIM

The PIM gives a rapidly convergent approach by using
successive approximations of the exact solution if such a
solution exists; otherwise the approximations can be used for
numerical purposes. The idea of the PIM is very simple and
straightforward. To explain the PIM, consider (1) as below:

𝐿 [𝑢 (𝑡)] + 𝑁 [𝑢 (𝑡)] = 𝑓 (𝑡) , (2)

where 𝐿 with the property 𝐿V ≡ 0 when V ≡ 0 and it denotes
the auxiliary linear operator with respect to 𝑢. In (2) 𝑁 is a
nonlinear continuous operator with respect to 𝑢 and 𝑓(𝑡) is
the source term.

According to [15, 16], we construct the following family of
the explicit PIM for (2) as

𝐿 [𝑢𝑘+1 (𝑡) − 𝑢𝑘 (𝑡)] = ℎ𝐻 (𝑡) 𝐴 [𝑢𝑘 (𝑡)] , (3)

where

𝐴 [𝑢𝑘 (𝑡)] = 𝐿 [𝑢𝑘 (𝑡)] + 𝑁 [𝑢𝑘 (𝑡)] − 𝑓 (𝑡)
= 𝑢󸀠𝑘 (𝑡) − ∫𝑡

0
𝑘 (𝑡, 𝑠) 𝐺 (𝑢𝑘 (𝑠)) 𝑑𝑠 − 𝑓 (𝑡) , (4)

with the initial condition

𝑢𝑘+1 (0) = 𝑢0. (5)

Also we can construct a family of the implicit PIM for (2)
as follows:

𝐿 [𝑢𝑘+1 (𝑡) − 𝑢𝑘 (𝑡)]
= ℎ𝐻 (𝑡) {𝐿 [𝑢𝑘 (𝑡)] + 𝑁 [𝑢𝑘+1 (𝑡)] − 𝑓 (𝑡)} , (6)

with the above initial condition.𝑢0(𝑡) is the initial guess which can be freely found from
solving its corresponding linear equation (𝐿[𝑢0(𝑡)] = 0
or 𝐿[𝑢0(𝑡)] = 𝑓(𝑡)) and the subscript 𝑘 denotes the 𝑘th
iteration. Accordingly the approximations of 𝑢𝑘(𝑡), 𝑘 ≥ 0
for the PIM iterative relation will be obtained readily in the
auxiliary parameter ℎ. Consequently, the exact solution can
be obtained by using

𝑢 (𝑡) = lim
𝑘󳨀→∞

𝑢𝑘 (𝑡) . (7)

The parametric iteration formula (3) makes a recurrence
sequence 𝑢𝑘(𝑡). Obviously, the limit of the sequence will
be the solution of (1) if the sequence is convergent. In the
following, we give a proof of convergence of the PIM.Here we
assume that for every 𝑘, 𝑢𝑘 ∈ 𝐶1[0, 𝑇] and {𝑢󸀠𝑘} is uniformly
convergent.

Theorem 1. If the sequence 𝑢𝑘(𝑡) converges, where 𝑢𝑘(𝑡) is
produced by the parametric iteration formulation of (3), then it
must be the exact solution of (1).

Proof. If the sequence {𝑢𝑘(𝑡)} converges, we define
𝑈 (𝑡) = lim

𝑘󳨀→∞
𝑢𝑘 (𝑡) , (8)

and it holds
𝑈 (𝑡) = lim

𝑘󳨀→∞
𝑢𝑘+1 (𝑡) . (9)

From (16) and (9) and the definition of 𝐿, we can easily
acquire

lim
𝑘󳨀→∞

𝐿 [𝑢𝑘+1 (𝑡) − 𝑢𝑘 (𝑡)] = 𝐿 lim
𝑘󳨀→∞

[𝑢𝑘+1 (𝑡) − 𝑢𝑘 (𝑡)]
= 0. (10)

From (10) and according to (3), we obtain

ℎ𝐻 (𝑡) lim
𝑘󳨀→∞

𝐴 [𝑢𝑘 (𝑡)] = 𝐿 lim
𝑘󳨀→∞

[𝑢𝑘+1 (𝑡) − 𝑢𝑘 (𝑡)] = 0. (11)

Since ℎ ̸= 0 and also𝐻(𝑡) ̸= 0 for all 𝑡, the relation (11) gives
us

lim
𝑘󳨀→∞

𝐴 [𝑢𝑘 (𝑡)] = 0. (12)

From (12) and the continuity property of the operator 𝐺, it
follows that

lim
𝑘󳨀→∞

𝐴 [𝑢𝑘 (𝑡)]
= lim
𝑘󳨀→∞

(𝑢󸀠𝑘 (𝑡) − ∫𝑡
0
𝑘 (𝑡, 𝑠) 𝐺 (𝑢𝑘 (𝑠)) 𝑑𝑠 − 𝑓 (𝑡))

= ( lim
𝑘󳨀→∞

𝑢𝑘 (𝑡))󸀠 − ∫𝑡
0
𝑘 (𝑡, 𝑠) 𝐺 ( lim

𝑘󳨀→∞
𝑢𝑘 (𝑠)) 𝑑𝑠

− 𝑓 (𝑡) = 𝑈󸀠 (𝑡) − ∫𝑡
0
𝑘 (𝑡, 𝑠) 𝐺 (𝑈 (𝑠)) 𝑑𝑠 − 𝑓 (𝑡) .

(13)

From (12) and (13), we get

𝑈󸀠 (𝑡) − ∫𝑡
0
𝑘 (𝑡, 𝑠) 𝐺 (𝑈 (𝑠)) 𝑑𝑠 − 𝑓 (𝑡) = 0,

0 ≤ 𝑠, 𝑡 ≤ 𝑇.
(14)

On the other hand, in view of the initial condition of the (𝑘 +1)th order PIM and (9), it holds that

𝑈 (0) = lim
𝑘󳨀→∞

𝑢𝑘+1 (0) = 𝑢 (0) = 𝑢0. (15)

Hence, according to the expressions (14) and (15), 𝑈(𝑡) must
be the exact solution of (1) and this ends the proof.

It is obvious that the convergence of the sequence (16)
depends upon the initial guess 𝑢0(𝑡), the auxiliary linear
operator 𝐿, the auxiliary parameter ℎ, and the auxiliary
function𝐻(𝑡). Fortunately, the PIMprovides uswith the great
freedom of choosing these items. Thus, as long as 𝑢0(𝑡), 𝐿,ℎ, and 𝐻(𝑡) are property chosen so that the sequence (16)
converges in a region 0 ≤ 𝑡 ≤ 𝑇, it should converge to the
exact solution in this region. Therefore, the combination of
the convergence theorem and the freedom of the choice of
the above factors establishes the cornerstone of the validity
and flexibility of the PIM.
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Remark 2. In the case of failure of convergence of the PIM,
the presence of the parameter ℎ in (3) or (6) could play a
very important role in the frame of the PIM. Althoughwe can
find a valid region of ℎ for every physical problem by plotting
the solution or its derivatives versus the parameter ℎ in some
points, an approximate optimal value of the convergence
accelerating parameter ℎ can be determined at the order of
approximation by the residual error [15]

𝑅𝑒𝑠 (ℎ)
= ∫𝑇
0
{𝐿 [𝑢𝑘 (𝑡; ℎ)] + 𝑁 [𝑢𝑘 (𝑡; ℎ)] − 𝑓 (𝑡)}2 𝑑𝑥. (16)

One can minimize (16) by imposing the requirement𝑑𝑅𝑒𝑠(ℎ)/𝑑ℎ = 0.
3. A Spectral Collocation PIM

In general, the application of the PIM to solve the nonlinear
VIDEs leads to the calculation of unneeded and repeated
terms. The unneeded and repeated calculations may or may
not lead to faster convergence. Also, since the PIM provides
the solution as a sequence of iterates, its successive iterations
may be very complex so that the resulting integrals in its
iterative relation may not be performed analytically. In this
section, we will overcome this shortcoming of the original
PIM for solving (1) by suggesting a spectral collocation PIM.
As will be shown in this paper later, the proposedmethodwill
be very simple to implement and save time and calculations.

Consider the basis functions 𝜙𝑗 which are polynomials of
degree𝑁−1 satisfying 𝜙𝑗(𝑡𝑘) = 𝛿𝑗,𝑘 for the shifted Chebyshev
nodes (note that 𝑡1 = 𝑇 and 𝑡𝑁 = 0)

𝑡𝑘 = 𝑇2 [cos((𝑘 − 1) 𝜋𝑁 − 1 ) + 1] , 𝑘 = 1, . . . , 𝑁. (17)

The unknown function 𝑢(𝑡) is approximated as a truncated
series of polynomials. The polynomial

𝑝 (𝑡) ≅ 𝑢 (𝑡) = 𝑁∑
𝑗=1

𝑢𝑗𝜙𝑗 (𝑡) , (18)

interpolates the points (𝑡𝑗, 𝑢𝑗), 𝑗 = 1, . . . , 𝑁; that is, 𝑝(t) = u,
where t = (𝑡1, . . . , 𝑡𝑁) and u = (𝑢1, . . . , 𝑢𝑁). The values of
the interpolating polynomial’s first derivative at the nodes are𝑝󸀠(t) = 𝐷(1)u, and the value of integral at the nodes is defined
by ∫𝑡
0
𝑘(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑉 ⋅u, where𝑉 is the Volterra integration

matrix [18, 19].
Generally, in order to solve problem (1) using a spectral

collocation scheme, the interpolating polynomial 𝑝(𝑡) is
required to satisfy the equation at the interior nodes. The
values of the interpolating polynomial at the interior nodes𝑡2, . . . , 𝑡𝑁 are 𝑝(t𝑚) = (u)𝑚 = 𝐼𝑚,:u (𝑚 = 1 : 𝑁 − 1) and
the derivative value is 𝑝󸀠(t𝑚) = 𝐷(1)𝑚,:u. The initial condition
that involves the interpolating polynomial can be handled by
using the formula 𝑝(t𝑁) = (u)𝑁 = 𝐼𝑁,:u, where 𝐼𝑁,: denotes
the last row of the (𝑁 × 𝑁) identity matrix.

For the interpolating polynomial to satisfy the nonlinear
VIDE of (1) at each interior node, the collocation equation

𝑝󸀠 (t𝑚) = 𝑓 (t𝑚) + ∫t

0
𝑘 (t, 𝑠) 𝐺 (𝑝 (𝑠)) 𝑑𝑠,

𝑝 (t𝑁) = 𝑢0,
(19)

should be satisfied. Substituting the differentiation and inte-
gration matrix relations into equation (19), we get

[𝐷(1)𝑚,:𝐼𝑁,: ] u = [f𝑚𝑢0] + [
𝐼𝑚,: (𝑉 ⋅ 𝐺 (u))

0 ] , (20)

where f𝑚 = {𝑓(𝑡1), . . . , 𝑓(𝑡𝑁−1)}. Now, in view of (3) and
the definitions of 𝐿 and 𝐴, by substituting the differentiation
and integration matrix relations, we will have the following
explicit PIM for solving (1) which is called the spectral PIM
(SPIM):

u𝑘+1 = u𝑘 + ℎ[𝐷
(1)
𝑚,:𝐼𝑁,: ]
−1

⋅ ([𝐷(1)𝑚,:𝐼𝑁,: ] u𝑘 − [f𝑚𝑢0] − [
𝐼𝑚,: (𝑉 ⋅ 𝐺 (u𝑘))0 ]) ,

(21)

where for simplicity we chose 𝐻(𝑡) ≡ 1. If we define L =[𝐷1𝑚,:, 𝐼𝑁,:]𝑇, f = [f𝑚, 𝑢0]𝑇, and Nu𝑘 = [𝐼𝑚,: (𝑉 ⋅ 𝐺(u𝑘)), 0]𝑇,
then we will have the following explicit iterative relation for
finding the solution vector u𝑘+1:

u𝑘+1 = u𝑘 + ℎL−1 (Lu𝑘 − f − Nu𝑘) . (22)

Here the vector u𝑘+1 is defined as

u𝑘+1 = {𝑢𝑘+1 (𝑡1) , . . . , 𝑢𝑘+1 (𝑡𝑁−1)} . (23)

In using the SPIM algorithm above, we begin by choosing
the best possible initial approximation that satisfies the
initial condition. To this end, we may determine the initial
approximation by solving Lu0 = 0 or Lu0 = f . Thus,
starting from the initial approximation u0(𝑡), we can use the
recurrence formula (22) to successively obtain directlyu𝑘+1(𝑡)
for 𝑘 ≥ 0.
4. Test Problems

In this section, we demonstrate the effectiveness of the SPIM
by applying the method to three nonlinear NVIDs. All of the
numerical computations have been performed in MATLAB
R2014a and terminatedwhen the current iterate satisfies ‖u𝑘−
u𝑘−1‖ ≤ 10−16, where u𝑘 is the solution vector of the 𝑘th SPIM
iteration.

Example 1. Consider the following nonlinear VIDE [20]:

𝑢󸀠 (𝑡) = 1𝜀 (𝑢 − 𝑢2 − 𝑢∫
𝑡

0
𝑢 (𝑠) 𝑑𝑠) , 𝑡 ∈ [0, 1] (24)
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Figure 1: The valid region of ℎ for the explicit spectral PIM when𝑁 = 15 for Example 1.

with the initial condition 𝑢(0) = 0.1. Here we aim to solve the
above Volterra population equation for the value 𝜀 = 1/10.
To use the proposed method in this paper, i.e., (22), we could
choose

𝐿 [𝑢 (𝑡)] = 𝑢󸀠 (𝑡) ,
𝑁 [𝑢 (𝑡)] = 1𝜀 (𝑢 − 𝑢2 − 𝑢∫

𝑡

0
𝑢 (𝑠) 𝑑𝑠) ,

𝑔 (𝑡) ≡ 0.
(25)

To investigate the valid region ℎ of the solution obtained
via the explicit spectral PIM algorithm (22) for𝑁 = 15 of (24)
with 𝜀 = 1/10, we try to plot the curve of 𝑢󸀠󸀠(0) with respect
to ℎ, as shown in Figure 1. According to this curve, it is easy
to discover the valid region of ℎ. It is usually convenient to
investigate the valid region of ℎ for the PIM bymeans of such
kinds of the curves.

According to Figure 1, it could be seen that the explicit
spectral PIM for ℎ = −1 and 𝑁 = 15 (even for large 𝑁)
is not a convergent approach for solving (24). The presence
of the auxiliary parameter ℎ in the framework of the explicit
spectral PIM could play a very important role. As mentioned
above, we can find an approximate optimal value for ℎ from
(16) by estimating the residual error 𝑅𝑒𝑠(ℎ) in a sequence of
values ℎ, as the value of ℎ with the lowest residual will be
the approximate optimal ℎ. Figure 2 shows the approximate
optimal value of ℎ for the explicit spectral PIM for 𝑁 = 15,
i.e., ℎ = −1.47 with two decimal digits.

Figure 3(b) shows the absolute error of the explicit
spectral PIM for 𝑁 = 15 and ℎ = −1.47. Also the behavior
of the numerical and explicit spectral PIM solutions of this
example for𝑁 = 15 and ℎ = −1.47 is presented in Figure 3(a).
Example 2. Consider the following nonlinear VIDE:

𝑢󸀠 (𝑡) = 1 − 12𝑡 + 12𝑒−𝑡
2 + ∫𝑡
0
𝑡𝑠𝑒−𝑢2(𝑠)𝑑𝑠, (26)

with initial condition 𝑢(0) = 0 and the exact solution 𝑢(𝑡) = 𝑡,
[21].
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Figure 2: The approximate optimal ℎ (ℎ = −1.47) for 𝑁 = 15 for
Example 1.

To investigate the valid region ℎ for the solution obtained
via the explicit spectral PIM algorithm (22) for 𝑁 = 10 of
(26), here we plot the curve of 𝑢󸀠󸀠(0) with respect to ℎ, as
shown in Figure 4.

Figure 5 shows the approximate optimal value of ℎ of the
explicit spectral PIM when 𝑁 = 10, i.e., ℎ = −1.1 with one
decimal digit.

Figure 6 shows the absolute error of the explicit spectral
PIM for𝑁 = 10 and ℎ = −1.1.
Example 3. Consider the following nonlinear VIDE [22]:

𝑢󸀠 (𝑡) = 𝑓 (𝑡) + ∫𝑡
0
(𝑡 − 𝑠) ln (1 + 𝑢 (𝑠)) 𝑑𝑠, (27)

where

𝑓 (𝑡) = 124 (8 + 9𝑡2 + 12√1 + 𝑡 − 8√1 + 𝑡
− 4𝑡 (−6 + 5√1 + 𝑡) − 12𝑡2 ln (1 + √1 + 𝑡))

(28)

with the initial condition 𝑢(0) = 1 and the corresponding
exact solution is given by 𝑢(𝑡) = √1 + 𝑡.

To investigate the valid region ℎ of the solution obtained
via the explicit spectral PIM algorithm (22) for 𝑁 = 10 of
(27), here we plot the curve of 𝑢󸀠󸀠(0) with respect to ℎ, as
shown in Figure 7.

Figure 8 shows the approximate optimal value of ℎ for the
explicit spectral PIM when 𝑁 = 10, i.e., ℎ = −0.8 with one
decimal digit.

Figure 9 shows the absolute error of the explicit spectral
PIM for𝑁 = 10 and ℎ = −0.8.
5. Conclusion

In this paper, we presented a new application of the spectral
parametric iterationmethod (PIM) for solving a class of non-
linear Volterra integro-differential equations (VIDEs).This
new method is easy to implement and is accurate when
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Figure 3: (a) Approximate solution of the explicit spectral PIM for𝑁 = 15. (b) Absolute error of the explicit spectral PIM for 𝑁 = 15 andℎ = −1.47 for Example 1.
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Figure 8: The approximate optimal ℎ (ℎ = −0.8) for 𝑁 = 10 for
Example 3.
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Figure 9: Absolute error of the explicit spectral PIM for𝑁 = 10 andℎ = −0.8 for Example 3.

applied to the nonlinear VIDEs. The numerical results of the
spectral PIM were compared with the exact solutions and
excellent agreement was obtained. This could confirm the
validity of the proposed spectral PIM as a suitable method
for solving this class of the nonlinear VIDEs.
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