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We establish the existence of a strong convergent selection of a modified Mann-Reich-Sabach iteration scheme for approximating
the common elements of the set of fixed points𝐹(𝑇) of amultivalued (or single-valued) 𝑘−strictly pseudocontractive-typemapping𝑇 and the set of solutions 𝐸𝑃(𝐹) of an equilibrium problem for a bifunction 𝐹 in a real Hilbert space𝐻. This work is a continuation
of the study on the computability and applicability of algorithms for approximating the solutions of equilibrium problems for
bifunctions involving the construction of a sequence {𝐾𝑛}∞𝑛=1 of closed convex subsets of𝐻 from an arbitrary 𝑥0 ∈ 𝐻 and a sequence{𝑥𝑛}∞𝑛=1 of the metric projections of 𝑥0 into𝐾𝑛. The obtained result is a partial resolution of the controversy over the computability
of such algorithms in the contemporary literature.

1. Introduction

Let𝐻 be a real Hilbert space with an inner product ⟨., .⟩ and a
norm ‖.‖, respectively and let𝐾 be a nonempty closed convex
subset of 𝐻. Let 𝐴 : 𝐻 󳨀→ 𝐻 be an operator on 𝐻 and 𝐹 :𝐾 × 𝐾 󳨀→ R be a bifunction on 𝐾, where R is the set of
real numbers. The variational inequality problem of 𝐴 in 𝐾
denoted by 𝑉𝐼𝑃(𝐴,𝐾) is to find an 𝑥∗ ∈ 𝐾 such that

⟨𝑥 − 𝑥∗, 𝐴 (𝑥∗)⟩ ≥ 0, ∀𝑥 ∈ 𝐾, (1)

while the equilibrium problem for 𝐹 is to find 𝑥∗ ∈ 𝐾 such
that

𝐹 (𝑥∗, 𝑥) ≥ 0, ∀𝑥 ∈ 𝐾. (2)

The set of solutions of (2) is denoted by 𝐸𝑃(𝐹). Suppose𝐹(𝑥, 𝑦) = ⟨𝑦 − 𝑥, 𝐴𝑥⟩ for all 𝑥, 𝑦 ∈ 𝐾, then 𝑤 ∈ 𝐸𝑃(𝐹) if and
only if 𝑤 is a solution of (1). Many problems in optimization,
economics, and physics reduce to finding a solution of (1)
(see, for example, [1–3]) and the references therein. The
following conditions are assumed for solving the equilibrium
problems for a bifunction 𝐹 : 𝐾 × 𝐾 󳨀→ R,

(A1) 𝐹(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐾.
(A2) 𝐹 is monotone, that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0, for all𝑥, 𝑦 ∈ 𝐾.
(A3) For each𝑥, 𝑦, 𝑧 ∈ 𝐾, lim𝑡↓0𝐹(𝑡𝑧+(1−𝑡)𝑥, 𝑦) ≤ 𝐹(𝑥, 𝑦).
(A4) For each 𝑥 ∈ 𝐾, 𝑦 󳨃󳨀→ 𝐹(𝑥, 𝑦) is convex and lower

semicontinuous.

Several algorithms have been introduced by authors for
approximating the solutions of an equilibrium problem for a
bifunction (or the common elements of the sets of solutions of
equilibriumproblems for a finite family of bifunctions).Many
authors have also approximated the common elements of the
set of fixed points 𝐹(𝑇) of a multivalued (or single-valued)
mapping 𝑇 and the set of solutions 𝐸𝑃(𝐹) of an equilibrium
problem for a bifunction 𝐹 (or the common elements of
the sets of fixed points of a finite family of multivalued
(or single-valued) mappings and the sets of solutions of
equilibrium problems for a finite family of bifunctions) (see,
for example, [4–10] and references therein). In a real Hilbert
space, many authors have studied the algorithms involving
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the construction of the sequences of sets {𝐾𝑛}∞𝑛=1 and the
metric projections {𝑥𝑛}∞𝑛=1, from an arbitrary 𝑥0 ∈ 𝐻, where
𝐾𝑛+1 = {𝑧 ∈ 𝐾𝑛 : ‖𝑧 − 𝑢𝑛‖2 ≤ ‖𝑧 − 𝑥𝑛‖2}, 𝑥𝑛+1 = 𝑃𝐾𝑛+1𝑥0,
while 𝑃𝐾𝑛 is the projection map and {𝑢𝑛}∞𝑛=1 is the sequence of
the resolvent of the bifunctions, (see, for example, [4, 9] and
references therein).

Among the iteration schemes studied are the modified
Reich-Sabach-type Algorithm 1 and Mann-Reich-Sabach-
type Algorithm 2 below defined for the approximation of
(i) the solutions of an equilibrium problem for a bifunction;
(ii) the common elements of the set of fixed points 𝐹(𝑇) of
a multivalued (or single-valued) mapping 𝑇, and the set of
solutions 𝐸𝑃(𝐹) of an equilibrium problem for a bifunction 𝐹
respectively.

(i) Let𝐻 be a realHilbert space and𝐾 a closed and convex
subset of 𝐻. Let 𝐹 : 𝐾 × 𝐾 󳨀→ R be a bifunction and 𝑟 ∈[𝑎,∞) for some 𝑎 > 0. Then from an arbitrary 𝑥0 ∈ 𝐻 the
algorithm is generated as follows.

Algorithm 1.

𝑦𝑛 = 𝑥𝑛,
𝑢𝑛 ∈ 𝐾 such that 𝐹 (𝑢𝑛, 𝑦) + 1

𝑟 ⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑦𝑛⟩
≥ 0, ∀𝑦 ∈ 𝐾,

𝐾𝑛+1 = {𝑧 ∈ 𝐾𝑛 : 󵄩󵄩󵄩󵄩𝑧 − 𝑢𝑛󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑧 − 𝑥𝑛󵄩󵄩󵄩󵄩2}
𝑥𝑛+1 = 𝑃𝐾𝑛+1𝑥0.

(3)

(ii) Let𝐻 be a realHilbert space,𝐾 a closed and convex subset
of 𝐻, 𝐹 : 𝐾 × 𝐾 󳨀→ R a bifunction, and 𝑇 : 𝐾 󳨀→ 𝑃(𝐾)
multivalued 𝑘−strictly pseudocontractive-type mapping. Let{𝛼𝑛}∞𝑛=1 ⊂ [0, 1] and 𝑟 ∈ [𝑎,∞) for some 𝑎 > 0. Then from an
arbitrary 𝑥0 ∈ 𝐻 the algorithm is generated as follows.

Algorithm 2.

𝑦𝑛 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) V𝑛,
𝑢𝑛 ∈ 𝐾 such that 𝐹 (𝑢𝑛, 𝑦) + 1

𝑟 ⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑦𝑛⟩
≥ 0, ∀𝑦 ∈ 𝐾,

𝐾𝑛+1 = {𝑧 ∈ 𝐾𝑛 : 󵄩󵄩󵄩󵄩𝑧 − 𝑢𝑛󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑧 − 𝑥𝑛󵄩󵄩󵄩󵄩2}
𝑥𝑛+1 = 𝑃𝐾𝑛+1𝑥0,

(4)

where V𝑛 ∈ 𝑇𝑥𝑛 for multivalued mapping 𝑇.
However, despite the fact that most of these algorithms

yield strong convergence theoretically, the difficulty encoun-
tered by computers with the construction of the sequence
of the metric projection {𝑥𝑛}∞𝑛=1 and the sequence of sets{𝐾𝑛}∞𝑛=1 has made such algorithms almost impossible for real
life applications. This noncomputability and nonapplicability
of such algorithms has led to the introduction of other
algorithms which do not involve the construction of these

two sequences but require stronger conditions and many
parameters in the hypothesis of their convergence theorems.

One of these important algorithms is the algorithm of
Zhaoli Ma et al. [10].

The purpose of this research is to develop a computable
version of Algorithms 1 and 2. In particular, it is established
that given the modified Reich-Sabach-types Algorithm 1 for
approximating the solutions of an equilibriumproblemEP(F)
for a bifunction 𝐹 : 𝐾 × 𝐾 󳨀→ R in a real Hilbert space𝐻 involving the construction of the sequences {𝐾𝑛}∞𝑛=1 and{𝑥𝑛}∞𝑛=1 from an arbitrary 𝑥0 ∈ 𝐻, where 𝐾 = 𝐾0 is a closed
and convex subset of 𝐻, 𝐾𝑛+1 = {𝑧 ∈ 𝐾𝑛 : ‖𝑧 − 𝑢𝑛‖2 ≤‖𝑧 − 𝑥𝑛‖2}, and 𝑥𝑛+1 = 𝑃𝐾𝑛+1𝑥0, while 𝑃𝐾𝑛 is the metric
projection of 𝐻 into 𝐾𝑛 and {𝑢𝑛}∞𝑛=1 is the sequence of the
resolvents of the bifunction; there exists a selection {𝑘𝑛}∞𝑛=1
of {𝐾𝑛}∞𝑛=1 which converges strongly to a solution of the
equilibrium problem. Furthermore, if the norm on𝐻 is order
inclusion transitive on the closed convex subsets 𝐶𝐶(𝐻) of𝐻, then 𝑥𝑛+1 = 𝑃𝐾𝑛+1𝑥0 and the selection converges strongly
to 𝑃𝐸𝑃(𝐹)𝑥0. Where a norm ‖.‖ on a Hilbert space 𝐻 is order
inclusion transitive on 𝐶𝐶(𝐻) if given any 𝐴, 𝐵 ∈ 𝐶𝐶(𝐻)
with 𝐴 ⊆ 𝐵 and arbitrary 𝑥 ∈ 𝐻, then 𝑑(𝑥, 𝐵) = inf

𝑏∈𝐵
‖𝑏 −𝑥‖ = ‖𝑏 − 𝑥‖ and 𝑑(𝑏, 𝐴) = inf𝑎∈𝐴‖𝑎 − 𝑏‖ = ‖𝑎 − 𝑏‖ imply that𝑑(𝑥, 𝐴) = inf𝑎∈𝐴‖𝑎 − 𝑥‖ = ‖𝑎 − 𝑥‖ and 𝐸𝑃(𝐹) is the set of the

solutions of the equilibrium problem for the bifunction. Also
if we set𝑦𝑛 = 𝛼𝑛𝑥𝑛+(1−𝛼𝑛)V𝑛 inAlgorithm 1, where {𝛼𝑛}∞𝑛=1 ⊂[0, 1] satisfying some conditions and 𝑇 : 𝐾 󳨀→ 𝑃(𝐾)
is a multivalued 𝑘−strictly pseudocontractive-type mapping
a similar selection existing as well which is a selection of
Algorithm 2, the numerical example of the computation
is presented for the selection of Algorithm 2 which is the
generalization of the selections of Algorithm 1. The results of
this research are great contributions towards the resolution
of the controversy over the computability and applicability
of algorithms for approximating the solutions of equilibrium
problems for bifunctions involving the construction of the
sequences {𝐾𝑛}∞𝑛=1 and {𝑥𝑛}∞𝑛=1 above.
2. Preliminaries

Let 𝑋 be a nonempty set and let 𝑇 : 𝑋 󳨀→ 𝑋 be a map. A
point 𝑥 ∈ 𝑋 is called a fixed point of 𝑇 if 𝑥 = 𝑇𝑥. If 𝑇 : 𝑋 󳨀→2𝑋 is a multivalued map from𝑋 into the family of nonempty
subsets of𝑋, then 𝑥 is a fixed point of𝑇 if 𝑥 ∈ 𝑇𝑥. If𝑇𝑥 = {𝑥},𝑥 is called a strict fixed point of 𝑇.The set 𝐹(𝑇) = {𝑥 ∈ 𝐷(𝑇) :𝑥 ∈ 𝑇𝑥} (respectively, 𝐹(𝑇) = {𝑥 ∈ 𝐷(𝑇) : 𝑥 = 𝑇𝑥}) is called
the fixed point set ofmultivalued (respectively, single-valued)
map 𝑇 while the set 𝐹𝑠(𝑇) = {𝑥 ∈ 𝐷(𝑇) : 𝑇𝑥 = {𝑥}} is called
the strict fixed point set of 𝑇.

Let 𝑋 be a normed space. A subset 𝐾 of 𝑋 is called
proximinal if for each 𝑥 ∈ 𝑋 there exists 𝑘 ∈ 𝐾 such that

‖𝑥 − 𝑘‖ = inf {󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 : 𝑦 ∈ 𝐾} = 𝑑 (𝑥, 𝐾) . (5)

It is known that every closed convex subset of a uniformly
convex Banach space is proximinal. We shall denote the
family of all nonempty closed and bounded subsets of 𝑋 by𝐶𝐵(𝑋), the family of all nonempty subsets of 𝑋 by 2𝑋, the
family of all nonempty closed and convex subsets of 𝑋 by
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𝐶𝐶(𝑋), and the family of all proximinal subsets of𝑋 by𝑃(𝑋),
for a nonempty set 𝑋.

Let𝐻 denote the Hausdorff metric induced by the metric𝑑 on 𝑋; that is, for every 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋),
𝐻(𝐴, 𝐵) = max{sup

𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝑏, 𝐴)} . (6)

Let 𝑋 be a normed space. Let 𝑇 : 𝐷(𝑇) ⊆ 𝑋 󳨀→ 2𝑋 be
a multivalued mapping on 𝑋. A multivalued mapping 𝑇 :
𝐷(𝑇) ⊆ 𝑋 󳨀→ 2𝑋 is called 𝐿 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧𝑖𝑎𝑛 if there exists𝐿 ≥ 0 such that for all 𝑥, 𝑦 ∈ 𝐷(𝑇)

𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝐿 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 . (7)
In (7), if 𝐿 ∈ [0, 1) 𝑇 is said to be a contraction while 𝑇 is
nonexpansive if 𝐿 = 1.
Definitions 3 (see [11]). 𝑇 is said to be 𝑘-strictly pseudocon-
tractive-type of Isiogugu [11] if there exists 𝑘 ∈ (0, 1) such that
given any pair 𝑥, 𝑦 ∈ 𝐷(𝑇) and 𝑢 ∈ 𝑇𝑥, there exists V ∈ 𝑇𝑦
satisfying ‖𝑢 − V‖ ≤ 𝐻(𝑇𝑥, 𝑇𝑦) and

𝐻2 (𝑇𝑥, 𝑇𝑦) ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 + 𝑘 󵄩󵄩󵄩󵄩𝑥 − 𝑢 − (𝑦 − V)󵄩󵄩󵄩󵄩2 . (8)

Definitions 4. A multivalued map 𝑇 : 𝐷(𝑇) ⊆ 𝑋 󳨀→ 2𝑋 is
said to be of type-one (see for example [12, 13]) if given any
pair 𝑥, 𝑦 ∈ 𝐷(𝑇), then

‖𝑢 − V‖ ≤ 𝐻 (𝑇𝑥, 𝑇𝑦) , for all 𝑢 ∈ 𝑃𝑇𝑥, V ∈ 𝑃𝑇𝑦. (9)

Lemma 5 (see [14]). Let 𝐻 be a real Hilbert space and let𝑇 : 𝐷(𝑇) ⊆ 𝐻 󳨀→ 2𝐻 be a 𝑘-strictly pseudocontractive-type
mapping. �en 𝑇 is an 𝐿-Lipschitzian.
Lemma 6 (see [7]). Let 𝐾 be a nonempty subset of a real
Hilbert space 𝐻 and let 𝑇 : 𝐾 󳨀→ 𝑃(𝐾) be a 𝑘-strictly
pseudocontractive-type mapping such that 𝐹𝑠(𝑇) is nonempty.
�en 𝐹𝑠(𝑇) is closed and convex.
Lemma 7. Let 𝐻 be a real Hilbert space and let 𝐾 be a
nonempty closed convex subset of 𝐻. Let 𝑃𝐾 be the convex
projection onto 𝐾. �en, convex projection is characterized by
the following relations:

(i) 𝑥∗ = 𝑃𝐾(𝑥) ⇐⇒ ⟨𝑥 − 𝑥∗, 𝑦 − 𝑥∗⟩ ≤ 0, for all 𝑦 ∈ 𝐾.
(ii) ‖𝑥 − 𝑃𝐾𝑥‖2 ≤ ‖𝑥 − 𝑦‖2 − ‖𝑦 − 𝑃𝐾𝑥‖2.
(iii) ‖𝑥 − 𝑃𝐾𝑦‖2 ≤ ‖𝑥 − 𝑦‖2 − ‖𝑃𝐾𝑦 − 𝑦‖2.

Lemma 8 (see [1]). Let 𝐾 be a nonempty closed convex subset
of a real Hilbert space 𝐻 and 𝐹 : 𝐾 × 𝐾 󳨀→ R a bifunction
satisfying (A1)-(A4). Let 𝑟 > 0 and 𝑥 ∈ 𝐻. �en, there exists𝑧 ∈ 𝐾 such that

𝐹 (𝑧, 𝑦) + 1
𝑟 ⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾. (10)

Lemma 9 (see [2]). Let𝐾 be a nonempty closed convex subset
of a real Hilbert space𝐻. Assume that 𝐹 : 𝐾×𝐾 󳨀→ R satisfies
(A1)-(A4). Let 𝑟 > 0 and 𝑥 ∈ 𝐻; define 𝑇𝑟 : 𝐻 󳨀→ 2𝐾 by
𝑇𝑟 (𝑥) = {𝑧 ∈ 𝐾 : 𝐹 (𝑧, 𝑦) + 1

𝑟 ⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0} ,
∀𝑦 ∈ 𝐾.

(11)

�en the following conditions hold:

(1) 𝑇𝑟 is single-valued.
(2) 𝑇𝑟 is firmly nonexpansive, that is for any 𝑥, 𝑦 ∈ 𝐻,‖𝑇𝑟𝑥 − 𝑇𝑟𝑦‖2 ≤ ⟨𝑇𝑟𝑥 − 𝑇𝑟𝑦, 𝑥 − 𝑦⟩.
(3) 𝐹(𝑇𝑟) = 𝐸𝑃(𝐹).
(4) 𝐸𝑃(𝐹) is closed and convex.

Lemma 10 (see [15]). Let 𝐾 be a nonempty closed convex
subset of a real Hilbert space 𝐻 and 𝐹 : 𝐾 × 𝐾 󳨀→ R a
bifunction satisfying (A1)-(A4). Let 𝑟 > 0 and 𝑥 ∈ 𝐻. �en
for all 𝑥 ∈ 𝐻 and 𝑝 ∈ 𝐹(𝑇𝑟)

󵄩󵄩󵄩󵄩𝑝 − 𝑇𝑟𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑇𝑟𝑥 − 𝑥󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑝 − 𝑥󵄩󵄩󵄩󵄩2 . (12)

Definition 11 (see [16, 17]). Let 𝐸 be a Banach space. Let 𝑇 :
𝐷(𝑇) ⊆ 𝐸 󳨀→ 2𝐸 be a multivalued mapping. 𝐼 − 𝑇 is said to
be 𝑤𝑒𝑎𝑘𝑙𝑦 𝑑𝑒𝑚𝑖𝑐𝑙𝑜𝑠𝑒𝑑 at 𝑧𝑒𝑟𝑜 if for any sequence {𝑥𝑛}∞𝑛=1 ⊆𝐷(𝑇) such that {𝑥𝑛} converges weakly to 𝑝 and a sequence{𝑦𝑛} with 𝑦𝑛 ∈ 𝑇𝑥𝑛 for all 𝑛 ∈ N such that {𝑥𝑛 −𝑦𝑛} converges
strongly to 𝑧𝑒𝑟𝑜. Then 𝑝 ∈ 𝑇𝑝 (i.e., 0 ∈ (𝐼 − 𝑇)𝑝).
3. Main Results

Definition 12. Let {𝐾𝑛}∞𝑛=1 be sequence of sets. Then a
sequence {𝑧𝑛}∞𝑛=1 is called a selection of {𝐾𝑛}∞𝑛=1 if 𝑧𝑛 ∈ 𝐾𝑛
for each 𝑛.
Definition 13. A norm ‖.‖ on a Hilbert space 𝐻 is order
inclusion transitive on 𝐶𝐶(𝐻) if given any 𝐴, 𝐵 ∈ 𝐶𝐶(𝐻)
with 𝐴 ⊆ 𝐵 and arbitrary 𝑥 ∈ 𝐻, then 𝑑(𝑥, 𝐵) = inf

𝑏∈𝐵
‖𝑏 −𝑥‖ = ‖𝑏 − 𝑥‖ and 𝑑(𝑏, 𝐴) = inf𝑎∈𝐴‖𝑎 − 𝑏‖ = ‖𝑎 − 𝑏‖ imply

that 𝑑(𝑥, 𝐴) = inf𝑎∈𝐴‖𝑎 −𝑥‖ = ‖𝑎−𝑥‖ (i.e., if 𝑏 is the point in
B closet to 𝑥 and 𝑎 is the point in 𝐴 closest to 𝑏 then 𝑎 is the
point in 𝐴 closest to 𝑥).
Definition 14. A Hilbert 𝐻 is said to have order inclusion
transitive property on 𝐶𝐶(𝐻) if its norm is order inclusion
transitive on 𝐶𝐶(𝐻).

It is easy to see that the set of real numbers with the usual
norm has order inclusion transitive property.

Proposition 15. In the definition of the set 𝐾𝑛+1 fl {𝑧 ∈ 𝐾𝑛 :‖𝑧−𝑢𝑛‖2 ≤ ‖𝑧−𝑥𝑛‖2}, if we define 𝑥𝑛+1 = (1/2)(𝑢𝑛+𝑥𝑛), then
the following conditions are true:

(𝐶1) {𝑥𝑛}∞𝑛=1 is a selection of {𝐾𝑛}∞𝑛=1.(𝐶2) 𝑥𝑛+1 = 𝑃𝐾𝑛+1𝑥𝑛.(𝐶3) If 𝐻 has order inclusion transitive property on 𝐶𝐶(𝐻)
then, 𝑥𝑛+1 = 𝑃𝐾𝑛+1𝑥0

Proof. (𝐶1)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1
2 (𝑢𝑛 + 𝑥𝑛) − 𝑢𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2 = 1
4 󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛󵄩󵄩󵄩󵄩2 (13)

and

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1
2 (𝑢𝑛 + 𝑥𝑛) − 𝑥𝑛󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2 = 1
4 󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛󵄩󵄩󵄩󵄩2 . (14)
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Therefore, 𝑥𝑛+1 ∈ 𝐾𝑛+1; thus, {𝑥𝑛}∞𝑛=1 is a selection of{𝐾𝑛}∞𝑛=1.(𝐶2) Let 𝑦 ∈ 𝐾𝑛+1 arbitrary. Then

⟨𝑥𝑛 − 𝑥𝑛+1, 𝑦 − 𝑥𝑛+1⟩ = ⟨𝑥𝑛 − 1
2 (𝑢𝑛 + 𝑥𝑛) , 𝑦

− 1
2 (𝑢𝑛 + 𝑥𝑛)⟩ = ⟨1

2 (𝑥𝑛 − 𝑢𝑛) ,
− 1

2 ((𝑢𝑛 − 𝑦) + (𝑥𝑛 − 𝑦))⟩ = 1
4 ⟨𝑥𝑛 − 𝑢𝑛,

− (𝑢𝑛 − 𝑦) − (𝑥𝑛 − 𝑦)⟩ = 1
4 ⟨(𝑥𝑛 − 𝑦)

+ (𝑦 − 𝑢𝑛) , (𝑦 − 𝑢𝑛) + (𝑦 − 𝑥𝑛)⟩
= 1

4 [⟨𝑥𝑛 − 𝑦, 𝑦 − 𝑢𝑛⟩ + ⟨𝑥𝑛 − 𝑦, 𝑦 − 𝑥𝑛⟩
+ ⟨𝑦 − 𝑢𝑛, 𝑦 − 𝑢𝑛⟩ + ⟨𝑦 − 𝑢𝑛, 𝑦 − 𝑥𝑛⟩]
= 1

4 [⟨𝑥𝑛 − 𝑦, 𝑦 − 𝑢𝑛⟩ − ⟨𝑦 − 𝑥𝑛, 𝑦 − 𝑥𝑛⟩
+ ⟨𝑦 − 𝑢𝑛, 𝑦 − 𝑢𝑛⟩ + ⟨𝑦 − 𝑢𝑛, 𝑦 − 𝑥𝑛⟩]
= 1

4 [⟨𝑥𝑛 − 𝑦, 𝑦 − 𝑢𝑛⟩ − 󵄩󵄩󵄩󵄩𝑦 − 𝑥𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑦 − 𝑢𝑛󵄩󵄩󵄩󵄩2

+ ⟨𝑦 − 𝑢𝑛, 𝑦 − 𝑥𝑛⟩] = 1
4 [− ⟨𝑦 − 𝑥𝑛, 𝑦 − 𝑢𝑛⟩

− 󵄩󵄩󵄩󵄩𝑦 − 𝑥𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑦 − 𝑢𝑛󵄩󵄩󵄩󵄩2 + ⟨𝑦 − 𝑥𝑛, 𝑦 − 𝑢𝑛⟩]
≤ 1

4 [− ⟨𝑦 − 𝑥𝑛, 𝑦 − 𝑢𝑛⟩ − 󵄩󵄩󵄩󵄩𝑦 − 𝑥𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑦 − 𝑥𝑛󵄩󵄩󵄩󵄩2

+ ⟨𝑦 − 𝑥𝑛, 𝑦 − 𝑢𝑛⟩] = 0.

(15)

Consequently, 𝑥𝑛+1 = 𝑃𝐾𝑛+1𝑥𝑛.(C3) Since 𝐾𝑛+1 ⊆ 𝐾𝑛 and 𝐾𝑛 is closed and convex for
each n, condition 𝐶2 and order inclusion transitive property
of𝐻 on 𝐶𝐶(𝐻) guarantee that 𝑥𝑛+1 = 𝑃𝐾𝑛+1𝑥0.

We now consider the following algorithm which we shall
refer to as a selection of Algorithm 1.

Let 𝐻 be a real Hilbert space, 𝐾 be a nonempty closed
convex subset of𝐻, and 𝐹 : 𝐾×𝐾 󳨀→ R be a bifunction. Let𝑟 ∈ [𝑎,∞) for some 𝑎 > 0. Then from an arbitrary 𝑥0 ∈ 𝐻 we
generate the sequence {𝑥𝑛}∞𝑛=1 as follows.
Algorithm 16.

𝑦𝑛 = 𝑥𝑛,
𝑢𝑛 ∈ 𝐾 such that 𝐹 (𝑢𝑛, 𝑦) + 1

𝑟 ⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑦𝑛⟩
≥ 0, ∀𝑦 ∈ 𝐾,

𝑥𝑛+1 = 1
2 (𝑢𝑛 + 𝑥𝑛) .

(16)

Theorem 17. Let𝐻, {𝑥𝑛}∞𝑛=1 and𝐹 and 𝑟 be as in Algorithm 16.
Suppose 𝐹 satisfying (A1)-(A4), 𝐸𝑃(𝐹) ̸= 0, then (i) {𝑥𝑛}
converges strongly to 𝑝 ∈ 𝐸𝑃(𝐹); (ii) if 𝐻 has order inclusion
transitive property, then {𝑥𝑛}∞𝑛=1 converges strongly to 𝑃𝐸𝑃(𝐹)𝑥0.
Proof. Since 𝑢𝑛 = 𝑇𝑟𝑦𝑛 = 𝑇𝑟𝑥𝑛, given arbitrary 𝑞 ∈ 𝐸𝑃(𝐹), we
have that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1
2 (𝑢𝑛 + 𝑥𝑛) − 𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1
2 (𝑢𝑛 − 𝑞) + 1

2 (𝑥𝑛 − 𝑞)󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

= 1
2 󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + 1

2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2

− 1
2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩2

≤ 1
2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 + 1

2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2

− 1
4 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩2

= 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 − 1
4 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 .

(17)

Therefore, {‖𝑥𝑛 − 𝑝‖}∞𝑛=0 is monotone, nonincreasing, and
bounded; hence, lim𝑛󳨀→∞‖𝑥𝑛 − 𝑞‖ exists. Also,

1
4 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞󵄩󵄩󵄩󵄩2 . (18)

Hence∑∞𝑛=0 ‖𝑥𝑛−𝑢𝑛‖2 < ∞which implies that lim𝑛󳨀→∞‖𝑥𝑛−𝑢𝑛‖ = ‖𝑥𝑛 − 𝑇𝑟𝑥𝑛‖ = 0. Also,
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛󵄩󵄩󵄩󵄩 = 1

2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩 , (19)

so that lim𝑛󳨀→∞‖𝑥𝑛+1 − 𝑥𝑛‖ = 0. Consequently {𝑥𝑛}∞𝑛=0,{𝑦𝑛}∞𝑛=0 = {𝑥𝑛}∞𝑛=0, and {𝑢𝑛}∞𝑛=0 = {𝑇𝑟𝑥𝑛}∞𝑛=0 are bounded.
From lim𝑛󳨀→∞‖𝑥𝑛+1−𝑥𝑛‖ = 0wehave that {𝑥𝑛}∞𝑛=0 is aCauchy
in 𝐾 and hence converges strongly to 𝑝 ∈ 𝐾. From the Opial
condition of𝐻, the firmly nonexpansive and demiclosedness
property of (𝐼 − 𝑇𝑟) established that 𝑝 ∈ 𝐹(𝑇𝑟) = 𝐸𝑃(𝐹). (ii)
If𝐻 has order inclusion transitive property then 𝑥𝑛 = 𝑃𝐾𝑛𝑥0,
consequently, from Lemma 7(i)

⟨𝑥𝑛 − 𝑦, 𝑥0 − 𝑥𝑛⟩ ≥ 0, ∀𝑦 ∈ 𝐾𝑛. (20)

Since 𝐸𝑃(𝐹) ⊆ 𝐾𝑛 for all 𝑛 ≥ 1, we have that
⟨𝑥𝑛 − 𝑞, 𝑥0 − 𝑥𝑛⟩ ≥ 0, ∀𝑞 ∈ 𝐸𝑃 (𝐹) . (21)

Taking the limit as 𝑛 󳨀→ ∞ in (21) we have

⟨𝑝 − 𝑞, 𝑥0 − 𝑝⟩ ≥ 0, ∀𝑞 ∈ 𝐸𝑃 (𝐹) . (22)

Thus, from Lemma 7(i) 𝑝 = 𝑃𝐸𝑃(𝐹)𝑥0. This completes the
proof.

Remark 18. It is important to note that the strong conver-
gence of Algorithm 16 to a 𝑝 ∈ 𝐸𝑃(𝐹) does not depend on
the order inclusion transitive property condition on 𝐻.
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Motivated by Algorithm 16 we now obtain the following
algorithm which is a selection of Algorithm 2.

Let 𝐻 be a real Hilbert space, 𝐾 be a closed and convex
subset of 𝐻, 𝐹 : 𝐾 × 𝐾 󳨀→ R be a bifunction, and 𝑇 :𝐾 󳨀→ 𝑃(𝐾) be a multivalued 𝑘−strictly pseudocontractive-
type mapping. Let {𝛼𝑛}∞𝑛=1 ⊂ [0, 1] and 𝑟𝑛 ∈ [𝑎,∞) for some𝑎 > 0. Then from an arbitrary 𝑥0 ∈ 𝐻 the algorithm is
generated as follows.

Algorithm 19.

𝑦𝑛 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) V𝑛,
𝑢𝑛 ∈ 𝐾 such that 𝐹 (𝑢𝑛, 𝑦) + 1

𝑟𝑛 ⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑦𝑛⟩
≥ 0, ∀𝑦 ∈ 𝐾,

𝑥𝑛+1 = 1
2 (𝑢𝑛 + 𝑥𝑛) ,

(23)

where V𝑛 ∈ 𝑇𝑥𝑛.
Theorem 20. Let 𝐻, 𝐾, 𝐹, 𝑇, {𝛼𝑛}, and {𝑟𝑛} be as in
Algorithm 19. Suppose that (I-T) is weakly demiclosed at 𝑧𝑒𝑟𝑜,𝐹 satisfies (A1)-(A4), F = 𝐹𝑠(𝑇)∩𝐸𝑃(𝐹) ̸= 0, and {𝛼𝑛} satisfies
(i) 𝛼𝑛 󳨀→ 𝛼 < 1−𝑘; (ii) 𝛼 > 0; (iii)∑∞𝑛=1 𝛼𝑛(1−𝛼𝑛) = ∞.�en{𝑥𝑛} converges strongly to 𝑞 ∈ F . Also, if 𝐻 has order inclusion
transitive property, then 𝑞 = 𝑃F𝑥0.
Proof. Let 𝑝 ∈ F be arbitrary. Then

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1
2 (𝑥𝑛 + 𝑢𝑛) − 𝑝󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2 = 1
2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩2

+ 1
2 󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝󵄩󵄩󵄩󵄩2 − 1

4 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩2 ≤ 1
2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩2

+ 1
2 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝󵄩󵄩󵄩󵄩2 − 1

4 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩2 = 1
2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩2

− 1
4 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩2 + 1

2 󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛V𝑛 − 𝑝󵄩󵄩󵄩󵄩2

= 1
2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩2 − 1

4 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩2

+ 1
2 [󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) (𝑥𝑛 − 𝑝) + 𝛼𝑛 (V𝑛 − 𝑝)󵄩󵄩󵄩󵄩2] = 1

2 󵄩󵄩󵄩󵄩𝑥𝑛
− 𝑝󵄩󵄩󵄩󵄩2 − 1

4 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩2 + 1
2 [(1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩2

+ 𝛼𝑛 󵄩󵄩󵄩󵄩V𝑛 − 𝑝󵄩󵄩󵄩󵄩2 − 𝛼𝑛 (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − V𝑛
󵄩󵄩󵄩󵄩2] ≤ 1

2 󵄩󵄩󵄩󵄩𝑥𝑛
− 𝑝󵄩󵄩󵄩󵄩2 − 1

4 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩2 + 1
2 [(1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩2

+ 𝛼𝑛𝐻2 (𝑇𝑥𝑛, 𝑇𝑝) − 𝛼𝑛 (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − V𝑛
󵄩󵄩󵄩󵄩2]

≤ 1
2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩2 − 1

4 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩2

+ 1
2 [(1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩2

+ 𝛼𝑛 [󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩2 + 𝑘 󵄩󵄩󵄩󵄩𝑥𝑛 − V𝑛
󵄩󵄩󵄩󵄩2]

− 𝛼𝑛 (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − V𝑛
󵄩󵄩󵄩󵄩2] = 1

2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩2 − 1
4 󵄩󵄩󵄩󵄩𝑥𝑛

− 𝑢𝑛󵄩󵄩󵄩󵄩2 + 1
2 [󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩2

− 𝛼𝑛 (1 − (𝛼𝑛 + 𝑘)) 󵄩󵄩󵄩󵄩𝑥𝑛 − V𝑛
󵄩󵄩󵄩󵄩2] = −1

4 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩2

+ 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝󵄩󵄩󵄩󵄩2 − 1
2𝛼𝑛 (1 − (𝛼𝑛 + 𝑘)) 󵄩󵄩󵄩󵄩𝑥𝑛 − V𝑛

󵄩󵄩󵄩󵄩2 .
(24)

It then follows that lim𝑛󳨀→∞‖𝑥𝑛 − 𝑝‖ exists; hence, {𝑥𝑛} is
bounded. Also,

∞∑
𝑛=1

1
2𝛼𝑛 (1 − (𝛼𝑛 + 𝑘)) 󵄩󵄩󵄩󵄩𝑥𝑛 − V𝑛

󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥0 − 𝑝󵄩󵄩󵄩󵄩2 < ∞. (25)

Since 𝛼 > 0 from (ii), we have that lim𝑛󳨀→∞‖𝑥𝑛 − V𝑛‖ =0. Furthermore, lim𝑛󳨀→∞‖𝑥𝑛 − 𝑢𝑛‖ = 0. Consequently,
lim𝑛󳨀→∞‖𝑥𝑛+1 − 𝑥𝑛‖2 = lim𝑛󳨀→∞‖(1/2)(𝑥𝑛 − 𝑢𝑛)‖2 = 0 which
implies that {𝑥𝑛} is a Cauchy sequence in 𝐾. Also, since 𝐾 is
closed and convex, {𝑥𝑛} converges strongly to some 𝑞 ∈ 𝐾.
From the Opial condition of𝐻, weakly demiclosed of (𝐼 − 𝑇)
at 𝑧𝑒𝑟𝑜, we have that 𝑞 ∈ 𝑇𝑞.

It remains to show that 𝑞 is in 𝐸𝑃(𝐹) since
lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩 = 0. (26)

It follows from lim𝑛󳨀→∞‖𝑥𝑛 − 𝑞‖ = 0 and (26) that

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑞󵄩󵄩󵄩󵄩 = 0. (27)

Also,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞󵄩󵄩󵄩󵄩2 − 𝛼𝑛 (1 − (𝛼𝑛 + 𝑘)) 󵄩󵄩󵄩󵄩𝑥𝑛 − V𝑛
󵄩󵄩󵄩󵄩2 . (28)

Observe that

󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑛󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑞 − 𝑢𝑛󵄩󵄩󵄩󵄩2
= 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2 − 2 ⟨𝑞, 𝑥𝑛 − 𝑢𝑛⟩
≤ 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩 (󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩) + 2 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩 .

(29)

It follows from (26) that

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑛󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑞 − 𝑢𝑛󵄩󵄩󵄩󵄩 = 0. (30)

Now from (28),

󵄩󵄩󵄩󵄩𝑞 − 𝑦𝑛󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑛󵄩󵄩󵄩󵄩 . (31)
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Also, using 𝑢𝑛 = 𝑇𝑟𝑛𝑦𝑛, Lemma 10, and (31) we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩󵄩𝑇𝑟𝑛𝑦𝑛 − 𝑦𝑛󵄩󵄩󵄩󵄩󵄩2

≤ 󵄩󵄩󵄩󵄩𝑞 − 𝑦𝑛󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑟𝑛𝑦𝑛󵄩󵄩󵄩󵄩󵄩2

≤ 󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑛󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑞 − 𝑇𝑟𝑛𝑦𝑛󵄩󵄩󵄩󵄩󵄩2
= 󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑛󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑞 − 𝑢𝑛󵄩󵄩󵄩󵄩2 .

(32)

Therefore, from (30) and (32),

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛󵄩󵄩󵄩󵄩 = 0. (33)

Consequently, from (27) and (33),

lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞󵄩󵄩󵄩󵄩 = 0. (34)

From the assumption that 𝑟𝑛 ≥ 𝑎 > 0,
lim
𝑛󳨀→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛󵄩󵄩󵄩󵄩𝑟𝑛 = 0. (35)

Since 𝑢𝑛 = 𝑇𝑟𝑛𝑦𝑛, we have
𝐹 (𝑢𝑛, 𝑦) + 1

𝑟𝑛 ⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑦𝑛⟩ ≥ 0. (36)

We then deduce from (A2) that
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛󵄩󵄩󵄩󵄩2𝑟𝑛 ≥ 1

𝑟𝑛 ⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑦𝑛⟩ ≥ −𝐹 (𝑢𝑛, 𝑦)
≥ 𝐹 (𝑦, 𝑢𝑛) , ∀𝑦 ∈ 𝐾.

(37)

By taking limit as 𝑛 󳨀→ ∞ of the above inequality and from
(A4), (27), and (34), 𝐹(𝑦, 𝑞) ≤ 0, for all 𝑦 ∈ 𝐾. Let 𝑡 ∈ (0, 1)
and for all 𝑦 ∈ 𝐾, since 𝑞 ∈ 𝐾, 𝑦𝑡 = 𝑡𝑦 + (1 − 𝑡)𝑞 ∈ 𝐾. Hence𝐹(𝑦𝑡, 𝑞) ≤ 0.Therefore, from (A1),

0 = 𝐹 (𝑦𝑡, 𝑦𝑡) ≤ 𝑡𝐹 (𝑦𝑡, 𝑦) + (1 − 𝑡) 𝐹 (𝑦𝑡, 𝑞)
≤ 𝑡𝐹 (𝑦𝑡, 𝑦) ; (38)

that is, 𝐹(𝑦𝑡, 𝑦) ≥ 0. Letting 𝑡 ↓ 0, from (A3) we obtain𝐹(𝑞, 𝑦) ≥ 0 for all 𝑦 ∈ 𝐾 so that 𝑞 ∈ 𝐸𝑃(𝐹) for all 𝑖 =1, 2, . . . , 𝑁. Hence 𝑞 ∈ F .
Finally, if 𝐻 has order inclusion transitive property, 𝑥𝑛 =𝑃𝐾𝑛𝑥0 consequently, from Lemma 7(i)

⟨𝑥𝑛 − 𝑦, 𝑥0 − 𝑥𝑛⟩ ≥ 0, ∀𝑦 ∈ 𝐾𝑛. (39)

Since 𝐸𝑃(𝐹) ⊆ 𝐾𝑛 for all 𝑛 ≥ 1, we have that
⟨𝑥𝑛 − 𝑝, 𝑥0 − 𝑥𝑛⟩ ≥ 0, ∀𝑝 ∈ 𝐸𝑃 (𝐹) . (40)

Taking the limit as 𝑛 󳨀→ ∞ in (40) we have

⟨𝑞 − 𝑝, 𝑥0 − 𝑞⟩ ≥ 0, ∀𝑝 ∈ 𝐸𝑃 (𝐹) . (41)

Thus, from Lemma 7(i) 𝑞 = 𝑃𝐸𝑃(𝐹)𝑥0. This completes the
proof.

Remark 21. The above proof shows that the strong conver-
gence of Algorithm 19 to a common solution 𝑞 ∈ F does
not depend on order inclusion transitive property condition
on 𝐻. However, order inclusion transitive property is only
required on 𝐻 if we want to have that 𝑝 = 𝑃𝐸𝑃(𝐹)𝑥0.
Remark 22. It is also of a great interest to us to get the same
results in normed spaces which enjoy the order inclusion
transitive property.

4. Numerical Examples of the Computations

We shall use Algorithm 19 to recompute the example pre-
sented by Isiogugu et al. [13], when 𝑖 = 1 is defined as follows.

Let 𝐻 = R (the reals with the usual metric and inner
product) and 𝐾 = [−4, 10]; we define

(i) 𝑇 : [−4, 10] 󳨀→ 𝑃([−4, 10]) by

𝑇𝑥 = {{{{{
[−2𝑥, −9𝑥

4 ] , 𝑥 ∈ [−4, 0]
{−3𝑥

9 } , 𝑥 ∈ (0, 10] . (42)

We have that, for any 𝑥, 𝑦 ∈ [−4, 0],

𝐻2 (𝑇𝑥, 𝑇𝑦) = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
9
4 (𝑥 − 𝑦)󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2 = (9
4)
2 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2

= 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 + ((9
4)
2 − 1) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 .

(43)

Also, given any 𝑢 ∈ 𝑇𝑥, 𝑢 = −𝛼𝑥, 2 ≤ 𝛼 ≤ 9/4, and we can
choose V = −𝛼𝑦 ∈ 𝑇𝑦 so that

󵄩󵄩󵄩󵄩𝑥 − 𝑢 − (𝑦 − V)󵄩󵄩󵄩󵄩2 = (1 + 𝛼)2 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 . (44)

It then follows that

𝐻2 (𝑇𝑥, 𝑇𝑦) = 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2

+ (9)2 − 16
16 (1 + 𝛼)2

󵄩󵄩󵄩󵄩𝑥 − 𝑢 − (𝑦 − V)󵄩󵄩󵄩󵄩2

≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2

+ (9)2 − 16
16 (1 + 2)2

󵄩󵄩󵄩󵄩𝑥 − 𝑢 − (𝑦 − V)󵄩󵄩󵄩󵄩2 .

(45)

Similarly, for any 𝑥 ∈ [−4, 0], 𝑦 ∈ (0, 10],

𝐻2 (𝑇𝑥, 𝑇𝑦) = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
9
4𝑥 − 3𝑦

9
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩

9
4𝑥 − 9

4𝑦
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2

+ (9)2 − 16
16 (1 + 2)2

󵄩󵄩󵄩󵄩𝑥 − 𝑢 − (𝑦 − V)󵄩󵄩󵄩󵄩2 .
(46)
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Table 1: Sequences generated by Algorithms 2 and 19.

Algorithm 2 Algorithm 2 Algorithm 4 Algorithm 2 Algorithm 2 Algorithm 4
n K n x n x n K n x n x n
0 [-4, 10] 2 2 [-4, 10] -3 -3
1 [-4, 1.126855044] 1.126855044 1.126855044 [-1.532563756, 10] -1.532563756 -1.532563756
2 [-4, 0.652769535] 0.652769535 0.652769535 [-0.787076007, 10] -0.787076007 -0.787076007
3 [-4, 0.38284414] 0.38284414 0.38284414 [-0.405188015, 10] -0.405188015 -0.405188015
4 [-4, 0.226111845] 0.226111845 0.226111845 [-0.208877029, 10] -0.208877029 -0.208877029
5 [-4, 0.134146663] 0.134146663 0.134146663 [-0.107772707, 10] -0.107772707 -0.107772707
6 [-4, 0.079836206] 0.079836206 0.079836206 [-0.055641074, 10] -0.055641074 -0.055641074
7 [-4, 0.047623897] 0.047623897 0.047623897 [-0.028739594, 10] -0.028739594 -0.028739594
8 [-4, 0.028459121] 0.028459121 0.028459121 [-0.014849721, 10] -0.014849721 -0.014849721
9 [-4, 0.01703056] 0.01703056 0.01703056 [-0.007674974, 10] -0.007674974 -0.007674974
10 [-4, 0.010203099] 0.010203099 0.010203099 [-0.003967653, 10] -0.003967653 -0.003967653
11 [-4, 0.006118509] 0.006118509 0.006118509 [-0.002051501, 10] -0.002051501 -0.002051501
12 [-4, 0.003672014] 0.003672014 0.003672014 [-0.001060909, 10] -0.001060909 -0.001060909
13 [-4, 0.002205248] 0.002205248 0.002205248 [-0.00054871, 10] -0.00054871 -0.00054871
14 [-4, 0.001325149] 0.001325149 0.001325149 [-0.00028383, 10] -0.00028383 -0.00028383
15 [-4, 0.000796697] 0.000796697 0.000796697 [-0.000146831, 10] -0.000146831 -0.000146831
16 [-4, 0.0004792] 0.0004792 0.0004792 [-0.000075965, 10] -0.000075965 -0.000075965
17 [-4, 0.000288345] 0.000288345 0.000288345 [-0.000039304, 10] -0.000039304 -0.000039304
18 [-4, 0.000173565] 0.000173565 0.000173565 [-0.000020337, 10] -0.000020337 -0.000020337
19 [-4, 0.000104508] 0.000104508 0.000104508 [-0.000010523, 10] -0.000010523 -0.000010523
20 [-4, 0.000062945] 0.000062945 0.000062945 [-0.000005445, 10] -0.000005445 -0.000005445
21 [-4, 0.000037921] 0.000037921 0.000037921 [-0.000002817, 10] -0.000002817 -0.000002817
22 [-4, 0.000022851] 0.000022851 0.000022851 [-0.000001457, 10] -0.000001457 -0.000001457
23 [-4, 0.000013772] 0.000013772 0.000013772 [-0.000000754, 10] -0.000000754 -0.000000754
24 [-4, 0.000008302] 0.000008302 0.000008302 [-0.00000039, 10] -0.00000039 -0.00000039
25 [-4, 0.000005005] 0.000005005 0.000005005 [-0.000000201, 10] -0.000000201 -0.000000201
26 [-4, 0.000003018] 0.000003018 0.000003018 [-0.000000103, 10] -0.000000103 -0.000000103
27 [-4, 0.00000182] 0.00000182 0.00000182 [-0.000000053, 10] -0.000000053 -0.000000053
28 [-4, 0.000001097] 0.000001097 0.000001097 [-0.000000027, 10] -0.000000027 -0.000000027
29 [-4, 0.000000661] 0.000000661 0.000000661 [-0.000000013, 10] -0.000000013 -0.000000013
30 [-4, 0.000000398] 0.000000398 0.000000398 [-0.000000006, 10] -0.000000006 -0.000000006
31 [-4, 0.00000024] 0.00000024 0.00000024 [-0.000000003, 10] -0.000000003 -0.000000003
32 [-4, 0.000000144] 0.000000144 0.000000144 [-0.000000001, 10] -0.000000001 -0.000000001
33 [-4, 0.000000086] 0.000000086 0.000000086 {0} 0 0
34 [-4, 0.000000051] 0.000000051 0.000000051
35 [-4, 0.00000003] 0.00000003 0.00000003
36 [-4, 0.000000018] 0.000000018 0.000000018
37 [-4, 0.00000001] 0.00000001 0.00000001
38 [-4, 0.000000005] 0.000000005 0.000000005
39 [-4, 0.000000002] 0.000000002 0.000000002
40 [-4, 0.000000001] 0.000000001 0.000000001
41 {0} 0 0
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Furthermore, for any 𝑥, 𝑦 ∈ (0, 10],
𝐻2 (𝑇𝑥, 𝑇𝑦) = 3

9 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2

≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2

+ (9)2 − 16
16 (1 + 2)2

󵄩󵄩󵄩󵄩𝑥 − 𝑢 − (𝑦 − V)󵄩󵄩󵄩󵄩2 .
(47)

Thus, 𝑇 is ((9)2 − 16)/16(1 + 2)2−strictly pseudocontractive-
type. It is easy to see that, given any pair 𝑥, 𝑦 ∈ [−4, 0],
we have that 𝐻(𝑇𝑥, 𝑇𝑦) = (9/4)‖𝑥 − 𝑦‖. Therefore 𝑇 is not
nonexpansive and 𝐹𝑠(𝑇) = {0} ̸= 0. We then set

(ii)

V𝑛 =
{{{{{
−9𝑥𝑛4 , 𝑥𝑛 ∈ [−4, 0]
−3𝑥𝑛9 , 𝑥𝑛 ∈ (0, 10] . (48)

(iii)

{𝛼𝑛}∞𝑛=1
= ((9)2 − 16 + 16 (1 + 2)2) (𝑛 + 32 (1 + 2)2)2 + 32 (1 + 2)2

32 (1 + 2)2 (𝑛 + 32 (1 + 2)2)2 . (49)

We also let 𝐹 : 𝑅 × 𝑅 󳨀→ 𝑅, {𝑟𝑛}∞𝑛=1, and {𝑢𝑛}∞𝑛=1 to be as
defined in [9] for 𝑖 = 1. That is,

(iv) 𝐹(𝑥, 𝑦) = −𝑥2 + 𝑦2.
Observe that 𝐸𝑃(𝐹) = {0}, 𝐹𝑠(𝑇) ∩ 𝐸𝑃(𝐹) = {0}, and

𝐹 (𝑧, 𝑦) + 1
𝑟 ⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0

󳨐⇒ 𝑦2 − 𝑧2 + 1
𝑟 (𝑦 − 𝑧) (𝑧 − 𝑥) ≥ 0,

󳨐⇒ 𝑦2 − 𝑧2 + 1
𝑟 [𝑦𝑧 − 𝑥𝑦 − 𝑧2 + 𝑥𝑧] ≥ 0,

󳨐⇒ 𝑟𝑦2 − 𝑟𝑧2 + 𝑦𝑧 − 𝑥𝑦 − 𝑧2 + 𝑥𝑧 ≥ 0,
󳨐⇒ 𝑟𝑦2 + (𝑧 − 𝑥) 𝑦 − 𝑟𝑧2 − 𝑧2 + 𝑥𝑧 ≥ 0.

(50)

Now𝐹(𝑦) = 𝑟𝑦2+(𝑧−𝑥)𝑦−𝑟𝑧2−𝑧2+𝑥𝑧 is a quadratic function
of 𝑦with coefficients 𝑎 = 𝑟, 𝑏 = 𝑧−𝑥, and 𝑐 = −𝑟𝑧2 −𝑧2 +𝑥𝑧.
Therefore, we can compute the discriminant Δ of 𝐹 as follows:

Δ = (𝑧 − 𝑥)2 + 4𝑟 (𝑟𝑧2 + 𝑧2 − 𝑥𝑧)
= 𝑧2 + 𝑥2 − 2𝑥𝑧 + 4𝑟2𝑧2 + 4𝑟𝑧2 − 4𝑟𝑥𝑧
= (1 + 4𝑟2 + 4𝑟) 𝑧2 − 2 (2𝑟 + 1) 𝑥𝑧 + 𝑥2
= (1 + 2𝑟)2 𝑧2 − 2 (1 + 2𝑟) 𝑥𝑧 + 𝑥2
= [(1 + 2𝑟) 𝑧 − 𝑥]2 .

(51)

Obviously, 𝐹(𝑦) ≥ 0 for all 𝑦 ∈ R if it has at most one
solution inR. Thus Δ ≤ 0 and hence 𝑧 = 𝑇𝑟𝑛(𝑥) = 𝑥/(1 + 2𝑟).
Consequently,

(v) {𝑢𝑛}∞𝑛=1 = {𝑇𝑟𝑛(𝑦𝑛)}∞𝑛=1 = {𝑦𝑛/(2𝑟𝑛 + 1)}∞𝑛=1,
(vi) {𝑟𝑛}∞𝑛=1 = {(𝑛 + 1)/𝑛}∞𝑛=1.
The algorithm is computed withMicrosoft word Excel 97-

2003 Workbook. Table 1 shows the sequences {𝑥𝑛} and {𝐾𝑛}
generated from our computation using two different values
of 𝑥0 = 2, −3.
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