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We investigate existence and regularity of solutions to unbounded elliptic problemwhose simplest model is {−div[(1+|𝑢|𝑞)∇𝑢]+𝑢 =𝛾(|∇𝑢|2/(1 + |𝑢|)1−𝑞) +𝑓 in Ω, 𝑢 = 0 on 𝜕Ω, }, where 0 < 𝑞 < 1, 𝛾 > 0 and 𝑓 belongs to some appropriate Lebesgue space. We give
assumptions on 𝑓 with respect to 𝑞 and 𝛾 to show the existence and regularity results for the solutions of previous equation.

1. Introduction

In this paper, we consider the Dirichlet problem for some
nonlinear elliptic problems such as

− div ([𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢) + 𝑢 = 𝐻 (𝑥, 𝑢, ∇𝑢) + 𝑓,
𝑥 ∈ Ω, 𝑢 ∈ 𝐻10 (Ω) , (1)

under the following assumptions:Ω is a bounded open subset
of R𝑁, where𝑁 ≥ 3, 0 < 𝑞 < 1, and 𝑓 ∈ 𝐿𝑚 with 𝑚 ≥ 2 and𝑎 : Ω → R is a measurable function satisfying the following
conditions:

𝛼 ≤ 𝑎 (𝑥) ≤ 𝛽, (2)

for almost every 𝑥 ∈ Ω, where 𝛼 and 𝛽 are positive
real constants. 𝐻(𝑥, 𝑠, 𝜉) is a Carathéodory-type function
satisfying to:

𝐻 (𝑥, 𝑠, 𝜉) ≤ 𝛾 𝜉2(1 + |𝑠|)1−𝑞 (3)

for some 𝛾 > 0.

In [1], Arcoya, Boccardo, and Leonor obtained the exis-
tence and regularity results for the following elliptic problem
with degenerate coercivity:

− div ( 𝛼∇𝑢
(1 + |𝑢|)2) + 𝑢 = 𝛾 |∇𝑢|2

(1 + |𝑢|)3 + 𝑓,
𝑥 ∈ Ω, 𝑢 ∈ 𝐻10 (Ω) ,

(4)

where 𝛼, 𝛾 > 0, 𝑓 ∈ 𝐿𝑚(Ω) with 𝑚 ≥ 2, and Ω is a bounded
subset of R𝑁,𝑁 ≥ 3.

The purpose of the present paper is to study the same kind
of lower order terms as in problem (4) in the case of an elliptic
operator with unbounded coefficients such as (1).

There are several papers concerned with existence and
regularity of the solution for the following problem:

−div (𝑀 (𝑥, 𝑢) ∇𝑢) + 𝑔 (𝑥, 𝑢, ∇𝑢) = 𝑓 (𝑥) 𝑥 ∈ Ω,
𝑢 (𝑥) = 0 𝑥 ∈ 𝜕Ω. (5)

We refer the intersting articles: Boccardo, Murat and Puel
[2], Bensoussan, Boccardo and Murat [3], and Boccardo,
Gallout [4]. In all these works 𝑔 is a nonlinear lower
term having natural growth with respect to ∇𝑢, data 𝑓 in
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suitable Lebesgue spaces, and𝑀(𝑥, 𝑢) is a Carathéodory-type
bounded function subject to certain structural inequalities.

Another motivation for studying these problem arises
from the calculus of variations in the case where 0 ≤ 𝑓 ∈𝐿𝑚(Ω) with 𝑚 ≥ 𝑁/2 and

𝑔 (𝑥, 𝑢, ∇𝑢) = |∇𝑢|2𝑢𝜃 , (6)

where 𝜃 ∈ (0, 1), which is considered by Puel in [5].
We point out that in [6] the authors considered 𝑀(𝑥, 𝑢)

as a bounded function and

𝑔 (𝑥, 𝑢, ∇𝑢) = 𝑄 (𝑥, 𝑢) |∇𝑢|2𝑢𝜃 , (7)

where 𝜃 ∈ (0, 1]. The function 𝑄(𝑥, 𝑠) : Ω × R → R𝑁
2

is
symmetric,measurablewith respect to𝑥 and continuouswith
respect to 𝑠 with the following uniform ellipticity condition:
for 𝑥 ∈ Ω, and 𝑠 ∈ R,

𝜇 𝜉2 ≤ 𝑄 (𝑥, 𝑠) 𝜉𝜉 ≤ ] 𝜉2 , 0 < 𝜇 ≤ ]. (8)

We shall prove the following main results on existence
and regularity of solutions for problem (1).

Theorem 1. Let �̃� = min{1, 𝛼}. Assuming that the functions 𝑎
and𝐻 satisfy (2) and (3) then, if 𝑓 belong to 𝐿𝑚(Ω), with

𝑚 > 2( 𝛾𝛼 + 1) + 𝑞, (9)

there exists a distributional solution 𝑢 ∈ 𝑊1,10 (Ω) of problem
(1) such that

𝐻(𝑥, 𝑢, ∇𝑢) ∈ 𝐿1 (Ω) , [𝑎 (𝑥) + |𝑢|𝑞] |∇𝑢| ∈ 𝐿1 (Ω) ,
∫
Ω
[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝜓 + ∫

Ω
𝑢𝜓

= ∫
Ω
𝐻(𝑥, 𝑢, ∇𝑢) 𝜓 + ∫

Ω
𝑓𝜓, ∀𝜓 ∈ 𝐶∞0 (Ω) .

(10)

Furthermore, any solution of the problem (1) belongs to𝐻10 (Ω).
In the next result, we consider the case where𝑓 has a high

summability.

Theorem 2. Let �̃� = min{1, 𝛼}, and assume that (2) and (3)
hold true. If 𝑢 the solution given byTheorem 1 and 𝑓 belongs to𝐿𝑚(Ω), with

𝑚 > max {2( 𝛾𝛼 + 1) + 𝑞, 𝑁2 (𝛾𝛼 + 1)} , (11)

then 𝑢 belongs to𝐻10 (Ω) ∩ 𝐿∞(Ω).
The rest of the paper is organized as follows: Section 2 is

devoted to give some a priori estimates for the approximated
problem associated with problem (1); while in Section 3, we
give the detailed proofs of Theorems 1 and 2.

2. The Approximated Problem

In this section, we use the hypotheses (2) and (3) and we
suppose that

�̃� (𝑚 − 1) − 𝛾 > 0, (12)

where �̃� = min{1, 𝛼} holds true. To prove Theorem 1 and
Theorem2,wewill use the following approximating problems
associated with problem (1):

− div ([𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛) + 𝑢𝑛
= 𝐻𝑛 (𝑥, 𝑢𝑛, ∇𝑢𝑛) + 𝑓𝑛, 𝑥 ∈ Ω, (13)

where

𝑓𝑛 (𝑥) = 𝑓 (𝑥)1 + (1/𝑛) 𝑓 (𝑥) , (14)

and

𝐻𝑛 (𝑥, 𝑠, 𝜉) = 𝐻 (𝑥, 𝑠, 𝜉)
1 + (1/𝑛) 𝜉2 . (15)

By the results of [2, 4] there exists a weak solution 𝑢𝑛 in𝐻10 (Ω) ∩ 𝐿∞(Ω) of problem (13) in the sense that

∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝜑 + ∫

Ω
𝑢𝑛𝜑

= ∫
Ω
𝐻𝑛 (𝑥, 𝑢𝑛, ∇𝑢𝑛) 𝜑 + ∫

Ω
𝑓𝑛𝜑

(16)

for every 𝜑 ∈ 𝐻10 (Ω) ∩ 𝐿∞(Ω).
The following lemma will be very useful, as it gives us

an a priori estimate on the summability of the solutions to
problems (13).

Lemma 3. If 𝑢𝑛 is a solution to problem (13), then for every𝑘 ≥ 0,
∫
Ω

𝐺𝑘 (𝑢𝑛)𝑚 ≤ ∫
{|𝑢𝑛|≥𝑘}

𝑓𝑚 . (17)

Moreover, there exist 𝑅 > 0 depending on ‖𝑓‖𝐿𝑚(Ω), 𝛼, 𝑞, and𝛾, such that
𝑢𝑛𝐻1

0
(Ω) ≤ 𝑅. (18)

Remark 4. (i) Let {𝑢𝑛} be a sequence of solutions 𝑢𝑛 of (13).
As a consequence of Lemma 3, there exists 𝑢 ∈ 𝐻10 (Ω) such
that, up to a subsequence, 𝑢𝑛 converges weakly to 𝑢 in𝐻10 (Ω)
and a.e. in Ω.

(ii) By the previous lemma we deduce from (3) that

𝐻𝑛 (𝑥, 𝑢𝑛, ∇𝑢𝑛)𝐿1(Ω) ≤ 𝛾∫
Ω

∇𝑢𝑛2(1 + 𝑢𝑛)1−𝑞 ≤ 𝛾𝑅2. (19)

Proof of Lemma 3. In order to prove (17), we claim that by
assumption (2) and 𝑞 < 1, there exist positive constant 𝑐0 such
that

�̃� (1 + |𝑡|)𝑞 ≤ 𝑎 (𝑥) + |𝑡|𝑞 ≤ 𝑐0 (1 + |𝑡|)𝑞 , ∀𝑡 ∈ R. (20)
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Choosing 𝜑 = |𝐺𝑘(𝑢𝑛)|𝑚−1sgn(𝑢𝑛) in (16) and using (20), we
obtain

�̃� (𝑚 − 1)∫
Ω
(1 + 𝑢𝑛)𝑞 ∇𝑢𝑛2 𝐺𝑘 (𝑢𝑛)𝑚−2

+ ∫
Ω

𝑢𝑛 𝐺𝑘 (𝑢𝑛)𝑚−1

≤ 𝛾∫
Ω

∇𝑢𝑛2(1 + 𝑢𝑛)1−𝑞
𝐺𝑘 (𝑢𝑛)𝑚−1

+ ∫
Ω

𝑓𝑛 𝐺𝑘 (𝑢𝑛)𝑚−1 .

(21)

Thus, joining the terms involving the gradient, we get

∫
Ω
[�̃� (𝑚 − 1) − 𝛾𝐺𝑘 (𝑢𝑛)1 + 𝑢𝑛 ] (1 +

𝑢𝑛)𝑞 ∇𝑢𝑛2

⋅ 𝐺𝑘 (𝑢𝑛)𝑚−2 + ∫
Ω

𝐺𝑘 (𝑢𝑛)𝑚 ≤ ∫
Ω

𝑓𝑛
⋅ 𝐺𝑘 (𝑢𝑛)𝑚−1 .

(22)

Using (12) we deduce that

∫
Ω

𝐺𝑘 (𝑢𝑛)𝑚 ≤ ∫
Ω

𝑓 𝐺𝑘 (𝑢𝑛)𝑚−1 , (23)

and the Hölder inequality on the right hand side yields

∫
Ω

𝐺𝑘 (𝑢𝑛)𝑚

≤ (∫
{|𝑢𝑛|≥𝑘}

𝑓𝑚)
1/𝑚 (∫

Ω

𝐺𝑘 (𝑢𝑛)𝑚)1−1/𝑚 ,
(24)

which implies (17).
Let us choose now 𝜑 = [(1 + |𝑢𝑛|)𝑚−1 − 1]sgn(𝑢𝑛) as a test

function in (16), and we obtain

(�̃� (𝑚 − 1) − 𝛾)∫
Ω
(1 + 𝑢𝑛)𝑚−2+𝑞 ∇𝑢𝑛2

≤ 𝑓𝐿𝑚(Ω) (∫
Ω
(1 + 𝑢𝑛)𝑚)1−1/𝑚 .

(25)

Since𝑚 ≥ 2, the previous calculations imply

∫
Ω

∇𝑢𝑛2 ≤ 𝑐 (∫
Ω
(1 + 𝑢𝑛)𝑚)1−1/𝑚 . (26)

Using (17) with 𝑘 = 0, (18) follows.
Lemma 5. Let 𝑢𝑛 be the sequence of solutions to problems (13)
and let the function 𝑢 given by Remark 4. Then 𝑢𝑛 strongly
converges to 𝑢 in 𝐿𝑚(Ω). Moreover ∇𝑢𝑛 strongly converges to∇𝑢 in 𝐿1(Ω)𝑁.
Remark 6. Note that (25) implies that there exists 𝛿 > 0
independent of 𝑛 such that

∫
Ω
(1 + 𝑢𝑛)𝑚−2+𝑞 ∇𝑢𝑛2 ≤ 𝛿. (27)

By using the previous lemma, we deduce that

(1 + 𝑢𝑛)(𝑚−2+𝑞)/2 ∇𝑢𝑛 → (1 + |𝑢|)(𝑚−2+𝑞)/2 |∇𝑢|
weakly in 𝐿2 (Ω)𝑁 . (28)

Proof of Lemma 5. We use (17) written for 𝑘 = 0:
∫
Ω

𝑢𝑛𝑚 ≤ ∫
Ω

𝑓𝑚 ≤ 𝑐. (29)

Since 𝑢𝑛 almost everywhere converges to 𝑢, we have from
Fatou’s lemma that

∫
Ω
|𝑢|𝑚 ≤ 𝑐. (30)

Hence 𝑢 belongs to 𝐿𝑚(Ω). Using assumption (17), for any𝑘 > 0 we have
∫
𝐸

𝑢𝑛𝑚 ≤ ∫
𝐸∩{|𝑢𝑛|≤𝑘}

𝑢𝑛𝑚 + ∫
𝐸∩{|𝑢𝑛|≥𝑘}

𝑢𝑛𝑚

≤ 𝑘𝑚𝑚𝑒𝑎𝑠 (𝐸) + ∫
{|𝑢𝑛|≥𝑘}

𝑓𝑚 .
(31)

As before, we first choose 𝑘 such that the second integral is
small, uniformly with respect to 𝑛, and then the measure of𝐸 small enough such that the first term is small. The almost
everywhere convergence of 𝑢𝑛 to 𝑢 and Vitali’s theorem imply
that 𝑢𝑛 strongly converges to 𝑢 in 𝐿𝑚(Ω).

For the second convergence, we will follow the same
technique as in [1] (see also [7]). Let ℎ, 𝑘 > 0. In the sequel 𝐶
will denote a constant independent of 𝑛, ℎ, 𝑘. Let us consider𝑇ℎ[𝑢𝑛 − 𝑇𝑘(𝑢)] as a test function in problems (16). Then,

∫
Ω
[𝑎 (𝑥) + 𝑢𝑛2] ∇𝑢𝑛∇𝑇ℎ [𝑢𝑛 − 𝑇𝑘 (𝑢)]
+ ∫
Ω
𝑢𝑛𝑇ℎ [𝑢𝑛 − 𝑇𝑘 (𝑢)]

≤ (𝑓𝐿1(Ω) + 𝐻𝑛 (𝑥, 𝑢𝑛, ∇𝑢𝑛)𝐿1(Ω)) ℎ.
(32)

Moreover, thanks to the 𝐿𝑚(Ω) convergence of 𝑢𝑛, the second
integral in (32) converges (as n diverges) to a positive number.
Thus, it yields to

𝛼∫
Ω

∇𝑇ℎ [𝑢𝑛 − 𝑇𝑘 (𝑢)]2
≤ (𝑓𝐿1(Ω) + 𝛾𝑅2) ℎ
− ∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑇𝑘 (𝑢) ∇𝑇ℎ [𝑢𝑛 − 𝑇𝑘 (𝑢)] .

(33)

LetK = ℎ+𝑘, observing that ∇𝑇ℎ[𝑢𝑛−𝑇𝑘(𝑢)] = 0 if |𝑢𝑛| > K,
then

∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑇𝑘 (𝑢) ∇𝑇ℎ [𝑢𝑛 − 𝑇𝑘 (𝑢)]

= ∫
Ω
[𝑎 (𝑥) + 𝑇K (𝑢𝑛)𝑞] ∇𝑇𝑘 (𝑢) ∇𝑇ℎ [𝑢𝑛 − 𝑇𝑘 (𝑢)] .

(34)
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Since 𝑇ℎ[𝑢𝑛 − 𝑇𝑘(𝑢)] converges to 𝑇ℎ[𝑢 − 𝑇𝑘(𝑢)] weakly in(𝐿2(Ω))𝑁 and [𝑎(𝑥) + |𝑇K(𝑢𝑛)|𝑞]∇𝑇𝑘(𝑢) strongly converges
to [𝑎(𝑥) + |𝑇K(𝑢)|𝑞]∇𝑇𝑘(𝑢) in (𝐿2(Ω))𝑁, we have

lim
𝑛→+∞

∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑇𝑘 (𝑢) ∇𝑇ℎ [𝑢𝑛 − 𝑇𝑘 (𝑢)]

= 0,
(35)

thus, yielding

∫
Ω

∇𝑇ℎ [𝑢𝑛 − 𝑇𝑘 (𝑢)]2 ≤ 𝐶ℎ + 𝜀 (𝑛) , (36)

where 𝜀(𝑛) denote any quantity that vanishes as 𝑛 diverges.
Hence, by Hölder’s inequality, we deduce that

∫
{|𝑢𝑛−𝑢|≤ℎ,|𝑢|≤𝑘}

∇ (𝑢𝑛 − 𝑢) = ∫
Ω

∇𝑇ℎ [𝑢𝑛 − 𝑇𝑘 (𝑢)]
≤ |Ω|1/2√𝐶ℎ + 𝜀 (𝑛).

(37)

Fix, now, 𝜖 > 0 there exist ℎ0 such that, for ℎ < ℎ0, we have
|Ω|1/2√𝐶ℎ < 𝜖. (38)

Thanks to the weak convergence of 𝑢𝑛 in𝐻10 (Ω) and the abso-
lute continuity of the integral, there exists 𝑘0 independent
from 𝑛 such that, for 𝑘 > 𝑘0, we have

∫
{|𝑢|>𝑘}

∇𝑢𝑛 + ∫
{|𝑢|>𝑘}

|∇𝑢| ≤ 𝜖. (39)

In addition, by Dunford PettisTheorem, we deduce that there
exists 𝑛(ℎ, 𝜖) such that, for 𝑛 > 𝑛(ℎ, 𝜖), we have

∫
{|𝑢𝑛−𝑢|>ℎ}

∇ (𝑢𝑛 − 𝑢) ≤ 𝜖. (40)

We can write

∫
Ω

∇ (𝑢𝑛 − 𝑢) = ∫
{|𝑢𝑛−𝑢|≤ℎ,|𝑢|≤𝑘}

∇ (𝑢𝑛 − 𝑢)
+ ∫
{|𝑢𝑛−𝑢|≤ℎ,|𝑢|>𝑘}

∇ (𝑢𝑛 − 𝑢)
+ ∫
{|𝑢𝑛−𝑢|>ℎ}

∇ (𝑢𝑛 − 𝑢) .
(41)

Using (37), (39), and (40), for ℎ < ℎ0 and 𝑛 > 𝑛(ℎ, 𝜖), we have
∫
Ω

∇ (𝑢𝑛 − 𝑢) ≤ 3𝜖 + 𝜀 (𝑛) . (42)

This proves the strong convergence of ∇𝑢𝑛 to ∇𝑢 in 𝐿1(Ω)𝑁.
The following lemma yields some a priori estimate on{𝑢𝑛}.

Lemma 7. Let 𝑢 be the function given by Remark 4. Then|𝑢|𝑞|∇𝑢| belongs to 𝐿𝑟(Ω), for every 𝑟 < 𝑁/(𝑁 − 1).

Proof. For every 𝜆 > 1, we take [1 − 1/(1 + |𝑢𝑛|)𝜆−1]sign(𝑢𝑛)
as a test function in (16). Droping positive terms yields

�̃� (𝜆 − 1)∫
Ω

(1 + 𝑢𝑛𝑞) ∇𝑢𝑛2
(1 + 𝑢𝑛)𝜆

≤ 𝑓𝐿1(Ω) + 𝐻𝑛 (𝑥, 𝑢𝑛, ∇𝑢𝑛)𝐿1(Ω) .
(43)

Hence, using 𝑞 < 1, it follows that
∫
Ω

∇𝑢𝑛2(1 + 𝑢𝑛)𝜆−𝑞 ≤
𝑓𝐿1(Ω) + 𝛾𝑅2�̃� (𝜆 − 1) . (44)

On the other hand, for every 𝜆 > 1; we have
∫
Ω

𝑢𝑛𝑞𝑟 ∇𝑢𝑛𝑟

≤ ∫
Ω

∇𝑢𝑛𝑟(1 + 𝑢𝑛)𝑟(𝜆−𝑞)/2 (1 +
𝑢𝑛)𝑟(𝜆+𝑞)/2 ,

≤ (𝑓𝐿1(Ω) + 𝛾𝑅2�̃� (𝜆 − 1) )
𝑟/2

⋅ (∫
Ω
(1 + 𝑢𝑛)𝑟(𝜆+𝑞)/(2−𝑟))(2−𝑟)/2 .

(45)

Then, we obtain

(∫
Ω

𝑢𝑛(𝑞+1)𝑟∗)𝑟/𝑟
∗ ≤ 𝑐 (∫

Ω

𝑢𝑛𝑟(𝜆+𝑞)/(2−𝑟))(2−𝑟)/2 . (46)

Let us choose 𝑟 such that (𝑞 + 1)𝑟∗ = 𝑟(𝜆 + 𝑞)/(2 − 𝑟), that is
𝑟 = 𝑁 (2 + 𝑞 − 𝜆)

𝑁 (𝑞 + 1) − (𝜆 + 𝑞) . (47)

Since 𝜆 > 1, we then have an estimate on |𝑢𝑛|𝑞|∇𝑢𝑛| in 𝐿𝑟(Ω),
for every 𝑟 < 𝑁/(𝑁 − 1).

The next result will be used in the proof of Theorem 2.

Lemma 8. Suppose that (2), (3), and (11) hold true. Let 𝑓 ∈𝐿𝑚(Ω) and {𝑢𝑛} be a solution of (13) with 𝑓𝑛 = 𝑓 for every 𝑛 ∈
N.Then the norms of {𝑢𝑛} in 𝐿∞(Ω) and in𝐻10(Ω) are bounded
by a constant which depends on 𝑞,𝑚,𝑁, 𝛼, 𝛾,𝑚𝑒𝑎𝑠(Ω) and on
the norm of 𝑓 in 𝐿𝑚(Ω).
Proof. Since 𝑚 > (𝑁/2)(𝛾/�̃� + 1), we have (1/2)(𝛾/�̃� + 1) <𝑚/𝑁. Let us choose 𝜎 > 0 such that

12 (𝛾𝛼 + 𝑞 + 1) < 𝜎 < 𝑚𝑁 + 𝑞2 . (48)

The use of

[(1 + 𝑢𝑛)2𝜎−𝑞−1 − (1 + 𝑘)2𝜎−𝑞−1]+ sign (𝑢𝑛) , (49)
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as test function in (16), (3), and (20), implies that

(2𝜎 − 𝑞 − 1) �̃� ∫
𝐴𝑘

∇𝑢𝑛2 (1 + 𝑢𝑛)2𝜎−2

+ ∫
𝐴𝑘

𝑢𝑛 [(1 + 𝑢𝑛)2𝜎−𝑞−1 − (1 + 𝑘)2𝜎−𝑞−1]

≤ 𝛾∫
𝐴𝑘

∇𝑢𝑛2(1 + 𝑢𝑛)1−𝑞 (1 +
𝑢𝑛)2𝜎−𝑞−1

+ ∫
𝐴𝑘

𝑓𝑛 (1 + 𝑢𝑛)2𝜎−𝑞−1 ,

(50)

where

𝐴𝑘 = {𝑥 ∈ Ω : 𝑢𝑛 > 𝑘} . (51)

By Young and Hölder’s inequalities, we find

[(2𝜎 − 𝑞 − 1) �̃� − 𝛾]∫
𝐴𝑘

∇𝑢𝑛2 (1 + 𝑢𝑛)2𝜎−2

≤ 𝐶1 ∫
𝐴𝑘

(1 + 𝑢𝑛)2𝜎−𝑞 + 𝐶2 ∫
𝐴𝑘

𝑓2𝜎−𝑞
≤ 𝐶𝑚 (meas𝐴𝑘)1−(2𝜎−𝑞)/𝑚 .

(52)

Then, using Sobolev’s inequality gives

[(2𝜎 − 𝑞 − 1) �̃� − 𝛾]
⋅ S2𝜎2 (∫𝐴𝑘 [(1 +

𝑢𝑛)𝜎 − (1 + 𝑘)𝜎]2∗)
2/2∗

≤ 𝐶𝑚 (meas𝐴𝑘)1−(2𝜎−𝑞)/𝑚 ,
(53)

whereS denotes the best constant in Sobolev inequality. Now,
we set

(1 + 𝑢𝑛)𝜎 = V𝑛 (54)

and

(1 + 𝑘)𝜎 = ℎ. (55)

and the fact that 𝐴𝑘 = {𝑥 ∈ Ω : V𝑛 > ℎ}., the last inequality
gives

[(2𝜎 − 𝑞 − 1) �̃� − 𝛾] S2𝜎2 (∫𝐴𝑘 (V𝑛 − ℎ)
2∗)2/2

∗

≤ 𝐶𝑚 (meas𝐴𝑘)1−(2𝜎−𝑞)/𝑚 .
(56)

Note that 𝜎 < 𝑚/𝑁 + 𝑞/2 implies that [1 − (2𝜎 −𝑞)/𝑚](2∗/2) > 1. Then Stampacchia’s technique implies the
following relation for some positive constant 𝐶3,

V𝑛𝐿∞(Ω) = (1 + 𝑢𝑛)𝜎𝐿∞(Ω) ≤ 𝐶3, (57)

that is, ‖𝑢𝑛‖𝐿∞(Ω) is bounded.

3. Proof of the Main Results

We are now ready to prove the main result of this paper. We
first observe that condition (9) implies (12). Hence the results
of the previous section hold true. In order to prove the result,
we have to pass to the limit in (16). To this aim, let 𝑔 be a
function in 𝐶1(R) such that

𝑔 (𝑠) =
{{{{{{{

1 + 𝑠�̃�𝜌 − 𝛾 if 𝑠 ≥ 0
1(1 − 𝑠) (�̃�𝜌 − 𝛾) if 𝑠 < 0, (58)

where

𝜌 = 𝑚 − 𝑞 − 22 . (59)

Observe that, by (9), 𝑔 is positive, increasing, and it verifies

�̃�𝜌𝑔 (𝑠) − 𝛾 𝑔 (𝑠)1 + |𝑠| > 0, ∀𝑠 ∈ R. (60)

We will use, for 𝑘 > 0 and 𝑠 ∈ R,

𝑅𝑘 (𝑠) = 1 − 𝑇1 (𝐺𝑘 (𝑠)) , (61)

to define a test function. Remark that 𝑅𝑘 ≥ 0,−𝑘−1 ≤ 𝑅𝑘(𝑠) ≤𝑘 + 1 and

𝑅𝑘 (𝑠) =
{{{{{{{{{

1 if − 𝑘 − 1 ≤ 𝑠 ≤ −𝑘
−1 if 𝑘 ≤ 𝑠 ≤ 𝑘 + 1
0 otherwise.

(62)

First of all, note that the a.e. convergence of ∇𝑢𝑛 (see
Lemma 5), Remark 6, and (20) imply both that

[𝑎 (𝑥) + 𝑢𝑛𝑞] 𝑔𝜌 (𝑢𝑛) ∇𝑢𝑛 →
[𝑎 (𝑥) + |𝑢|𝑞] 𝑔𝜌 (𝑢) ∇𝑢 weakly in 𝐿2 (Ω)𝑁 (63)

and

[𝑎 (𝑥) + 𝑢𝑛𝑞] 1𝑔𝜌 (𝑢𝑛)∇𝑢𝑛 →
[𝑎 (𝑥) + |𝑢|𝑞] 1𝑔𝜌 (𝑢)∇𝑢 weakly in 𝐿2 (Ω)𝑁 ,

(64)

where 𝜌 is defined in (59).
The proof of the result will be achieved in two steps.

Step 1 (The first inequality). We fix 𝜓 ∈ 𝐻10 (Ω)∩𝐿∞(Ω), with𝜓 ≥ 0, and take

𝜙 = 𝑔𝜌 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑅𝑘 (𝑢) 𝜓 (65)
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As test function in (16), we have that

∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝜓𝑔

𝜌 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑅𝑘 (𝑢)
− 𝜌∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝑢 𝑔

𝜌 (𝑢𝑛)𝑔𝜌+1 (𝑢)𝑔 (𝑢) 𝑅𝑘 (𝑢)
⋅ 𝜓 + ∫

Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝑢𝑔

𝜌 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑅𝑘 (𝑢) 𝜓
+ 𝜌∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝑢𝑛𝑔

𝜌−1 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑔 (𝑢𝑛)
⋅ 𝑅𝑘 (𝑢) 𝜓 − ∫

Ω
𝐻𝑛 (𝑥, 𝑢𝑛, ∇𝑢𝑛) 𝑔

𝜌 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑅𝑘 (𝑢) 𝜓
+ ∫
Ω
𝑢𝑛𝑔
𝜌 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑅𝑘 (𝑢) 𝜓 = ∫

Ω
𝑓𝑛𝑔
𝜌 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑅𝑘 (𝑢) 𝜓.

(66)

Remark now that, by the assumptions on 𝑎, 𝐻, relation (60)
and the fact that 𝜓 ≥ 0, then we have

𝜌 [𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝑢𝑛𝑔
𝜌−1 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑔 (𝑢𝑛) 𝑅𝑘 (𝑢) 𝜓

− 𝐻𝑛 (𝑥, 𝑢𝑛, ∇𝑢𝑛) 𝑔
𝜌 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑅𝑘 (𝑢) 𝜓 ≥ (1 + 𝑢𝑛)𝑞

⋅ ∇𝑢𝑛2 𝑔
𝜌−1 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑅𝑘 (𝑢)

⋅ 𝜓 [�̃�𝜌𝑔 (𝑢𝑛) − 𝛾 𝑔 (𝑢𝑛)1 + 𝑢𝑛] ≥ 0.

(67)

Therefore, using the almost everywhere convergence of both∇𝑢𝑛 and 𝑢𝑛, and applying Fatou’s lemma, we get

lim inf
𝑛→∞

𝜌∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝑢𝑛𝑔

𝜌−1 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑔 (𝑢𝑛)
⋅ 𝑅𝑘 (𝑢) 𝜓 − ∫

Ω
𝐻𝑛 (𝑥, 𝑢𝑛, ∇𝑢𝑛) 𝑔𝜌 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑅𝑘 (𝑢) 𝜓

≥ 𝜌∫
Ω
[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝑢𝑔 (𝑢)𝑔 (𝑢) 𝑅𝑘 (𝑢) 𝜓

− ∫
Ω
𝐻(𝑥, 𝑢, ∇𝑢) 𝑅𝑘 (𝑢) 𝜓.

(68)

Furthermore, by using Lebesgue’s theorem and (63), we
obtain

lim
𝑛→∞

∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝜓𝑔

𝜌 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑅𝑘 (𝑢)
= ∫
Ω
[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝜓𝑅𝑘 (𝑢) ,

(69)

and

lim
𝑛→∞

𝜌∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝑢 𝑔

𝜌 (𝑢𝑛)𝑔𝜌+1 (𝑢)𝑔 (𝑢) 𝑅𝑘 (𝑢)
⋅ 𝜓 = 𝜌∫

Ω
[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝑢𝑔 (𝑢)𝑔 (𝑢) 𝑅𝑘 (𝑢) 𝜓.

(70)

Similarly, using the convergence (𝑢𝑛 − 𝑓𝑛) → (𝑢 − 𝑓) in𝐿𝑚(Ω), we have
lim
𝑛→∞

∫
Ω
(𝑢𝑛 − 𝑓𝑛) 𝑔

𝜌 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑅𝑘 (𝑢) 𝜓
= ∫
Ω
(𝑢 − 𝑓) 𝑅𝑘 (𝑢) 𝜓.

(71)

Now, from (62), we get

lim
𝑛→∞

∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝑢𝑔

𝜌 (𝑢𝑛)𝑔𝜌 (𝑢) 𝑅𝑘 (𝑢) 𝜓
= ∫
Ω
[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝑢𝑅𝑘 (𝑢)

= ∫
{𝑘≤|𝑢|≤𝑘+1}

[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝑢.
(72)

Passing to the limit in (66) when 𝑛 tends to infinity and
gathering together (68)-(72), weobtain

∫
Ω
[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝜓𝑅𝑘 (𝑢) + ∫

Ω
𝑢𝑅𝑘 (𝑢) 𝜓

+ ∫
{𝑘≤|𝑢|≤𝑘+1}

[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝑢
− ∫
Ω
𝐻(𝑥, 𝑢, ∇𝑢) 𝑅𝑘 (𝑢) 𝜓 ≤ ∫

Ω
𝑓𝑅𝑘 (𝑢) 𝜓.

(73)

Choosing 𝑇1(𝐺𝑘(𝑢𝑛)) in (16), we get

∫
{𝑘≤|𝑢𝑛|≤𝑘+1}

[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝑢𝑛
≤ ∫
{𝑘≤|𝑢𝑛|}

𝑓 + ∫
{𝑘≤|𝑢𝑛|}

𝐻 (𝑥, 𝑢𝑛, ∇𝑢𝑛)
≤ ∫
{𝑘≤|𝑢𝑛|}

𝑓 + 𝛾𝑅2
(1 + 𝑘)1−𝑞 .

(74)

By Fatou’s lemma, we have

lim
𝑘→∞

∫
{𝑘≤|𝑢|≤𝑘+1}

[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝑢 = 0. (75)

In order to pass to the limit as 𝑘 tends to infinity in the
inequality (73), we recall that𝐻(𝑥, 𝑢, ∇𝑢) ∈ 𝐿1(Ω) and [𝑎(𝑥)+|𝑢|𝑞]∇𝑢 ∈ 𝐿1(Ω),. We obtain

∫
Ω
[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝜓 + ∫

Ω
𝑢𝜓

≤ ∫
Ω
𝐻(𝑥, 𝑢, ∇𝑢)𝜓 + ∫

Ω
𝑓𝜓,

(76)
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for every 𝜓 ∈ 𝐻10 (Ω) ∩ 𝐿∞(Ω), with 𝜓 ≥ 0; that is, 𝑢 is a
subsolution of problem (1).

Step 2 (The second inequality). Let 𝜓 be in𝐻10 (Ω) ∩ 𝐿∞(Ω),
with 𝜓 ≤ 0, and 𝑔 be given by (58), and choose

𝜙 = 𝑔𝜌 (𝑢)
𝑔𝜌 (𝑢𝑛)𝑅𝑘 (𝑢) 𝜓 (77)

asa test function in (16). We obtain

∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝜓 𝑔𝜌 (𝑢)

𝑔𝜌 (𝑢𝑛)𝑅𝑘 (𝑢)
+ 𝜌∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝑢𝑔

𝜌−1 (𝑢)
𝑔𝜌 (𝑢𝑛) 𝑔

 (𝑢) 𝑅𝑘 (𝑢)
⋅ 𝜓 + ∫

Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝑢 𝑔𝜌 (𝑢)

𝑔𝜌 (𝑢𝑛)𝑅

𝑘 (𝑢) 𝜓

− 𝜌∫
Ω
[𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝑢𝑛 𝑔𝜌 (𝑢)𝑔𝜌+1 (𝑢𝑛)𝑔

 (𝑢𝑛)
⋅ 𝑅𝑘 (𝑢) 𝜓 − ∫

Ω
𝐻𝑛 (𝑥, 𝑢𝑛, ∇𝑢𝑛) 𝑔𝜌 (𝑢)𝑔𝜌 (𝑢𝑛)𝑅𝑘 (𝑢) 𝜓

+ ∫
Ω
𝑢𝑛 𝑔𝜌 (𝑢)𝑔𝜌 (𝑢𝑛)𝑅𝑘 (𝑢) 𝜓 = ∫

Ω
𝑓𝑛 𝑔𝜌 (𝑢)𝑔𝜌 (𝑢𝑛)𝑅𝑘 (𝑢) 𝜓.

(78)

We observe that, by (60) and the fact that 𝜓 ≤ 0, we have
− 𝜌 [𝑎 (𝑥) + 𝑢𝑛𝑞] ∇𝑢𝑛∇𝑢𝑛 𝑔𝜌 (𝑢)

𝑔𝜌+1 (𝑢𝑛)𝑔
 (𝑢𝑛) 𝑅𝑘 (𝑢) 𝜓

− 𝐻𝑛 (𝑥, 𝑢𝑛, ∇𝑢𝑛) 𝑔𝜌 (𝑢)
𝑔𝜌 (𝑢𝑛)𝑅𝑘 (𝑢) 𝜓 ≥ − (1 + 𝑢𝑛)𝑞

⋅ ∇𝑢𝑛2 𝑔𝜌 (𝑢)𝑔𝜌+1 (𝑢𝑛)𝑅𝑘 (𝑢)
⋅ 𝜓 [�̃�𝜌𝑔 (𝑢𝑛) − 𝛾 𝑔 (𝑢𝑛)1 + 𝑢𝑛] ≥ 0.

(79)

Applying the same argument of Step 1 and using (64) instead
of (63), we deduce that

∫
Ω
[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝜓 + ∫

Ω
𝑢𝜓

≤ ∫
Ω
𝐻(𝑥, 𝑢, ∇𝑢)𝜓 + ∫

Ω
𝑓𝜓,

(80)

for every 𝜓 ∈ 𝐻10 (Ω) ∩ 𝐿∞(Ω), with 𝜓 ≤ 0.
Consequently, summarizing Steps 1 and 2, we have

∫
Ω
[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝜓 + ∫

Ω
𝑢𝜓

≤ ∫
Ω
𝐻(𝑥, 𝑢, ∇𝑢)𝜓 + ∫

Ω
𝑓𝜓,

(81)

for every 𝜓 ∈ 𝐻10 (Ω) ∩ 𝐿∞(Ω).

Finally, interchanging 𝜓 and −𝜓 we conclude that

∫
Ω
[𝑎 (𝑥) + |𝑢|𝑞] ∇𝑢∇𝜓 + ∫

Ω
𝑢𝜓

= ∫
Ω
𝐻(𝑥, 𝑢, ∇𝑢)𝜓 + ∫

Ω
𝑓𝜓,

(82)

for every 𝜓 ∈ 𝐻10 (Ω) ∩ 𝐿∞(Ω).
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Mathematica, vol. 41, pp. 507–534, 1982.

[3] A. Bensoussan, L. Boccardo, and F. Murat, “On a nonlinear
partial differential equation having natural growth terms and
unbounded solution,” Ann. Inst. H. Poincaré, vol. 5, no. 4, pp.
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