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This paper is concerned with the analysis of the linear 𝜃-method and compact 𝜃-method for solving delay reaction-diffusion
equation. Solvability, consistence, stability, and convergence of the two methods are studied. When 𝜃 ∈ [0, 1/2), sufficient and
necessary conditions are given to show that the two methods are asymptotically stable. When 𝜃 ∈ [1/2, 1], the two methods are
proven to be unconditionally asymptotically stable. Finally, several examples are carried out to confirm the theoretical results.

1. Introduction

Partial functional differential equations (PFDEs) are widely
used to model many natural phenomena in various scien-
tific fields [1–9]. In order to gain a better understanding
of the complicated dynamics, numerous researchers have
investigated PFDEs. For instance, Garrido-Atienza and Real
discussed the existence and uniqueness of solutions for delay
evolution equations [10]. Mei et al. analysed the stabil-
ity of travelling waves for nonlocal time-delayed reaction-
diffusion equations [11]. Polyanin and Zhurov constructed
exact solutions for delay reaction-diffusion equations and
more complex nonlinear equations by the functional con-
straints method [12].

However, the exact solutions are difficult to be obtained
[1]. Most researchers have to seek efficient and effective
numerical methods to numerically solve PFDEs. Jackiewicz
and Zubik-Kowal utilised spectral collocation and wave-
form relaxation methods to study nonlinear delay partial
differential equations [13]. Chen and Wang utilised the
variational iteration method to solve a neutral functional-
differential equation with proportional delays [14]. Li et
al. used the discontinuous Galerkin methods to solve the
delay differential equations [15–17]. Bhrawy et al. applied
an accurate Chebyshev pseudospectral scheme to study the
multidimensional parabolic problems with time delays [18].

Aziz and Amin employed the Haar wavelet to study the
numerical solution of a class of delay differential and delay
partial differential equations [19].

When it comes to solving PFDEs numerically, here
comes one question, that is, whether the numerical solution
approximates the exact solution in a stable manner, especially
for a long time. In this study,we use the followingmodel as the
test equation for analysing stability of the numerical method,
which is an extension to the previous work [20–22].𝜕𝜕𝑡𝑢 (𝑥, 𝑡) = 𝑟1 𝜕2𝜕𝑥2 𝑢 (𝑥, 𝑡) + 𝑟2 𝜕2𝜕𝑥2 𝑢 (𝑥, 𝑡 − 𝜏)+ 𝑟3𝑢 (𝑥, 𝑡) + 𝑟4𝑢 (𝑥, 𝑡 − 𝜏) ,𝑡 > 0, 0 < 𝑥 < 𝜋,𝑢 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) , − 𝜏 ≤ 𝑡 ≤ 0, 0 ≤ 𝑥 ≤ 𝜋,𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) = 0, 𝑡 ≥ −𝜏.

(1)

Here and hereafter parameters 𝑟1 > 0 and 𝑟2 > 0 denote the
diffusion coefficients, 𝑟3 ∈ R, 𝑟4 ∈ R, and 𝜏 > 0 is the delay
term. In particular, when 𝑟3 = 𝑟4 = 0, the above model (1) is
reduced to the original test equation in [20–22].

For the case where 𝑟3 = 𝑟4 = 0, model (1) has been
studied by many researchers [2, 20–27]. In this work, we
will examine the case where 𝑟1 > 0, 𝑟2 > 0, 𝑟3 ∈ R, and𝑟4 ∈ R, which is a generalisation of above mentioned work,
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and analyse the stability condition of the numerical method.
The standard second-order central difference method and
compact finite difference method are utilised to discrete the
diffusion operator, respectively, and the linear 𝜃-method is
utilised to discrete the temporal direction. For convenience,
we name the standard second-order central difference version
as linear 𝜃-method and the compact finite difference method
version as compact 𝜃-method. With the spectral radius
condition, we consider the stability of the linear 𝜃-method
and compact 𝜃-method, respectively.

The rest of this paper is organized as follows. In Section 2,
we give a sufficient delay-independent condition for Problem
(1) to be asymptotically stable. In Section 3, we propose the
linear 𝜃-method for solving Problem (1); solvability, stability,
and convergence of the method are discussed. In Section 4,
we extend the compact 𝜃-method to solve Problem (1). In
Section 5, several numerical tests are performed to validate
the theoretical results.

2. Stability of PFDE (1)

In this section, based on Tian’s work [20], we give a sufficient
condition for the trivial solution of Problem (1) to be
asymptotically stable.

Definition 1. The trivial solution 𝑢(𝑥, 𝑡) ≡ 0 of PFDE (1)
is called asymptotically stable if its solution 𝑢(𝑥, 𝑡) corre-
sponding to a sufficiently differentiable function 𝑢0(𝑥, 𝑡)with𝑢0(0, 𝑡) = 𝑢0(𝜋, 𝑡) = 0 satisfies

lim
𝑡→∞

𝑢 (𝑥, 𝑡) = 0. (2)

Lemma 2 (cf. [3]). All the roots of 𝑝𝑒𝑧 + 𝑞 − 𝑧𝑒𝑧 = 0, where 𝑝
and 𝑞 are real, have negative real parts if and only if

(1) 𝑝 < 1,
(2) 𝑝 < −𝑞 < √𝑎21 + 𝑝2,

where 𝑎1 is the root of 𝑔 = 𝑝 tan(𝑔) such that 0 < 𝑔 < 𝜋. If𝑝 = 0, we take 𝑎1 = 𝜋/2.
Theorem 3. Assume that the solution of Problem (1) is𝑢(𝑥, 𝑡) = 𝑒𝜆𝑡𝑒𝑖𝑛𝑥, where 𝜆 ∈ C, 𝑛 ∈ R, 𝑥 ∈ [0, 𝜋], and 𝑡 ≥ 0.
Then the sufficient condition for the trivial solution of Problem
(1) to be asymptotically stable is that

(1) 𝜏𝑟3 < 1 + 𝜏𝑟1𝑛2,
(2) 𝜏(𝑟3 − 𝑟1𝑛2) < 𝜏(𝑟2𝑛2 − 𝑟4) < √𝑎21 + 𝜏2(𝑟3 − 𝑟1𝑛2)2,

where 𝑎1 is the root of 𝑔 = 𝜏(𝑟3 − 𝑟1𝑛2) tan(𝑔) such that 0 <𝑔 < 𝜋. If 𝑟3 = 𝑟1𝑛2, we take 𝑎1 = 𝜋/2.
Proof. Let 𝑋 = 𝐵[0, 𝜋] denote the Banach space equipped
with the maximum norm, and 𝐷(A) = {𝑦 ∈ 𝑋 : 𝑦 ∈𝑋, 𝑦(0) = 𝑦(𝜋) = 0}, andA𝑦 = 𝑦 for 𝑦 ∈ 𝐷(A).

Let 𝑟1𝑛2(𝑛 = 1, 2, ⋅ ⋅ ⋅ ) be the eigenvalues of −A.
According to [1, 28], if all zeros of the characteristic equations𝑓 (𝜆) = 𝜆 + 𝑟1𝑛2 − 𝑟3 + (𝑟2𝑛2 − 𝑟4) 𝑒−𝜆𝜏 (3)

have negative real part, then the trivial solution is asymptot-
ically stable. Meanwhile, if at least one zero has positive real
part, then it is unstable.

Let 𝑓(𝜆) = 0; that is, 𝜆 = 𝑟3 − 𝑟1𝑛2 + (𝑟4 − 𝑟2𝑛2)𝑒−𝜆𝜏.
Multiplying by 𝑒𝜆𝜏, we have𝜆𝑒𝜆𝜏 = (𝑟3 − 𝑟1𝑛2) 𝑒𝜆𝜏 + (𝑟4 − 𝑟2𝑛2) . (4)

Setting 𝜆𝜏 = 𝑧, we get𝑧𝑒𝑧 = 𝜏 (𝑟3 − 𝑟1𝑛2) 𝑒𝑧 + 𝜏 (𝑟4 − 𝑟2𝑛2) . (5)

Denote 𝑝 = 𝜏(𝑟3 − 𝑟1𝑛2), and 𝑞 = 𝜏(𝑟4 − 𝑟2𝑛2), and rewrite the
above equation as 𝑧𝑒𝑧 = 𝑝𝑒𝑧 + 𝑞. (6)

Applying Lemma 2, if

(1) 𝜏𝑟3 < 1 + 𝜏𝑟1𝑛2,
(2) 𝜏(𝑟3 − 𝑟1𝑛2) < 𝜏(𝑟2𝑛2 − 𝑟4) < √𝑎21 + 𝜏2(𝑟3 − 𝑟1𝑛2)2,

then the real parts of all zeros of the characteristic equations
are negative. Therefore, the trivial solution of Problem (1) is
asymptotically stable. Otherwise, there exists a zero 𝜆0 whose
real part is positive such that 𝑓(𝜆0) = 0. Hence, the trivial
solution is unstable. It completes the proof.

3. Linear 𝜃-Method

In this section, the linear 𝜃-method is presented to solve
Problem (1).

Denote ΩΔ𝑡 = {𝑡𝑘 | 𝑘 = −𝑚, −𝑚 + 1, ⋅ ⋅ ⋅ } as a uniform
partition on the time interval [−𝜏,∞), where Δ𝑡 = 𝜏/𝑚
is the time step size and 𝑡𝑘 = 𝑘Δ𝑡. Denote ΩΔ𝑥 = {𝑥𝑗 |𝑗 = 0, 1, ⋅ ⋅ ⋅ , 𝑁} as a uniform mesh on the space intervalΩ = [0, 𝜋], where Δ𝑥 = 𝜋/𝑁 is the space step size and𝑥𝑗 = 𝑗Δ𝑥. Here 𝑚 and𝑁 are two positive integers. Let 𝑢𝑘𝑗 be
the numerical approximation of 𝑢(𝑥𝑗, 𝑡𝑘) and let V = {𝑢𝑘𝑗 |0 ≤ 𝑗 ≤ 𝑁, 𝑘 ≥ −𝑚} be the grid function defined onΩΔ𝑥 ×ΩΔ𝑡. For any grid function 𝑢 ∈ V, we use the following
notations:

𝛿𝑡𝑢𝑘𝑗 = 𝑢𝑘+1𝑗 − 𝑢𝑘𝑗Δ𝑡 ,
𝛿2𝑥𝑢𝑘𝑗 = 𝑢𝑘𝑗+1 − 2𝑢𝑘𝑗 + 𝑢𝑘𝑗−1Δ𝑥2 ,
𝑢𝑘+1/2𝑗 = 12 (𝑢𝑘𝑗 + 𝑢𝑘+1𝑗 ) .

(7)
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Now, applying the standard second-order central differ-
ence method to discrete the diffusion operator, we obtain the
following linear 𝜃-method:𝛿𝑡𝑢𝑘𝑗 = 𝑟1 [(1 − 𝜃) 𝛿2𝑥𝑢𝑘𝑗 + 𝜃𝛿2𝑥𝑢𝑘+1𝑗 ]+ 𝑟2 [(1 − 𝜃) 𝛿2𝑥𝑢𝑘−𝑚𝑗 + 𝜃𝛿2𝑥𝑢𝑘−𝑚+1𝑗 ]+ 𝑟3 [(1 − 𝜃) 𝑢𝑘𝑗 + 𝜃𝑢𝑘+1𝑗 ]+ 𝑟4 [(1 − 𝜃) 𝑢𝑘−𝑚𝑗 + 𝜃𝑢𝑘−𝑚+1𝑗 ] ,𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 1, 𝑘 = 0, 1, ⋅ ⋅ ⋅ ,𝑢𝑘𝑗 = 𝑢0 (𝑥𝑗, 𝑡𝑘) ,𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 1, 𝑘 = −𝑚, −𝑚 + 1, ⋅ ⋅ ⋅ , 0,𝑢𝑘0 = 𝑢𝑘𝑁 = 0, 𝑘 = −𝑚, −𝑚 + 1, ⋅ ⋅ ⋅ .

(8)

We can rewrite the linear 𝜃-method (8) as the following
matrix form:𝜙0 (𝑆) 𝑈𝑘+1 = 𝜙1 (𝑆) 𝑈𝑘 − 𝜙𝑚 (𝑆) 𝑈𝑘+1−𝑚− 𝜙𝑚+1 (𝑆) 𝑈𝑘−𝑚, (9)

where 𝑈𝑘 = (𝑢𝑘1 , 𝑢𝑘2 , ⋅ ⋅ ⋅ , 𝑢𝑘𝑁−1)𝑇 ,𝑎 = 𝑟1Δ𝑡Δ𝑥2 ,𝑏 = 𝑟2Δ𝑡Δ𝑥2 ,𝑐 = 𝑟3Δ𝑡,𝑑 = 𝑟4Δ𝑡,𝜙0 (𝜂) = 1 + 2𝑎𝜃 − 𝑐𝜃 − 𝑎𝜃𝜂,𝜙1 (𝜂) = 1 − 2𝑎 (1 − 𝜃) + 𝑐 (1 − 𝜃) + 𝑎 (1 − 𝜃) 𝜂,𝜙𝑚 (𝜂) = 2𝑏𝜃 − 𝑑𝜃 − 𝑏𝜃𝜂,𝜙𝑚+1 (𝜂) = 2𝑏 (1 − 𝜃) − 𝑑 (1 − 𝜃) − 𝑏 (1 − 𝜃) 𝜂,
𝑆 = (0 1 0 . . . 0 01 0 1 . . . 0 0

d d d d0 0 . . . 1 0 10 0 . . . 0 1 0)
(𝑁−1)×(𝑁−1)

,

(10)

and the eigenvalues of matrix 𝑆 are 𝜆𝑗 = 2 cos(𝑗Δ𝑥), 𝑗 =1, 2, ⋅ ⋅ ⋅ , 𝑁 − 1.
3.1. Solvability of Linear 𝜃-Method

Theorem 4. The linear 𝜃-method (8) is solvable and has a
unique solution.

Proof. The mathematical induction is utilised to prove it.
We can obtain the solution of 𝑈1 according to the initial
condition. Now, assume that the solution of 𝑈𝑙 has been
determined.Then we can derive the solution of𝑈𝑙+1 with (9).
It follows from (9) that the coefficient matrix of the linear
system is 𝜙0 (𝑆) = (1 + 2𝑎𝜃 − 𝑐𝜃) 𝐼 − 𝑎𝜃𝑆. (11)

It is easy to verify that the matrix 𝜙0(𝑆) is symmetric
positive definite. Therefore, the solution of 𝑈𝑙+1 is deter-
mined uniquely. By mathematical induction, the existence
and uniqueness of the solution of difference system (8) are
obtained immediately.

3.2. Asymptotic Stability of Linear 𝜃-Method. Section 2 gives
the sufficient condition for the trivial solution of Problem
(1) to be asymptotically stable. Next, we will analyse the
numerical stability of the linear 𝜃-method (8) under this
condition.

Definition 5. A numerical method applied to Problem (1)
is called asymptotically stable about the trivial solution if
its approximate solution 𝑢𝑘𝑗 corresponding to a sufficiently
differentiable function 𝑢0(𝑥, 𝑡) with 𝑢0(0, 𝑡) = 𝑢0(𝜋, 𝑡) = 0
satisfies

lim
𝑘→∞

max
1≤𝑗≤𝑁

𝑢𝑘𝑗  = 0. (12)

In order to prove that a polynomial is a Schur polynomial,
the following lemma is needed.

Lemma 6 (cf. [29]). Let 𝛾𝑚(𝑧) = 𝛼(𝑧)𝑧𝑚 − 𝛽(𝑧) be a
polynomial, where 𝛼(𝑧) and 𝛽(𝑧) are polynomials of constant
degree. Then, the polynomial 𝛾𝑚(𝑧) is a Schur polynomial for
any𝑚 ≥ 1 if and only if the following conditions hold:

(i) 𝛼(𝑧) = 0 ⇒ |𝑧| < 1,
(ii) |𝛼(𝑧)| ≥ |𝛽(𝑧)|, for all 𝑧 ∈ C, |𝑧| = 1,
(iii) 𝛾𝑚(𝑧) ̸= 0, for all 𝑧 ∈ C, |𝑧| = 1.
Taking the analytical technique in [20–22], we know that

the linear 𝜃-method (8) is asymptotically stable about the
trivial solution if and only if𝑃𝜃𝑚,𝑗 (𝑧) ≡ 𝜙0 (𝜆𝑗) 𝑧𝑚+1 − 𝜙1 (𝜆𝑗) 𝑧𝑚 + 𝜙𝑚 (𝜆𝑗) 𝑧+ 𝜙𝑚+1 (𝜆𝑗) (13)

is a Schur polynomial for any𝑚 ≥ 1.
Basic calculations give𝑃𝜃𝑚,𝑗 (𝑧) = 𝜇𝑗 (𝑧) 𝑧𝑚 − ]𝑗 (𝑧) , (14)

where 𝜇𝑗 (𝑧) = {1 + 𝜃 [𝑎 (2 − 𝜆𝑗) − 𝑐]} 𝑧 − 1+ (1 − 𝜃) [𝑎 (2 − 𝜆𝑗) − 𝑐] ,
]𝑗 (𝑧) = [𝑑 − 𝑏 (2 − 𝜆𝑗)] [𝜃𝑧 + (1 − 𝜃)] . (15)

With the help of Lemma 6, we obtain the following
theorem when 𝜃 ∈ [0, 1/2), which offers a sufficient and
necessary condition of asymptotic stability for the linear 𝜃-
method.

Theorem 7. Suppose that 𝑎 > 𝑐/2(1 − cos(Δ𝑥)), 𝑏 > 𝑑/2(1 −
cos(Δ𝑥)), and 2𝑎(1 − cos(Δ𝑥)) − 𝑐 > 2𝑏(1 + cos(Δ𝑥)) − 𝑑.
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Then the linear 𝜃-method (8) is asymptotically stable about the
trivial solution for 𝜃 ∈ [0, 1/2) if and only if(1 − 2𝜃) [𝑎 + 𝑏 − 𝑐 + 𝑑2 (1 + cos (Δ𝑥))] < 11 + cos (Δ𝑥) , (16)

where 𝑎 = 𝑟1Δ𝑡/Δ𝑥2, 𝑏 = 𝑟2Δ𝑡/Δ𝑥2, 𝑐 = 𝑟3Δ𝑡, and 𝑑 = 𝑟4Δ𝑡.
Proof. (⇒) First, let us verify item (𝑖) of Lemma 6. According
to 𝜇𝑗(𝑧) = 0, we derive that

|𝑧| = 1 − 𝑎 (2 − 𝜆𝑗) − 𝑐1 + 𝜃 [𝑎 (2 − 𝜆𝑗) − 𝑐]  . (17)

By the same technique used in [22], one can check that |𝑧| < 1.
Next, to verify the rest of items of Lemma 6, that is,𝜇𝑗(𝑧) > ]𝑗(𝑧), 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 1, for all 𝑧 ∈ C, |𝑧| = 1,

we define the following complex variable function:

𝑤 = 𝜇𝑗 (𝑧)
]𝑗 (𝑧)

= {1 + 𝜃 [𝑎 (2 − 𝜆𝑗) − 𝑐]} 𝑧 − 1 + (1 − 𝜃) [𝑎 (2 − 𝜆𝑗) − 𝑐][𝑑 − 𝑏 (2 − 𝜆𝑗)] [𝜃𝑧 + (1 − 𝜃)] . (18)

Letting 𝑤 = 𝑥 + 𝑦𝑖 and |𝑧| = 1, after some basic
calculations (see [20–22]), we find

min
|𝑧|=1,𝑧∈C

|𝑤| = min
|𝑧|=1,𝑧∈C

𝜇𝑗 (𝑧)]𝑗 (𝑧) = min{ 𝑎 (2 − 𝜆𝑗) − 𝑐𝑏 (2 − 𝜆𝑗) − 𝑑  , 2 − [𝑎 (2 − 𝜆𝑗) − 𝑐] (1 − 2𝜃)[𝑏 (2 − 𝜆𝑗) − 𝑑] (1 − 2𝜃) } .
(19)

The value of min|𝑧|=1,𝑧∈C|𝑤|will be discussed in the following
two different cases.

Case a (min|𝑧|=1,𝑧∈C|𝜇𝑗(𝑧)/]𝑗(𝑧)| = |(𝑎(2−𝜆𝑗)−𝑐)/(𝑏(2−𝜆𝑗)−𝑑)|).By conditions 𝑎 > 𝑐/2(1−cos(Δ𝑥)), 𝑏 > 𝑑/2(1−cos(Δ𝑥)),
and 2𝑎(1 − cos(Δ𝑥)) − 𝑐 > 2𝑏(1 + cos(Δ𝑥)) − 𝑑, and noting
that 2(1 − cos(Δ𝑥)) ≤ (2 − 𝜆𝑗) ≤ 2(1 − cos((𝑁 − 1)Δ𝑥)) =2(1 + cos(Δ𝑥)), we have 𝑎(2 − 𝜆𝑗) − 𝑐 > 𝑏(2 − 𝜆𝑗) − 𝑑 > 0.
Therefore, for all 𝑧 ∈ C, |𝑧| = 1, we find𝜇𝑗 (𝑧)]𝑗 (𝑧)  ≥ min

|𝑧|=1,𝑧∈C

𝜇𝑗 (𝑧)]𝑗 (𝑧)  = 𝑎 (2 − 𝜆𝑗) − 𝑐𝑏 (2 − 𝜆𝑗) − 𝑑 > 1. (20)

Case b (min|𝑧|=1,𝑧∈C|𝜇𝑗(𝑧)/]𝑗(𝑧)| = |(2 − [𝑐 + 𝑎(2 − 𝜆𝑗)](1 −2𝜃))/[𝑑 + 𝑏(2 − 𝜆𝑗)](1 − 2𝜃)|). It follows from condition (16)
that 2 − [𝑎 (2 − 𝜆𝑗) − 𝑐] (1 − 2𝜃) > 0. (21)

Noticing the fact that 2 − 𝜆𝑗 ≤ 2(1 + cos(Δ𝑥)) and
condition (16), we have

min
|𝑧|=1,𝑧∈C

𝜇𝑗 (𝑧)]𝑗 (𝑧)  = 2 − [𝑎 (2 − 𝜆𝑗) − 𝑐] (1 − 2𝜃)[𝑏 (2 − 𝜆𝑗) − 𝑑] (1 − 2𝜃)≥ 2 − [2𝑎 (1 + cos (Δ𝑥)) − 𝑐] (1 − 2𝜃)[2𝑏 (1 + cos (Δ𝑥)) − 𝑑] (1 − 2𝜃) > 1. (22)

In brief, combining Case a and Case b, we conclude that,
for all 𝑧 ∈ C, |𝑧| = 1, 𝜇𝑗(𝑧) > ]𝑗(𝑧), 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 1 holds,
which implies that items (𝑖𝑖) and (𝑖𝑖𝑖) of Lemma 6 hold.

Now, with the help of Lemma 6, we derive that the
linear 𝜃-method (8) is asymptotically stable about the trivial
solution.

(⇐) Next, we prove the necessary part from two points by
contradiction:

(i) Suppose that (1−2𝜃)[𝑎+𝑏−(𝑐+𝑑)/2(1+ cos(Δ𝑥))] =1/(1 + cos(Δ𝑥)). Let 𝑚 be even, 𝑗 = 𝑁 − 1, and𝑧 = −1, and then, for |𝑧| = 1, we get that𝑃𝜃𝑚,𝑁−1(−1) =0, which indicates that condition (𝑖𝑖𝑖) of Lemma 6
does not hold. Thus, the linear 𝜃-method (8) is not
asymptotically stable.

(ii) Suppose that (1−2𝜃)[𝑎+𝑏−(𝑐+𝑑)/2(1+ cos(Δ𝑥))] >1/(1 + cos(Δ𝑥)). Let 𝑗 = 𝑁 − 1 and 𝑧 = −1,
and then, after some basic calculations, we arrive at|]𝑁−1(−1)| > |𝜇𝑁−1(−1)|.This signifies that condition(𝑖𝑖) of Lemma 6 does not hold. Therefore, the linear𝜃-method (8) is not asymptotically stable.

Then, we know that (16) is a necessary condition for
asymptotic stability. This completes the proof.

Remark 8. When 𝑟3 = 𝑟4 = 0, the sufficient and necessary
condition (16) in Theorem 7 is simplified to(1 − 2𝜃) (𝑎 + 𝑏) < 11 + cos (Δ𝑥) , (23)

which is consistent with the previous work [20].

Next, when 𝜃 ∈ [1/2, 1], we will prove that the linear𝜃-method (8) is unconditionally asymptotically stable with
respect to the trivial solution.

Theorem 9. Suppose that 𝑎 > 𝑐/2(1 − cos(Δ𝑥)), 𝑏 > 𝑑/2(1 −
cos(Δ𝑥)), and 2𝑎(1 − cos(Δ𝑥)) − 𝑐 > 2𝑏(1 + cos(Δ𝑥)) − 𝑑.
Then the linear 𝜃-method (8) is unconditionally asymptotically
stable about the trivial solution for 𝜃 ∈ [1/2, 1].
Proof. We will prove the theorem with Lemma 6. First, it
follows from 𝜇𝑗(𝑧) = 0 that

|𝑧| = 1 − 𝑎 (2 − 𝜆𝑗) − 𝑐1 + 𝜃 [𝑎 (2 − 𝜆𝑗) − 𝑐]  . (24)

Similar to the proof of Theorem 7, we get |𝑧| < 1.
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Then, we check items (ii) and (iii) of Lemma 6. To do that,
we introduce the following complex variable function:𝑤 = 𝜇𝑗 (𝑧)

]𝑗 (𝑧)= {1 + 𝜃 [𝑎 (2 − 𝜆𝑗) − 𝑐]} 𝑧 − 1 + (1 − 𝜃) [𝑎 (2 − 𝜆𝑗) − 𝑐][𝑑 − 𝑏 (2 − 𝜆𝑗)] [𝜃𝑧 + (1 − 𝜃)] . (25)

(i) 𝜃 = 1/2. Set𝑤 = 𝑥+𝑦𝑖 and |𝑧| = 1. Basic calculations
give

min
|𝑧|=1,𝑧∈C

𝜇𝑗 (𝑧)]𝑗 (𝑧)  =  𝑎 (2 − 𝜆𝑗) − 𝑐𝑏 (2 − 𝜆𝑗) − 𝑑  . (26)

It follows from assumptions 𝑎 > 𝑐/2(1 − cos(Δ𝑥)),𝑏 > 𝑑/2(1−cos(Δ𝑥)), and 2𝑎(1−cos(Δ𝑥))−𝑐 > 2𝑏(1+
cos(Δ𝑥)) − 𝑑 that 𝑎(2 − 𝜆𝑗) − 𝑐 > 𝑏(2 − 𝜆𝑗) − 𝑑 > 0.
Then, for all 𝑧 ∈ C, |𝑧| = 1, we find that𝜇𝑗 (𝑧)]𝑗 (𝑧)  ≥ min

|𝑧|=1,𝑧∈C

𝜇𝑗 (𝑧)]𝑗 (𝑧)  = 𝑎 (2 − 𝜆𝑗) − 𝑐𝑏 (2 − 𝜆𝑗) − 𝑑 > 1, (27)

which indicates that items (𝑖𝑖) and (𝑖𝑖𝑖) of Lemma 6
hold.

(ii) 𝜃 ∈ (1/2, 1]. Similarly, we can get

min
|𝑧|=1,𝑧∈C

𝜇𝑗 (𝑧)]𝑗 (𝑧)  =  𝑎 (2 − 𝜆𝑗) − 𝑐𝑏 (2 − 𝜆𝑗) − 𝑑  . (28)

In this case, for all 𝑧 ∈ C, |𝑧| = 1, we also obtain that𝜇𝑗 (𝑧)]𝑗 (𝑧)  ≥ min
|𝑧|=1,𝑧∈C

𝜇𝑗 (𝑧)]𝑗 (𝑧)  = 𝑎 (2 − 𝜆𝑗) − 𝑐𝑏 (2 − 𝜆𝑗) − 𝑑 > 1. (29)

According to Lemma 6, we conclude that the linear 𝜃-
method (8) is asymptotically stable about the trivial solution.
This completes the proof of the theorem.

3.3. Convergence of Linear 𝜃-Method. Here and below, when
we discuss the convergence of numerical methods, we will
always assume that the solution 𝑢(𝑥, 𝑡) of Problem (1) is
smooth enough and satisfies 𝜕𝑗+𝑘𝜕𝑥𝑗𝜕𝑡𝑘 𝑢 (𝑥, 𝑡) ≤ 𝐶, 0 ≤ 𝑗 ≤ 6, 0 ≤ 𝑘 ≤ 3, 𝐶 > 0, (30)

where 𝐶 is a constant.
Let𝑈𝑘𝑗 = 𝑢(𝑥𝑗, 𝑡𝑘), 𝑗 = 0, 1, ⋅ ⋅ ⋅ , 𝑘 = −𝑚, −𝑚+1, ⋅ ⋅ ⋅ .Then,

we get 𝛿𝑡𝑈𝑘𝑗 = 𝑟1 [(1 − 𝜃) 𝛿2𝑥𝑈𝑘𝑗 + 𝜃𝛿2𝑥𝑈𝑘+1𝑗 ]+ 𝑟2 [(1 − 𝜃) 𝛿2𝑥𝑈𝑘−𝑚𝑗 + 𝜃𝛿2𝑥𝑈𝑘−𝑚+1𝑗 ]+ 𝑟3 [(1 − 𝜃)𝑈𝑘𝑗 + 𝜃𝑈𝑘+1𝑗 ]+ 𝑟4 [(1 − 𝜃)𝑈𝑘−𝑚𝑗 + 𝜃𝑈𝑘−𝑚+1𝑗 ] + 𝑅𝑘𝑗 ,
(31)

where𝑅𝑘𝑗 is the local truncation error. Taylor expansion yields
that there exists a constant𝐶 such that, for 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁−1,𝑘 = 0, 1, ⋅ ⋅ ⋅ ,

𝑅𝑘𝑗  ≤ {{{{{𝐶(Δ𝑡2 + Δ𝑥2) , 𝜃 = 12 ,𝐶 (Δ𝑡 + Δ𝑥2) , 0 ≤ 𝜃 < 12 or 12 < 𝜃 ≤ 1. (32)

Thus, the consistence of linear 𝜃-method (8) is obtained.
Now, the convergence result is presented in the following
theorem.

Theorem 10. Assume that the assumptions inTheorems 7 and
9 hold.Then, for 𝑘 = 1, 2, ⋅ ⋅ ⋅ , we have the following convergent
result:𝑒𝑘 ≤ {{{{{𝐶(Δ𝑡2 + Δ𝑥2) , 𝜃 = 12 ,𝐶 (Δ𝑡 + Δ𝑥2) , 0 ≤ 𝜃 < 12 or 12 < 𝜃 ≤ 1, (33)

where 𝑒𝑘 = [𝑢𝑘1 − 𝑈𝑘1 , 𝑢𝑘2 − 𝑈𝑘2 , ⋅ ⋅ ⋅ , 𝑢𝑘𝑁−1 − 𝑈𝑘𝑁−1]𝑇 and 𝐶 is a
constant that is independent of Δ𝑡, Δ𝑥.
Proof. It follows from Theorem 4 that difference system
(8) is solvable and has a unique solution. Moreover, the
assumptions in Theorems 7 and 9 hold, signifying that
the method is stable. Together with the consistence of the
method, we derive that (33) holds by the Lax equivalence
theorem [30, 31].

4. Extension to Compact 𝜃-Method

In this section, we would like to use the compact 𝜃-method
with a higher convergence order in space to extend our work.
We introduce the compact difference operator,

Aℎ𝑢𝑘𝑗 = {{{{{
𝑢𝑘𝑗−1 + 10𝑢𝑘𝑗 + 𝑢𝑘𝑗+112 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 1,𝑢𝑘𝑗 𝑗 = 0,𝑁, (34)

and an important lemma below, which will be needed to
construct and prove our main results.

Lemma 11 (cf. [32]). Assume that V(𝑥) ∈ 𝐶6[0, 𝜋]. Then

V (𝑥𝑗−1) + 10V (𝑥𝑗) + V (𝑥𝑗+1)12− V (𝑥𝑗−1) − 2V (𝑥𝑗) + V (𝑥𝑗+1)Δ𝑥2= Δ𝑥4240 V(6) (𝜔𝑗) ,
(35)

where 𝜔𝑗 ∈ (𝑥𝑗−1, 𝑥𝑗+1).
Now, applying the compact difference operator (34) to

discrete the diffusion operator, we have the compact 𝜃-
method:
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Table 1: Stability and convergence order of different methods.𝜃 ∈ [0, 12) 𝜃 ∈ [12 , 1] Order

Linear 𝜃-method for problem of [20] (1 − 2𝜃) (𝑎 + 𝑏) < 11 + cos (Δ𝑥) Unconditionally stable 2

Compact 𝜃-method for problem of [20] 16 + (1 − 2𝜃) (𝑎 + 𝑏) < 11 + cos (Δ𝑥) Unconditionally stable 4

Linear 𝜃-method for problem (1) (1 − 2𝜃) [𝑎 + 𝑏 − 𝑐 + 𝑑2 (1 + cos (Δ𝑥))] < 11 + cos (Δ𝑥) Unconditionally stable 2

Compact 𝜃-method for problem (1) 16 + (1 − 2𝜃) [𝑎 + 𝑏 − 𝑐 + 𝑑2 (1 + cos (Δ𝑥))] < 11 + cos (Δ𝑥) Unconditionally stable 4

Aℎ𝛿𝑡𝑢𝑘𝑗 = 𝑟1 [(1 − 𝜃) 𝛿2𝑥𝑢𝑘𝑗 + 𝜃𝛿2𝑥𝑢𝑘+1𝑗 ]+ 𝑟2 [(1 − 𝜃) 𝛿2𝑥𝑢𝑘−𝑚𝑗 + 𝜃𝛿2𝑥𝑢𝑘−𝑚+1𝑗 ]+ 𝑟3 [(1 − 𝜃) 𝑢𝑘𝑗 + 𝜃𝑢𝑘+1𝑗 ]+ 𝑟4 [(1 − 𝜃) 𝑢𝑘−𝑚𝑗 + 𝜃𝑢𝑘−𝑚+1𝑗 ] ,𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 1, 𝑘 = 0, 1, ⋅ ⋅ ⋅ ,𝑢𝑘𝑗 = 𝑢0 (𝑥𝑗, 𝑡𝑘) ,𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 1, 𝑘 = −𝑚, −𝑚 + 1, ⋅ ⋅ ⋅ , 0,𝑢𝑘0 = 𝑢𝑘𝑁 = 0, 𝑘 = −𝑚, −𝑚 + 1, ⋅ ⋅ ⋅ .
(36)

The compact 𝜃-method (36) can be rewritten in the
following matrix form:𝜓0 (𝑆) 𝑈𝑘+1 = 𝜓1 (𝑆) 𝑈𝑘 − 𝜓𝑚 (𝑆) 𝑈𝑘+1−𝑚− 𝜓𝑚+1 (𝑆) 𝑈𝑘−𝑚, (37)

where 𝜓0 (𝜂) = 56 + 2𝑎𝜃 − 𝑐𝜃 + ( 112 − 𝑎𝜃) 𝜂,𝜓1 (𝜂) = 56 − 2𝑎 (1 − 𝜃) + 𝑐 (1 − 𝜃)+ ( 112 + 𝑎 (1 − 𝜃)) 𝜂,𝜓𝑚 (𝜂) = 2𝑏𝜃 − 𝑑𝜃 − 𝑏𝜃𝜂,𝜓𝑚+1 (𝜂) = 2𝑏 (1 − 𝜃) − 𝑑 (1 − 𝜃) − 𝑏 (1 − 𝜃) 𝜂.
(38)

Similarly, the solvability, asymptotic stability, and conver-
gence of the compact 𝜃-method (36) can also be obtained.
For conciseness, we merely list our main results and omit the
details.

Theorem 12. Suppose that 𝑎 > 𝑐/2(1 − cos(Δ𝑥)), 𝑏 > 𝑑/2(1 −
cos(Δ𝑥)), and 2𝑎(1−cos(Δ𝑥))−𝑐 > 2𝑏(1+cos(Δ𝑥))−𝑑.Then
the compact 𝜃-method (36) is asymptotically stable about the
trivial solution for 𝜃 ∈ [0, 1/2) if and only if16 + (1 − 2𝜃) [𝑎 + 𝑏 − 𝑐 + 𝑑2 (1 + cos (Δ𝑥))]< 11 + cos (Δ𝑥) , (39)

where 𝑎 = 𝑟1Δ𝑡/Δ𝑥2, 𝑏 = 𝑟2Δ𝑡/Δ𝑥2, 𝑐 = 𝑟3Δ𝑡, and 𝑑 = 𝑟4Δ𝑡.

Remark 13. When 𝑟3 = 𝑟4 = 0, the sufficient and necessary
condition (39) inTheorem 12 is reduced to16 + (1 − 2𝜃) (𝑎 + 𝑏) < 11 + cos (Δ𝑥) , (40)

which is consistent with the previous work [22].

Theorem 14. Suppose that 𝑎 > 𝑐/2(1 − cos(Δ𝑥)), 𝑏 > 𝑑/2(1 −
cos(Δ𝑥)), and 2𝑎(1−cos(Δ𝑥))−𝑐 > 2𝑏(1+cos(Δ𝑥))−𝑑.Then
the compact 𝜃-method (36) is unconditionally asymptotically
stable about the trivial solution for 𝜃 ∈ [1/2, 1].
Theorem 15. Assume that the assumptions inTheorems 12 and
14 hold.Then, for 𝑘 = 1, 2, ⋅ ⋅ ⋅ , we have the following convergent
result:𝑒𝑘 ≤ {{{{{𝐶(Δ𝑡2 + Δ𝑥4) , 𝜃 = 12 ,𝐶 (Δ𝑡 + Δ𝑥4) , 0 ≤ 𝜃 < 12 or 12 < 𝜃 ≤ 1, (41)

where 𝐶 is a constant that is independent of temporal and
spatial stepsizes.

Remark 16. The comparison of linear 𝜃-method and compact𝜃-method applied to problem in [20] and Problem (1) is
presented in Table 1.

5. Numerical Tests

In this section, several numerical experiments are carried out
to illustrate the theoretical results.

5.1. Stability Tests of Linear 𝜃-Method and Compact 𝜃-Method.
Weuse the following equation to test stability of the proposed
method:𝜕𝜕𝑡𝑢 (𝑥, 𝑡) = 𝜕2𝜕𝑥2 𝑢 (𝑥, 𝑡) + 0.5 𝜕2𝜕𝑥2 𝑢 (𝑥, 𝑡 − 𝜏)− 𝑢 (𝑥, 𝑡) − 0.5𝑢 (𝑥, 𝑡 − 𝜏) ,0 < 𝑡 ≤ 𝑇, 0 < 𝑥 < 𝜋,𝑢 (𝑥, 𝑡) = sin (𝑥) , − 𝜏 ≤ 𝑡 ≤ 0, 0 ≤ 𝑥 ≤ 𝜋,𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) = 0, 𝑡 ≥ −𝜏.

(42)
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Figure 1: Numerical solution at the different final time T for varying parameter 𝑚 (𝜃 = 0 and 𝜏 = 1). (a)𝑚 = 25. (b)𝑚 = 30. (c)𝑚 = 31.
(d)𝑚 = 35.
Here, let 𝜏 = 1 and Δ𝑥 = 𝜋/10. We set parameters 𝑟1 = 1.0,𝑟2 = 0.5, 𝑟3 = −1.0, and 𝑟4 = −0.5 such that the trivial solution
of Problem (1) is asymptotically stable.

5.1.1. Linear 𝜃-Method. First, to verify the effectiveness of
the sufficient and necessary condition (16) of the linear 𝜃-
method, here we choose the case where 𝜃 = 0 to illustrate
that. Noting that Δ𝑡 = 𝜏/𝑚, where 𝑚 > 0 is an integer, and
substituting parameters 𝜃 = 0, 𝜏 = 1, Δ𝑥 = 𝜋/10, 𝑟1 = 1.0,𝑟2 = 0.5, 𝑟3 = −1.0, and 𝑟4 = −0.5 into condition (16), we
derive that the proposed method is asymptotically stable if𝑚 > 30.4025. In other words, if 𝑚 ≥ 31, then the method is

asymptotically stable. Meanwhile, if𝑚 ≤ 30, then themethod
is not asymptotically stable. In Figure 1, we can get a pictorial
understanding of that.

It is easily seen from Figures 1(a) and 1(b) that the
numerical solution is unstable as time goes on for 𝑚 = 25
and 30. As shown in Figures 1(c) and 1(d), we know that the
numerical solution is asymptotically stable for 𝑚 = 31 and35. Furthermore, denote the left-hand side of (16) as lhs =(1 − 2𝜃)[𝑎 + 𝑏− (𝑐 + 𝑑)/2(1 + cos(Δ𝑥))], and denote the right-
hand side of (16) as rhs = 1/(1+cos(Δ𝑥)), and Ind = lhs−rhs.
From above paragraph, we know that Ind > 0 for𝑚 ≤ 30, and
Ind < 0 for 𝑚 ≥ 31. The relationship between Ind and 𝑚 is



8 International Journal of Differential Equations

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16
In

d

m ∈ [,]

(a)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−0.5

−0.4

−0.3

−0.2

−0.1

0

In
d

m ∈ [,]

(b)

Figure 2: Ind as a function of parameter m (𝜃 = 0, 𝜏 = 1, Δ𝑥 = 𝜋/10, 𝑟1 = 1.0, 𝑟2 = 0.5, 𝑟3 = −1.0, and 𝑟4 = −0.5). (a) 𝑚 ∈ [1, 30]. (b)𝑚 ∈ [31, 1000].
shown in Figures 2(a) and 2(b). All these illustrate the results
in Theorem 7.

Next, when 𝜃 = 1/2 or 1, we apply the linear 𝜃-
method and use different stepsizes to solve problem (42).
Theoretically, the numerical solution is asymptotically stable
by Theorem 9. Numerically, we know that the numerical
solution is asymptotically stable from the plots of Figure 3,
which is consistent with the theoretical result.

5.1.2. Compact 𝜃-Method. First, we choose the case 𝜃 = 0
to verify the effectiveness of the sufficient and necessary
condition (39) of the compact 𝜃-method. Under the case that𝜃 = 0, 𝜏 = 1, Δ𝑥 = 𝜋/10, 𝑟1 = 𝑟3 = 1.0, and 𝑟2 =𝑟4 = 0.5, and noting that Δ𝑡 = 𝜏/𝑚, by condition (39),
the proposed method is asymptotically stable if and only if𝑚 > 45.052. In other words, if 𝑚 ≥ 46, then the proposed
method is asymptotically stable. Meanwhile, if 𝑚 ≤ 45, then
the proposed method is not asymptotically stable. In order
to validate it, we give a pictorial understanding of that in
Figure 4.

From Figures 4(a) and 4(b), it is easily seen that the
numerical solution is unstable as time goes on for𝑚 = 40 and45.The numerical solution is asymptotically stable for𝑚 = 46
and 50 in Figures 4(c) and 4(d), respectively. Furthermore,
denote the left-hand side of (39) as LHS = 1/6+(1−2𝜃)[𝑎+𝑏−(𝑐+𝑑)/2(1+cos(Δ𝑥))], and denote the right-hand side of (39)
as RHS = 1/(1 + cos(Δ𝑥)), and Ind = LHS−RHS. According
to the analysis of above paragraph, we know that Ind > 0 for𝑚 ≤ 45, and Ind < 0 for𝑚 ≥ 46.The schematic presentation
of the relationship between Ind and positive integer𝑚 is given
in Figures 5(a) and 5(b). All the numerical results agree well
with the findings inTheorem 12.

Then, for 𝜃 = 1/2 or 1, we apply the compact 𝜃-
method and choose different stepsizes to solve problem (42).
The numerical results are shown in Figure 6. Theoretically,
according to Theorem 14, the numerical solution is asymp-
totically stable. Numerically, from these figures, we know

that the numerical solution is asymptotically stable, which
confirms the theoretical result.

5.2. Convergence Tests of Linear 𝜃-Method and Compact 𝜃-
Method. We use the following equation to show our conver-
gence results:𝜕𝜕𝑡𝑢 (𝑥, 𝑡) = 𝜕2𝜕𝑥2 𝑢 (𝑥, 𝑡) + 0.5 𝜕2𝜕𝑥2 𝑢 (𝑥, 𝑡 − 𝜏)− 𝑢 (𝑥, 𝑡) − 0.5𝑢 (𝑥, 𝑡 − 𝜏) + 𝑓 (𝑥, 𝑡) ,0 < 𝑡 ≤ 𝑇, 0 < 𝑥 < 𝜋,𝑢 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) , − 𝜏 ≤ 𝑡 ≤ 0, 0 ≤ 𝑥 ≤ 𝜋,𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) = 0, 𝑡 ≥ −𝜏.

(43)

Here, the added term ℎ(𝑥, 𝑡) and the initial condition 𝑢0(𝑥, 𝑡)
are specified so that the exact solution is 𝑢(𝑥, 𝑡) = e−𝑡 sin(𝑥).

We set the parameters 𝑟1 = 1.0, 𝑟2 = 0.5, 𝑟3 = −1.0, 𝑟4 =−0.5, 𝜏 = 0.5, and𝑇 = 2 and solve problem (43) with different
spatial and temporal stepsizes (Δ𝑥 = 𝜋/𝑁 and Δ𝑡 = 𝜏/𝑚).

For 𝜃 = 0, we let Δ𝑡 = 1𝑒 − 5 to guarantee that the linear𝜃-method (8) is asymptotically stable. When the compact 𝜃-
method (36) is applied to solve problem (43), we letΔ𝑡 ≈ Δ𝑥4.
The numerical errors and corresponding orders in different
sense of norms are displayed in Table 2. Clearly, these results
confirm the convergence of the two methods.

For 𝜃 = 1/2, when the linear 𝜃-method (8) is applied to
solve problem (43), we let Δ𝑡 ≈ Δ𝑥, and for the compact 𝜃-
method (36), we let Δ𝑡 ≈ Δ𝑥2. For 𝜃 = 1, when method
(8) is applied to solve problem (43), we let Δ𝑡 ≈ Δ𝑥2, and
for method (36), we let Δ𝑡 ≈ Δ𝑥4. The numerical errors
and corresponding orders in different sense of norms are
listed in Tables 3 and 4, respectively. It is readily found that
these results confirm the convergence of the two methods.
Obviously, the compact 𝜃-method gives a better convergence
result in the space.
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Table 2: Errors and convergence orders when 𝜃 = 0, 𝑇 = 2, and 𝜏 = 0.5.
Linear 𝜃-method Compact 𝜃-method𝑁 𝐿2-error Order 𝐿∞-error Order 𝑁 𝐿2-error Order 𝐿∞-error Order2 2.40𝐸 − 02 − 1.91𝐸 − 02 − 7 1.15𝐸 − 03 − 8.95𝐸 − 04 −4 5.62𝐸 − 03 2.09 4.48𝐸 − 03 2.09 14 7.31𝐸 − 05 3.98 5.83𝐸 − 05 3.948 1.38𝐸 − 03 2.02 1.10𝐸 − 03 2.02 28 4.58𝐸 − 06 4.00 3.65𝐸 − 06 4.0016 3.44𝐸 − 04 2.01 2.75𝐸 − 04 2.01 56 2.86𝐸 − 07 4.00 2.28𝐸 − 07 4.0032 8.57𝐸 − 05 2.01 6.84𝐸 − 05 2.01 112 1.79𝐸 − 08 4.00 1.43𝐸 − 08 4.00
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Figure 3: Numerical solution at the different final time T for varying parameters 𝜃 and 𝑚 (𝜏 = 1). (a) 𝜃 = 0.5 and𝑚 = 25. (b) 𝜃 = 0.5 and𝑚 = 35. (c) 𝜃 = 1 and𝑚 = 25. (d) 𝜃 = 1 and𝑚 = 35.
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Table 3: Errors and convergence orders when 𝜃 = 0.5, 𝑇 = 2, and 𝜏 = 0.5.
Linear 𝜃-method Compact 𝜃-method𝑁 𝐿2-error Order 𝐿∞-error Order 𝐿2-error Order 𝐿∞-error Order5 1.40𝐸 − 03 − 1.06𝐸 − 03 − 7.69𝐸 − 04 − 5.83𝐸 − 04 −10 3.81𝐸 − 04 1.87 3.04𝐸 − 04 1.80 4.46𝐸 − 05 4.11 3.56𝐸 − 05 4.0320 9.67𝐸 − 05 1.98 7.72𝐸 − 05 1.98 2.74𝐸 − 06 4.03 2.19𝐸 − 06 4.0340 2.61𝐸 − 05 1.89 2.09𝐸 − 05 1.89 1.69𝐸 − 07 4.01 1.35𝐸 − 07 4.0180 6.15𝐸 − 06 2.09 4.91𝐸 − 06 2.09 1.06𝐸 − 08 4.00 8.44𝐸 − 09 4.00
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Figure 4: Numerical solution at the different final time T for varying parameter 𝑚 (𝜃 = 0 and 𝜏 = 1). (a)𝑚 = 40. (b)𝑚 = 45. (c)𝑚 = 46.
(d)𝑚 = 50.
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Figure 5: Ind as a function of parameter m (𝜃 = 0, 𝜏 = 1, Δ𝑥 = 𝜋/10, 𝑟1 = 1.0, 𝑟2 = 0.5, 𝑟3 = −1.0, and 𝑟4 = −0.5). (a) 𝑚 ∈ [1, 45]. (b)𝑚 ∈ [46, 1000].
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Figure 6: Numerical solution at the different final time T for varying parameters 𝜃 and 𝑚 (𝜏 = 1). (a) 𝜃 = 0.5 and𝑚 = 40. (b) 𝜃 = 0.5 and𝑚 = 50. (c) 𝜃 = 1 and𝑚 = 40. (d) 𝜃 = 1 and𝑚 = 50.
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Table 4: Errors and convergence orders when 𝜃 = 1, 𝑇 = 2, and 𝜏 = 0.5.
Linear 𝜃-method Compact 𝜃-method𝑁 𝐿2-error Order 𝐿∞-error Order 𝐿2-error Order 𝐿∞-error Order5 2.16𝐸 − 02 − 1.64𝐸 − 02 − 5.45𝐸 − 03 − 4.14𝐸 − 03 −10 4.34𝐸 − 03 2.31 3.47𝐸 − 03 2.24 2.96𝐸 − 04 4.20 2.36𝐸 − 04 4.1320 9.83𝐸 − 04 2.14 7.84𝐸 − 04 2.14 1.82𝐸 − 05 4.03 1.45𝐸 − 05 4.0340 2.38𝐸 − 04 2.04 1.90𝐸 − 04 2.04 1.13𝐸 − 06 4.00 9.05𝐸 − 07 4.0080 5.92𝐸 − 05 2.01 4.72𝐸 − 05 2.01 7.09𝐸 − 08 4.00 5.65𝐸 − 08 4.00
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