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We present the analysis of a mathematical model of the dynamics of interacting predator and prey populations with the Holling
type random trophic function under the assumption of random time interval passage between predator attacks on prey.We propose
a stochastic approximation algorithm for quantitative analysis of the above model based on the probabilistic limit theorem. If
the predators’ gains and the time intervals between predator attacks are sufficiently small, our proposed method allows us to
derive an approximative average dynamical system for mathematical expectations of population dynamics and the stochastic Ito
differential equation for the random deviations from the average motion. Assuming that the averaged dynamical system is the
classic Holling type II population model with asymptotically stable limit cycle, we prove that the dynamics of stochastic model may
be approximated with a two-dimensional Gaussian Markov process with unboundedly increasing variances.

1. Introduction

One of the most popular models of the dynamics of interact-
ing predator andprey populations, such as those foundwithin
invertebrate and similar domains of life, in mathematical
biology is the system of ordinary differential equations
proposed in [1]:

𝑑𝑥𝑑𝑡 = 𝑟𝑥 (1 − 𝐾−1𝑥) − 𝑚𝑥𝐴 + 𝑥𝑦,
𝑑𝑦𝑑𝑡 = (−𝛿 + 𝛾 𝑚𝑥𝐴 + 𝑥)𝑦,

(1)

where phase variables 𝑥 and 𝑦 denote the density of prey and
predator populations, respectively. In thismodel it is assumed
that in the absence of a predator the prey population has a
potential carrying capacity 𝐾 and develops according to the
logistic law with an intrinsic growth rate 𝑟, and in the absence
of a prey the predator population exponentially decreases to
zero with the intrinsic growth rate 𝛿. The mutual influence of
changes in the densities of the prey and predator in model (1)
is considered by the trophic function 𝑚𝑥𝑦(𝐴 + 𝑥)−1, where
the positive parameter 𝑚 is the prey consumption rate by

the predator or, in other words, corresponds to the number
of prey individuals that can be “eaten” per unit of time. The
positive parameter 𝐴 reflects the saturation of the amount
of prey consumed and, in addition, depends on the rate of
reaction of the predator, i.e., the time between attacks on the
prey. The parameter 𝛾 in formula (1) is a conversion factor
that determines the effect of “eaten prey” on the growth
rate of the population of the predator. The popularity of
the model (1) is explained by the fact that under certain
assumptions about positiveness of parameters 𝑟, 𝐾,𝑚, 𝐴, 𝛿,
and 𝛾 it is structurally stable [2]; that is, there exists a
unique asymptotically stable periodic trajectory. This model
describes stable fluctuations of the size of the predator and
prey populations that are sometimes observed in biological
ecosystems. In accordance with the continuous type dynamic
system (1), both populations are in permanent contact, and
the benefits gained and losses suffered by predator and prey
correspondingly in an arbitrary small time interval [𝑡, 𝑡 +Δ) are proportional to the length of the interval Δ. In fact,
it is clear that changes in the size of both populations are
accidental and can only be modelled on average by formula
(1). Therefore, subsequently papers were published that took
into account the random nature of the model under study by
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adding stochastic terms of the white noise type in the system
of (1) (see the review in [3]). It is important to note that the
choice of this type of random perturbation allows preserving
the principle of predictability of the behaviour of populations,
since stochastic differential equations define randomMarkov
type processes. In the case of modelling by the means of
stochastic differential equations, the predator’s gain and the
prey’s loss during timeΔ contain not only terms proportional
to Δ but also terms that are proportional to the increment of
the Brownian motion process Δ𝑤 fl 𝑤(𝑡 +Δ) −𝑤(𝑡). In most
of these papers, the authorsmanage to prove the possibility of
the existence of a stable stationary close to periodic ergodic
process that describes the behaviour of the stochastic model
under sufficiently small random perturbations.

In the modern literature on mathematical biology many
authors use stochastic differential equations as a mathemat-
ical model for predator-prey ecological systems (we refer
again to the review in [3]). The most typical papers using
stochastic models of predator-prey populations are [4–16].
The authors of these papers study the effect of stochastic
perturbations of various parameters of classical models,
adding either white noise to a chosen parameter [4–10] or
the integral over a centered Poisson measure [11–16]. Using
the apparatus ofmodern stochastic analysis, authors study the
possibility of the existence of positive solutions, the stability
of possible stationary solutions, and the existence ofmoments
of solutions, as well as estimating the asymptotics of the
moments of solutions and other properties of solutions. It
should be noted that most of the aforementioned papers
deal with models with stochastic additives containing no
higher than second-order phase variables. If, however, the
diffusion coefficients or the integrand of the integral over
the Poisson measure has a more complicated form, then the
apparatus proposed in the aforementioned papers can hardly
be used. At the same time, when analysing the dynamics
of some predator-prey biological communities, it may be
necessary to investigate the consequences of nonpermanent
random contacts that occur at random timemoments. In this
case, it is natural to assume that at the time of the contact
extraction of prey by predator will be a random process that
is proportional to the functional response and depends on the
phase coordinates in a more complex form.

However, in this kind of model, the predator’s gain and
the prey’s loss during timeΔ are proportional to the normally
distributed random variable Δ𝑤(𝑡) with parameter Δ and
therefore can be either positive or negative, which is poorly
consistent with the definition of these terms in a formula
of type (1). In this paper we propose a model that also
makes it possible to take into account the stochastic character
of the trophic function of the dynamics of populations as
considered in the Holling type II model, but the predator’s
gain and the prey’s loss are limited positive random variables.
Besides, our model takes into account the possibility that
the predator may take some time to attack the prey, and
therefore there are intervals when both populations develop
independently. Moreover, our model also fulfils the Markov
property.

We propose a method of approximate numerical analysis
of the probabilistic characteristics of population dynamics,

based on application of the asymptotic diffusion approxi-
mation algorithm [17]. Application of the diffusion approx-
imation method for the asymptotic estimation of the prob-
ability characteristics of the Markovian dynamical system,
analogously to the algorithm of the classical central limit
theorem, consists of two steps. Initially, using the small
parameter epsilon and the limit theorem for sequences of
Markov processes, we find a deterministic dynamical system
for the averaged phase variables. This is followed by finding a
stochastic dynamical system for normalized deviations from
solutions of the averaged dynamical system. The resulting
stochastic differential equation of the Ornstein-Uhlenbeck
type is well studied and may be relatively simply analysed
[17].

2. The Model

Let us propose a model where the contacts between predator
and prey occur very often at random time moments {0 =𝜏0 < 𝜏1 < 𝜏2 < ⋅ ⋅ ⋅ < 𝜏𝑘 < ⋅ ⋅ ⋅ }, which are the moments of
discontinuity of the trajectories of a stationary piecewise
constant Poisson process {𝜉(𝑡), 𝑡 ≥ 0} [18] given on a certain
probability space (Ω, F,P) with an exponentially distributed
length of the constancy intervals 𝑃(Δ 𝑘−1 > 𝑡) = 𝑒−𝜀−1𝑡, whereΔ 𝑘−1 = 𝜏𝑘 − 𝜏𝑘−1, and 𝜀 is a small positive parameter. Let us
denote {F𝑡, 𝑡 ≥ 0} as the minimal filtration [19] to which the
process {𝜉(𝑡), 𝑡 ≥ 0} is adapted. Let us also assume that at
time moments {𝜏𝑘, 𝑘 ∈ N} the random variables {𝜉(𝜏𝑘), 𝑘 ∈
N} have a continuous distribution 𝑃(𝜉(𝜏𝑘) ≤ 𝜉) = 𝐹(𝜉) and,
therefore, without any loss of generality, wemay consider that
this distribution is uniform on the interval [0, 1]. It is known
[18] that the probability distributions of a homogeneous
Markov process {𝜉(𝑡), 𝑡 ≥ 0} are uniquely determined by its
weak infinitesimal operator given by

(𝑄𝜀V) (𝜉) fl lim
𝑡↓0

1𝑡 𝐸 {V (𝜉 (𝑡)) − V (𝜉) | 𝜉 (0) = 𝜉} . (2)

In our case the Markov process is given by an infinitesimal
operator

(𝑄𝜀V) (𝜉) = 𝜀−1 ∫1
0
(V (𝑧) − V (𝜉)) 𝑑𝑧, (3)

where 𝜀 is a positive parameter.
Let us proceed to the formal definition of the Markov

dynamical system dealt with in this paper. Let us suppose that
the time of observation starts at 𝑡0 ≥ 0, and densities of prey
and predator populations at this moment are 𝑥(𝑡0), 𝑦(𝑡0),
respectively. Suppose that the size of the prey’s population{𝑥𝜀(𝑡), 𝑡 ∈ [𝑡0, 𝑡0+𝜏1)} changes in accordancewith the logistic
equation

𝑑𝑥𝜀 (𝑡)𝑑𝑡 = 𝑟𝑥𝜀 (𝑡) (1 − 𝐾−1𝑥𝜀 (𝑡)) . (4)

And the size of the predator’s population {𝑦𝜀(𝑡), 𝑡 ≥ 0}
changes by the rule

𝑑𝑦𝜀 (𝑡)𝑑𝑡 = [−𝛿 + 𝛾ℎ (𝜉 (𝑡)) 𝑥𝜀 (𝑡)𝐴 + 𝑥𝜀 (𝑡) ] 𝑦𝜀 (𝑡) , (5)
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Phase diagram with rapid random attacks, formulas (4)–(6)
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Figure 1: Phase trajectory of Markov process (4)-(5)-(6).

where 𝜉(𝑡) ∼ 𝑅(0, 1), ℎ(𝜉(𝑡)) > 0, E{ℎ(𝜉(𝑡)} ≡ 𝑚, and
E{ℎ2(𝜉(𝑡))} ≡ 𝜎2. At the timemoment 𝑡1 = 𝑡0+𝜏1 the collision
between predator and prey individuals occurs, and predator’s
gain is given by the expression

𝑥𝜀 (𝑡1) − 𝑥𝜀 (𝑡1−) = −𝜀𝑦𝜀 (𝑡1) ℎ (𝜉 (𝑡1−)) 𝑥𝜀 (𝑡1−)
𝐴 + 𝑥𝜀 (𝑡1−) . (6)

Here and further 𝑓(𝑡−) fl lim𝑠↑0𝑓(𝑡 + 𝑠). Up to the time
moment 𝑡2 = 𝑡1 + 𝜏2, the dynamics of the size of the prey and
predator populations are also given by (5)-(6)with initial con-
ditions 𝑥(𝑡1) and 𝑦(𝑡1). At the moment 𝑡2 = 𝑡1 +𝜏2 the preda-
tor finds the prey again and its gain is given by expression
(6) where the argument 𝑡1 is replaced by 𝑡2. Then up to the
moment 𝑡3 = 𝑡2+𝜏3 the sizes of predator and prey populations
change again according to law (4)-(5), etc.

It is useful to note that, using terminology and results
of monograph [20], Markov dynamical system (3)-(4)-(5)-
(6) may be defined by the system of stochastic differential
equations

𝑑𝑥𝜀 (𝑡)
= 𝑟𝑥𝜀 (𝑡) (1 − 𝐾−1𝑥𝜀 (𝑡)) 𝑑𝑡

− 𝜀∫1
0
𝑦𝜀 (𝑡) ℎ (𝑢) 𝑥𝜀 (𝑡) (𝐴 + 𝑥𝜀 (𝑡))−1 ]𝜀 (𝑑𝑡, 𝑑𝑢) ,

𝑑𝑦𝜀 (𝑡)
= [−𝛿 + 𝛾𝑥𝜀 (𝑡) (𝐴 + 𝑥𝜀 (𝑡))−1 ∫1

0
ℎ (𝑢) 𝑑𝑢] 𝑦𝜀 (𝑡) 𝑑𝑡,

(7)

where ]𝜀(𝑑𝑡, 𝑑𝑢) is a Poisson random measure with the
parameter 𝜀−1𝑑𝑢 𝑑𝑡.

Figure 1 shows the trajectory of the solution of the system
of the impulse-differential equations (4)-(5)-(6) with the
initial conditions 𝑥𝜀(0) = 20 and 𝑦𝜀(0) = 3 and the parameter
values 𝜀 = 0.01, 𝐸{ℎ(𝜉(𝜏𝑘))} = 𝑚 = 5, 𝐴 = 18, 𝛾 =
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Figure 2: Limit cycle of dynamical system (1).

2, 𝛿 = 4, 𝑟 = 1, and 𝐾 = 1. Figure 2 shows the trajectory of
the solutions of the systemof (1) with initial conditions𝑥(0) =20 and 𝑦(0) = 3 and with the same the parameter values𝑚 = 5, 𝐴 = 18, 𝛾 = 2, and 𝛿 = 4.

As shown in the web-publication [21] and as it can be
seen in Figure 2, the system of (1) with the aforementioned
parameter values has a unique asymptotically stable periodic
trajectory. In Figure 1 the trajectory of the system of (4)-(5)-
(6) corresponding to the same initial conditions over time is
also grouped within some neighbourhood of the limit cycle
described above. Now let us show that the trajectories of the
system of (4)-(5)-(6) for positive sufficiently small values of
the parameter 𝜀 are located within a close neighbourhood
of the trajectories of system (1) and coincide in average
with them. Let us estimate the deviations from the aver-
aged trajectories. The two-dimensional stochastic process{𝑥𝜀(𝑡), 𝑦𝜀(𝑡), 𝑡 ≥ 0} is filtration {F𝑡, 𝑡 ≥ 0} adapted, and for
any 𝑡 > 0, 𝑠 > 0, 𝑎 ∈ 𝑅 and 𝑏 ∈ 𝑅 we have the identity:

P (𝑥𝜀 (𝑡 + 𝑠) > 𝑎, 𝑦𝜀 (𝑡 + 𝑠)
> 𝑏 | {𝑥𝜀 (𝑡 − 𝑢) , 𝑦𝜀 (𝑡 − 𝑢) , 𝑢 ≥ 0}) ≡ P (𝑥𝜀 (𝑡 + 𝑠)
> 𝑎, 𝑦𝜀 (𝑡 + 𝑠) > 𝑏 | {𝑥𝜀 (𝑡) , 𝑦𝜀 (𝑡)}) ;

(8)

i.e., {𝑥𝜀(𝑡), 𝑦𝜀(𝑡), 𝑡 ≥ 0} has the Markov property [18].
In addition, the dynamic characteristics (4)-(5)-(6) of the
process {𝑥𝜀(𝑡), 𝑦𝜀(𝑡), 𝑡 ≥ 0} are homogeneous in time.
Consequently, the dynamical system defined by the Poisson
process {𝜉(𝑡)} and (4)-(5)-(6) defines a homogeneous two-
dimensional Markov process with the infinitesimal operator
[18] given by

(𝐿V) (𝑥, 𝑦) fl lim
𝑡↓0

1𝑡 [E {V (𝑥𝜀 (𝑡) , 𝑦𝜀 (𝑡)) | 𝑥𝜀 (0)
= 𝑥, 𝑦𝜀 (0) = 𝑦} − V (𝑥, 𝑦)] .

(9)

In a sufficiently small time 𝑡 interval the stationary Poisson
process 𝜉(𝑡) can perform jumps from point 𝜉(0) = 𝜂 to point
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𝜉1, and both random variables are independent and equally
uniformly distributed on the segment [0, 1]. Therefore, when𝑡 ↓ 0 the following asymptotic equalities hold:

P (𝜉 (𝑡) ≤ 𝑥 | 𝜉 (0) = 𝜂, 𝑡 < Δ 1)
= P (𝜂 ≤ 𝑥)P (𝑡 < Δ 1) = P (𝜂 ≤ 𝑥) 𝑒−𝜀−1𝑡
= P (𝜂 ≤ 𝑥) + 𝑜 (𝑡) ,

P (𝜉 (𝑡) ≤ 𝑥 | 𝜉 (0) = 𝜂, 𝑡 ≥ Δ 1)
= P (𝜉1 ≤ 𝑥) (1 − 𝑒−𝜀−1𝑡) + 𝑜 (𝑡)
= 𝜀−1𝑡P (𝜉1 ≤ 𝑥) + 𝑜 (𝑡) ,

(10)

where 𝑜(𝑡) is an infinitely small quantity with order higher 𝑡
when 𝑡 → 0. Consequently, if V(𝑥, 𝑦) is a finite sufficiently
smooth function, then

E {V (𝑥𝜀 (𝑡) , 𝑦𝜀 (𝑡)) | 𝑥𝜀 (0) = 𝑥, 𝑦𝜀 (0) = 𝑦} − V (𝑥, 𝑦)
= E {V (𝑥𝜀 (𝑡) , 𝑦𝜀 (𝑡)) | 𝑥𝜀 (0) = 𝑥, 𝑦𝜀 (0) = 𝑦, Δ 1
≤ 𝑡}P (Δ 1 ≤ 𝑡) − V (𝑥, 𝑦) + E {V (𝑥𝜀 (𝑡) , 𝑦𝜀 (𝑡)) |
𝑥𝜀 (0) = 𝑥, 𝑦𝜀 (0) = 𝑦, Δ 1 > 𝑡}P (Δ 1 > 𝑡) − V (𝑥, 𝑦)
= E {V (𝑥 + 𝑡 [𝑟𝑥 (1 − 𝐾−1𝑥)] − 𝜀𝑦ℎ (𝜉1) 𝑥𝐴 + 𝑥
+ 𝑜 (𝑡) , 𝑦 + 𝑡 [−𝛿 + 𝛾ℎ (𝜉1) 𝑥𝐴 + 𝑥] 𝑦 + 𝑜 (𝑡))
− V (𝑥, 𝑦)} (1 − 𝑒−𝑡𝜀−1 + 𝑜 (𝑡)) + E {V (𝑥
+ 𝑡𝑟𝑥 (1 − 𝐾−1𝑥) + 𝑜 (𝑡) , 𝑦
+ 𝑡 [−𝛿 + 𝛾ℎ (𝜉1) 𝑥𝐴 + 𝑥] 𝑦 + 𝑜 (𝑡)) − V (𝑥, 𝑦)}
⋅ (𝑒−𝑡𝜀−1 + 𝑜 (𝑡)) ;

(11)

substituting these asymptotic equations into formula (9), one
can obtain an expression for a weak infinitesimal operator for
a fixed 𝜀 > 0:

(𝐿 (𝜀) V) (𝑥, 𝑦) fl lim
𝑡↓0

1𝑡
⋅ [E {V (𝑥𝜀 (𝑡) , 𝑦𝜀 (𝑡)) | 𝑥𝜀 (0) = 𝑥, 𝑦𝜀 (0) = 𝑦}
− V (𝑥, 𝑦)] = 𝜀−1E {V (𝑥 − 𝜀𝑦ℎ (𝜉1) 𝑥 (𝐴 + 𝑥)−1 , 𝑦)
− V (𝑥, 𝑦)} + V󸀠𝑥 (𝑥, 𝑦) 𝑟𝑥 (1 − 𝐾−1𝑥) + V󸀠𝑦 (𝑥, 𝑦)
⋅ [−𝛿 + 𝛾𝑥E {ℎ (𝜉1)} (𝐴 + 𝑥)−1] 𝑦
= 𝜀−1 ∫1

0
V (𝑥 − 𝜀𝑦ℎ (𝜉) 𝑥 (𝐴 + 𝑥)−1 , 𝑦) 𝑑𝜉

− V (𝑥, 𝑦) + V󸀠𝑥 (𝑥, 𝑦) 𝑟𝑥 (1 − 𝐾−1𝑥) + V󸀠𝑦 (𝑥, 𝑦)
⋅ [−𝛿 + 𝛾𝑚𝑥 (𝐴 + 𝑥)−1] 𝑦.

(12)

3. Asymptotic Analysis of
Population Dynamics

As previously mentioned, we assume that the values of the
time intervals {Δ 𝑘−1, 𝑘 ∈ N}, which the predator spends
on search for prey, have an exponential distribution with
a parameter 𝜀−1; that is, E{Δ 𝑘−1} = 𝜀. If we assume that
these intervals are relatively small, that is, the parameter 𝜀 is
sufficiently small, then it is possible to apply the asymptotic
methods proposed in [22] for analysing the Markov process{𝑥𝜀(𝑡), 𝑦𝜀(𝑡), 𝑡 ≥ 0} given by the infinitesimal operator (12).
At first it is necessary to check whether such a limit operator𝐿0 exists, that, for any continuously differentiable function
V(𝑥, 𝑦) in some vicinity 𝑈0 of each point from the positive
quadrant {𝑥 ≥ 0, 𝑦 ≥ 0}, the following equality is true:

lim
𝜀→0

sup
{𝑥,𝑦}∈𝑈0

󵄨󵄨󵄨󵄨(𝐿 (𝜀) V) (𝑥, 𝑦) − (𝐿0V) (𝑥, 𝑦)󵄨󵄨󵄨󵄨 = 0. (13)

In our case, this limit exists and it is equal to

(𝐿0V) (𝑥, 𝑦) = lim
𝜀→0

(𝐿 (𝜀) V) (𝑥, 𝑦)
= V󸀠𝑥 (𝑥, 𝑦) 𝑟𝑥 (1 − 𝐾−1𝑥)

+ V󸀠𝑦 (𝑥, 𝑦) 𝑦 (−𝛿 + 𝛾 𝑚𝑥𝐴 + 𝑥)
+ V󸀠𝑥 (𝑥, 𝑦) 𝑦 𝑚𝑥𝐴 + 𝑥.

(14)

Operator (14) corresponds to a deterministic dynamical
system of differential equations

𝑑𝑥𝑑𝑡 = 𝑟𝑥 (1 − 𝐾−1𝑥) − 𝑚𝑥𝐴 + 𝑥𝑦,
𝑑𝑦𝑑𝑡 = [−𝛿 + 𝛾 𝑚𝑥𝐴 + 𝑥]𝑦

(15)

coinciding with the system of (1). Consequently [22], it can
be asserted that for any positive number 𝑇 there exist such
positive numbers 𝜀0 and 𝑀 that for all 𝜀 < 𝜀0 the following
inequality exists:

sup
𝑡<𝑇𝜀−1

E {󵄨󵄨󵄨󵄨𝑥𝜀 (𝑡) − 𝑥 (𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑦𝜀 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨} ≤ 𝑀𝜀. (16)

This means that for averaged analysis of the behaviour of the
studied population over a sufficiently large time interval one
can use the systemof (1), i.e., the results given in [2]. As shown
in this paper, provided that𝐴(𝑚𝛾+𝛿) < 𝐾(𝑚𝛾−𝛿), the phase
portrait of the system of (15) is from the stable limit cycle, the
orbit of which all other trajectories approach asymptotically.
If the initial data {𝑥𝜀(0), 𝑦𝜀(0)} for the system of (4)-(5)-(6)
are chosen sufficiently close to the coordinates {𝑥, 𝑦} of the
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aforementioned cycle, then the line {𝑥𝜀(𝑡), 𝑦𝜀(𝑡), 𝑡 ≤ 𝑇𝜀−1},
which corresponds to the solutions of these equations, does
not leave a sufficiently small vicinity of this cycle. It was
shown in [22] that the deviation of the real values {𝑥𝜀(𝑡), 𝑦𝜀(𝑡)}
from the mean values {𝑥(𝑡), 𝑦(𝑡)} for each {𝑡 ∈ (0, 𝑇𝜀−1)}
has the order of smallness √𝜀 and can be approximated by
the solution of the corresponding system of linear stochastic
differential equations. To construct these equations, new
phase variables are introduced:

𝑋𝜀 (𝑡) = 𝑥𝜀 (𝑡) − 𝑥 (𝑡)√𝜀 ,
𝑌𝜀 (𝑡) = 𝑦𝜀 (𝑡) − 𝑦 (𝑡)√𝜀 .

(17)

By definition (17) a two-dimensional random process{𝑋𝜀(𝑡), 𝑌𝜀(𝑡)} on each interval 𝑡 ∈ (𝜏𝑘−1, 𝜏𝑘), 𝑘 ∈ N, is given
by the equations

𝑑𝑋𝜀𝑑𝑡 = 1√𝜀 [𝑟𝑥𝜀 (1 − 𝐾−1𝑥𝜀) − 𝑟𝑥 (1 − 𝐾−1𝑥)
+ 𝑚𝑥𝐴 + 𝑥𝑦] ,

𝑑𝑌𝜀𝑑𝑡 = 1√𝜀 [−𝛿𝑦𝜀 + 𝛾ℎ (𝜉 (𝜏𝑘−1)) 𝑥𝜀𝐴 + 𝑥𝜀 𝑦𝜀 + 𝛿𝑦
− 𝛾 𝑚𝑥𝐴 + 𝑥𝑦]

(18)

but at themoments of contacts 𝜏𝑘, 𝑘 ∈ N, between a predator
and a prey it is given by the condition of a jump

𝑋𝜀 (𝜏𝑘) − 𝑋𝜀 (𝜏𝑘−) = 1√𝜀 [𝑥𝜀 (𝜏𝑘) − 𝑥𝜀 (𝜏𝑘−)]
= − 1√𝜀𝑦𝜀 (𝜏𝑘) ℎ (𝜉 (𝜏𝑘)) 𝑥𝜀 (𝜏𝑘−)

𝐴 + 𝑥𝜀 (𝜏𝑘−) .
(19)

Substituting in formulas (18)-(19) the expression {𝑥𝜀(𝑡), 𝑦𝜀(𝑡)}
with the expression

𝑥𝜀 (𝑡) = 𝑋𝜀 (𝑡) √𝜀 + 𝑥 (𝑡) ,
𝑦𝜀 (𝑡) = 𝑌𝜀 (𝑡) √𝜀 + 𝑦 (𝑡) (20)

we can obtain the following system of equations:

𝑑𝑑𝑡𝑋𝜀 (𝑡) = 1√𝜀 [𝑟𝑋𝜀 (𝑡) √𝜀 − 2𝑟𝐾−1𝑥 (𝑡)𝑋𝜀 (𝑡) √𝜀
− 𝜀𝑟𝐾−1𝑋2𝜀 (𝑡) + 𝑚𝑥 (𝑡)𝐴 + 𝑥 (𝑡)𝑦 (𝑡)]

𝑑𝑌𝜀 (𝑡)𝑑𝑡 = 1√𝜀 [−𝛿 (𝑌𝜀 (𝑡) √𝜀 + 𝑦 (𝑡)) + 𝛾
⋅ ℎ (𝜉 (𝜏𝑘−1)) (𝑋𝜀 (𝑡) √𝜀 + 𝑥)

𝐴 + (𝑋𝜀 (𝑡) √𝜀 + 𝑥 (𝑡)) (𝑌𝜀 (𝑡) √𝜀 + 𝑦 (𝑡))
+ 𝛿𝑦 (𝑡) − 𝛾 𝑚𝑥 (𝑡)𝐴 + 𝑥 (𝑡)𝑦 (𝑡)]

𝑋𝜀 (𝜏𝑘) − 𝑋𝜀 (𝜏𝑘−) = −√𝜀 [(𝑌𝜀 (𝜏𝑘)√𝜀 + 𝑦 (𝜏𝑘))
⋅ ℎ (𝜉 (𝜏𝑘)) √𝜀𝑋𝜀 (𝜏𝑘−) + 𝑥 (𝜏𝑘)𝐴 + √𝜀𝑋𝜀 (𝜏𝑘−) + 𝑥 (𝜏𝑘)] .

(21)

The process {𝑥(𝑡), 𝑦(𝑡), 𝑋𝜀(𝑡), 𝑌𝜀(𝑡)} depends only on its
state at the time moment 𝑡; that is, by definition (17) the
two-dimensional random process {𝑋𝜀(𝑡), 𝑌𝜀(𝑡)} is filtration{F𝑡, 𝑡 ≥ 0} adapted and, for a given solution of the
system of (15), has the Markov property. Henceforward, it is
convenient to study the behaviour of solutions of the system
of (21) together with the system of (15), investigating the
dynamic properties of the multidimensional Markov process{𝑥(𝑡), 𝑦(𝑡), 𝑋𝜀(𝑡), 𝑌𝜀(𝑡)}. A weak infinitesimal operator L(𝜀)
[18] of this process can be found by calculating the limit
expression

(L (𝜀) 𝑉) (𝑥, 𝑦, 𝑋, 𝑌) fl lim
𝑡↓0

1𝑡 [E {𝑉 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑋𝜀 (𝑡) , 𝑌𝜀 (𝑡))󵄨󵄨󵄨󵄨𝑥(0)=𝑥,𝑦(0)=𝑦,𝑋𝜀(0)=𝑋,𝑌𝜀(0)=𝑌} − V (𝑥, 𝑦, 𝑋, 𝑌)] (22)

for an arbitrary finite sufficiently smooth function𝑉(𝑥, 𝑦,𝑋, 𝑌). Considering the possibility of contact between
populations in a sufficiently short time interval (0, 𝑡), the
following expressions can be used to calculate the limit (22):

E {𝑉 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑋𝜀 (𝑡) ,
𝑌𝜀 (𝑡))󵄨󵄨󵄨󵄨𝑥(0)=𝑥,𝑦(0)=𝑦,𝑋𝜀(0)=𝑋,𝑌𝜀(0)=𝑌} − 𝑉 (𝑥, 𝑦,𝑋, 𝑌)
= E {𝑉 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑋𝜀 (𝑡) ,
𝑌𝜀 (𝑡))󵄨󵄨󵄨󵄨𝑥(0)=𝑥,𝑦(0)=𝑦,𝑋𝜀(0)=𝑋,𝑌𝜀(0)=𝑌 | Δ 0 ≤ 𝑡} − 𝑉 (𝑥, 𝑦,
𝑋, 𝑌) + E {𝑉 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑋𝜀 (𝑡) ,

𝑌𝜀 (𝑡))󵄨󵄨󵄨󵄨𝑥(0)=𝑥,𝑦(0)=𝑦,𝑋𝜀(0)=𝑋,𝑌𝜀(0)=𝑌 | Δ 0 > 𝑡} − 𝑉 (𝑥, 𝑦,
𝑋, 𝑌) = E{𝑉(𝑥 + 𝑡 [𝑟𝑥 (1 − 𝐾−1𝑥) − 𝑚𝑥𝐴 + 𝑥𝑦]
+ 𝑜 (𝑡)) , 𝑦 + 𝑡 [−𝛿 + 𝛾𝑚 𝑥𝐴 + 𝑥]𝑦 + 𝑜 (𝑡) , 𝑋 + 𝑡
⋅ 1√𝜀 [𝑟𝑋√𝜀 − 2𝑟𝐾−1𝑥𝑋√𝜀 − 𝜀𝑟𝐾−1𝑋2 + 𝑚
⋅ 𝑥𝐴 + 𝑥𝑦] − √𝜀 [(𝑌√𝜀 + 𝑦) ℎ (𝜉1) √𝜀𝑋 + 𝑥𝐴 + √𝜀𝑋 + 𝑥]
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+ 𝑜 (𝑡) , 𝑌 + 𝑡 1√𝜀 [−𝛿 (𝑌√𝜀 + 𝑦) + 𝛾

⋅ ℎ (𝜉1) (𝑋√𝜀 + 𝑥)
𝐴 + (𝑋√𝜀 + 𝑥) (𝑌√𝜀 + 𝑦) + 𝛿𝑦 − 𝛾 𝑚𝑥𝐴 + 𝑥𝑦]

+ 𝑜 (𝑡) − 𝑉 (𝑥, 𝑦,𝑋, 𝑌)} (1 − 𝑒−𝑡𝜀−1 + 𝑜 (𝑡))

+ E{𝑉(𝑥 + 𝑡 [𝑟𝑥 (1 − 𝐾−1𝑥) − 𝑚𝑥𝐴 + 𝑥𝑦]
+ 𝑜 (𝑡)) , 𝑦 + 𝑡 [−𝛿 + 𝛾𝑚 𝑥𝐴 + 𝑥]𝑦 + 𝑜 (𝑡) , 𝑋 + 𝑡
⋅ 1√𝜀 [𝑟𝑋√𝜀 − 2𝑟𝐾−1𝑥𝑋√𝜀 − 𝜀𝑟𝐾−1𝑋2 + 𝑚
⋅ 𝑥𝐴 + 𝑥𝑦] + 𝑜 (𝑡) , 𝑌 + 𝑡 1√𝜀 [−𝛿 (𝑌√𝜀 + 𝑦) + 𝛾

⋅ ℎ (𝜉1) (𝑋√𝜀 + 𝑥)
𝐴 + (𝑋√𝜀 + 𝑥) (𝑌√𝜀 + 𝑦) + 𝛿𝑦 − 𝛾 𝑚𝑥𝐴 + 𝑥𝑦]

+ 𝑜 (𝑡) − 𝑉 (𝑥, 𝑦,𝑋, 𝑌)} (𝑒−𝑡𝜀−1 + 𝑜 (𝑡)) + 𝜀 (𝑄𝑉)
⋅ (𝑥, 𝑦, 𝑋, 𝑌) .

(23)

Besides,

E {(√𝜀𝑋 + 𝑥) (𝑎 (Δ 0) + √𝜀𝑋 + 𝑥)−1}
= 𝜀−1 ∫∞

0
(√𝜀𝑋 + 𝑥) (𝑎 (𝑡) + √𝜀𝑋 + 𝑥)−1 𝑒−𝑡𝜀−1𝑑𝑡

= ∫∞
0

(√𝜀𝑋 + 𝑥) (𝑎 (𝜀𝑠) + √𝜀𝑋 + 𝑥)−1 𝑒−𝑠𝑑𝑠
= 𝑥 (𝐴 + 𝑥)−1 + 𝑂 (√𝜀) .

(24)

Substituting the asymptotic by 𝑡 expansions (23)-(24) into
expression (22) after passing to the limit, one can obtain the
formula for the weak infinitesimal operator of the homoge-
neous Markov process {𝑥(𝑡), 𝑦(𝑡), 𝑋𝜀(𝑡), 𝑌𝜀(𝑡)}:

(L (𝜀) 𝑉) (𝑥, 𝑦, 𝑋, 𝑌, 𝜉) = [𝑟𝑥 (1 − 𝐾−1𝑥) − 𝑚𝑥𝐴 + 𝑥
⋅ 𝑦] 𝜕𝜕𝑥𝑉 (𝑥, 𝑦,𝑋, 𝑌) + [−𝛿
+ 𝛾𝑚 𝑥𝐴 + 𝑥]𝑦 𝜕𝜕𝑦𝑉 (𝑥, 𝑦,𝑋, 𝑌) + 1𝜀E{𝑉(𝑥, 𝑦,𝑋

− √𝜀ℎ (𝜉1) (𝑌√𝜀 + 𝑦) (√𝜀𝑋 + 𝑥)
𝐴 + √𝜀𝑋 + 𝑥 , 𝑌)

− 𝑉 (𝑥, 𝑦,𝑋, 𝑌)} + 1√𝜀 [𝑟𝑋√𝜀 − 2𝑟𝐾−1𝑥𝑋√𝜀

− 𝜀𝑟𝐾−1𝑋2 + 𝑚 𝑥𝐴 + 𝑥𝑦] 𝜕𝜕𝑋𝑉 (𝑥, 𝑦,𝑋, 𝑌)
+ 1√𝜀 [−𝛿𝑌√𝜀 − 𝛾 𝑚𝑥𝐴 + 𝑥𝑦 + 𝛾
⋅ 𝑚 (𝑌√𝜀 + 𝑦) (√𝜀𝑋 + 𝑥)

𝐴 + √𝜀𝑋 + 𝑥 ] 𝜕𝜕𝑌𝑉 (𝑥, 𝑦,𝑋, 𝑌) .
(25)

Since we are discussing the behaviour of populations for
sufficiently small 𝜀, then it is necessary to use a passage to
the limit in the previous formula for tending the parameter 𝜀
to zero on the right. Therefore, one can use the smoothness
of the function 𝑉(𝑥, 𝑦,𝑋, 𝑌) and further use the asymptotic
equalities:

E {𝑉 (𝑥, 𝑦,𝑋 − √𝜀 [(𝑌√𝜀 + 𝑦) ℎ (𝜉1) (√𝜀𝑋 + 𝑥)
⋅ (𝐴 + √𝜀𝑋 + 𝑥)−1] , 𝑌)} = 𝑉 (𝑥, 𝑦,𝑋, 𝑌)
− √𝜀𝑦𝑥 (𝐴 + 𝑥)−1𝑚 𝜕𝜕𝑋𝑉 (𝑥, 𝑦,𝑋, 𝑌) + 𝜀 [−𝑌𝑥 (𝐴
+ 𝑥)−1𝑚 − 𝑦𝑋 (𝐴 + 𝑥)−1𝑚 + 𝑦𝑥𝑚𝑋 (𝐴
+ 𝑥)−2] 𝜕𝜕𝑋𝑉 (𝑥, 𝑦,𝑋, 𝑌) + 𝜀12
⋅ 𝑦𝑥 (𝐴 + 𝑥)−1 E {ℎ2 (𝜉1)} 𝜕2𝜕𝑋2𝑉 (𝑥, 𝑦,𝑋, 𝑌)
= 𝑉 (𝑥, 𝑦,𝑋, 𝑌) − √𝜀𝑦𝑥 (𝐴 + 𝑥)−1𝑚 𝜕𝜕𝑋𝑉 (𝑥, 𝑦,𝑋,
𝑌) − 𝜀 (𝑌𝑥 + 𝐴𝑦𝑋 (𝐴 + 𝑥)−1)𝑚 (𝐴
+ 𝑥)−1 𝜕𝜕𝑋𝑉 (𝑥, 𝑦,𝑋, 𝑌) + 𝜀12
⋅ 𝑦𝑥 (𝐴 + 𝑥)−1 𝜎2 𝜕2𝜕𝑋2𝑉 (𝑥, 𝑦,𝑋, 𝑌) + 𝑜 (𝜀) .

(26)

Using these expansions, formula (25) can be rewritten in the
form convenient for passage to the limit:

(L (𝜀) 𝑉) (𝑥, 𝑦, 𝑋, 𝑌, 𝜉) = [𝑟𝑥 (1 − 𝐾−1𝑥) − 𝑚𝑥𝐴 + 𝑥
⋅ 𝑦] 𝜕𝜕𝑥𝑉 (𝑥, 𝑦,𝑋, 𝑌) + [−𝛿
+ 𝛾𝑚 𝑥𝐴 + 𝑥]𝑦 𝜕𝜕𝑦𝑉 (𝑥, 𝑦,𝑋, 𝑌)
+ [(𝑟𝑋 − 2𝑟𝐾−1𝑥𝑋) − (𝑌𝑥 + 𝐴𝑦𝑋 (𝐴 + 𝑥)−1)
⋅ 𝑚 (𝐴 + 𝑥)−1] 𝜕𝜕𝑋𝑉 (𝑥, 𝑦,𝑋, 𝑌)
+ 12𝑦𝑥 (𝐴 + 𝑥)−1 𝜎2 𝜕2𝜕𝑋2𝑉 (𝑥, 𝑦,𝑋, 𝑌) + [−𝛿𝑌
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+ 𝛾𝑌 𝑚𝑥𝐴 + 𝑥 + 𝑋𝛾𝑦 𝑚𝐴
(𝐴 + 𝑥)2 ]

𝜕𝜕𝑌𝑉 (𝑥, 𝑦,𝑋, 𝑌)
+ 𝑂 (√𝜀) .

(27)

It follows that the limit operator L = lim𝜀→0L(𝜀) corre-
sponding to the Markov process {𝑥(𝑡), 𝑦(𝑡), 𝑋(𝑡), 𝑌(𝑡), 𝑡 ≥0}, given by a system of ordinary differential equations (15),
is a stochastic linear inhomogeneous stochastic differential
equation

𝑑𝑋 (𝑡) = 𝑔11 (𝑡) 𝑋 (𝑡) 𝑑𝑡 + 𝑔12 (𝑡) 𝑌 (𝑡) 𝑑𝑡
+ 𝑓 (𝑡) 𝑑𝑤 (𝑡) (28)

and an ordinary homogeneous differential equation

𝑑𝑌 (𝑡)𝑑𝑡 = 𝑔21 (𝑡) 𝑋 (𝑡) + 𝑔22 (𝑡) 𝑌 (𝑡) , (29)

where

𝑔21 (𝑡) = 𝛾𝑦 (𝑡) 𝑚𝐴
(𝐴 + 𝑥 (𝑡))2 ,

𝑔22 (𝑡) = −𝛿 + 𝛾 𝑚𝑥 (𝑡)𝐴 + 𝑥 (𝑡) ,
𝑔11 (𝑡) = (1 − 2𝐾𝑥 (𝑡)) 𝑟 − 𝐴𝑦 (𝑡)𝑚

(𝐴 + 𝑥 (𝑡))2 ,
𝑔12 (𝑡) = − 𝑥 (𝑡)𝑚𝐴 + 𝑥 (𝑡) ,

𝑓 (𝑡) = 𝜎√ 𝑦 (𝑡) 𝑥 (𝑡)2 (𝐴 + 𝑥 (𝑡)) ,

(30)

and𝑤(𝑡) is a standard Brownian process. Since the limit cycle
is an asymptotically stable state of the system of equations
(15), it is natural to assume that the points {𝑥(𝑡), 𝑦(𝑡), 𝑡 ≥0} in the system of equations (28)-(29) are the coordinates
of the limit cycle mentioned previously. Using the results
of [22], one can assert that on an interval with order 1/√𝜀
the probabilistic characteristics of the solutions {𝑥𝜀(𝑡), 𝑦𝜀(𝑡)}
of the impulse-differential equations system (4)-(5)-(6) with
accuracy of the order of smallness greater than √𝜀 can be
approximated by random processes {𝑥(𝑡) + √𝜀𝑋(𝑡), 𝑦(𝑡) +√𝜀𝑌(𝑡)}. In Figure 3 a sample trajectory of the process {𝑥(𝑡)+√𝜀𝑋(𝑡), 𝑦(𝑡) + √𝜀𝑌(𝑡), 𝑡 ∈ [0, 20]} is simulated in MATLAB
environment with the initial conditions 𝑥(0) = 20, 𝑦(0) =3, 𝑋(0) = 0, 𝑌(0) = 0, var{𝑋(0)} = 0, var{𝑌(0)} = 0,
covar{𝑋(0), 𝑌(0)} = 0, and 𝜀 = 0.01 on the phase plane {𝑥, 𝑦}.

Comparison between Figures 1 and 3 indicates that the
proposed approximation sufficiently reflects the dynamics
of real processes. However, over a large time interval this
approximation can differ significantly from the real process.
This fact will be explained using themoments of the solutions
of the system of (28)-(29). The probabilistic characteristics of
the original process and the proposed approximation should
be close [22] over a time interval with order 1/√𝜀.Thismeans
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Figure 3: Phase trajectory of Markov process {𝑥(𝑡) +√𝜀𝑋(𝑡), 𝑦(𝑡) +√𝜀𝑌(𝑡), 𝑡 ∈ [0, 20]}.

that at each time moment 𝑡 ∈ [0, 𝑇/√𝜀] the centered second
moments of the process {𝑥𝜀(𝑡), 𝑦𝜀(𝑡)} can be approximated
using the second moments of the process {𝑋(𝑡), 𝑌(𝑡)} in the
form of asymptotic equalities:

var {𝑥𝜀 (𝑡)} = 𝜀𝑞11 (𝑡) + 𝑜 (𝜀3/2) ,
var {𝑦𝜀 (𝑡)} = 𝜀𝑞22 (𝑡) + 𝑜 (𝜀3/2) ,

covar {𝑥𝜀 (𝑡) , 𝑦𝜀 (𝑡)} = 𝜀𝑞12 (𝑡) + 𝑜 (𝜀3/2) 𝑞11 (𝑡) ,
(31)

where 𝑞11(𝑡) = var{𝑋(𝑡)}, 𝑞22(𝑡) = var{𝑌(𝑡)}, and 𝑞12(𝑡) =
covar{𝑋(𝑡), 𝑌(𝑡)}. For further analysis, using the notations

𝐺 (𝑡) = (𝑔11 (𝑡) 𝑔12 (𝑡)𝑔21 (𝑡) 𝑔22 (𝑡)) ,
󳨀→𝑍 (𝑡) = (𝑋 (𝑡)

𝑌 (𝑡)) ,
󳨀→𝜑 (𝑡) = (𝑓 (𝑡)

0 ) ,

(32)

let us rewrite the system of (28)-(29) in a vector-matrix form:

𝑑󳨀→𝑍 (𝑡) = 𝐺 (𝑡) 󳨀→𝑍 (𝑡) 𝑑𝑡 + 󳨀→𝜑 (𝑡) 𝑑𝑤 (𝑡) . (33)

Further attentionwill be focused on the solution of the system
of (28)-(29) with zero initial data. It is known [17] that this
solution can be represented in the form of a stochastic Ito
integral

󳨀→𝑍 (𝑡) = ∫𝑡
0
𝑈 (𝑡) 𝑈−1 (𝑠) 󳨀→𝜑 (𝑠) 𝑑𝑤 (𝑠) , (34)

where 𝑈(𝑡) is the matrix solution of the ordinary differential
equation

𝑑𝑑𝑡𝑈 (𝑡) = 𝐺 (𝑡) 𝑈 (𝑡) (35)
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Figure 4: Trajectory of the variance 𝑞11(𝑡) = E{𝑋2(𝑡)}.

with respect to the initial value𝑈(0) = ( 1 00 1 ). By the definition
of a stochastic integral [18], formula (34) defines a Gaussian
process with zeromathematical expectation and a covariance
matrix

󳨀→𝑍 (𝑡) = ∫𝑡
0
𝑈 (𝑡)𝑈−1 (𝑠) 󳨀→𝜑 (𝑠) 𝑑𝑤 (𝑠) . (36)

The covariance matrix 𝑄(𝑡) = E{󳨀→𝑍(𝑡)󳨀→𝑍𝑇(𝑡)} fl ( 𝑞11(𝑡) 𝑞12(𝑡)𝑞12(𝑡) 𝑞22(𝑡)
)

that corresponds to the integral (36) as a function from
parameter 𝑡 can be represented in the form of integral

𝑄 (𝑡)
= ∫𝑡
0
𝑈 (𝑡)𝑈−1 (𝑠) 󳨀→𝜑 (𝑠) 󳨀→𝜑𝑇 (𝑠) (𝑈−1 (𝑠))𝑇𝑈𝑇 (𝑡) 𝑑𝑠 (37)

or in the form of a matrix solution of a system of ordinary
differential equations

𝑑𝑑𝑡𝑄 (𝑡) = 𝐺 (𝑡) 𝑄 (𝑡) + 𝑄 (𝑡) 𝐺𝑇 (𝑡) + 󳨀→𝜑 (𝑡) 󳨀→𝜑 𝑡 (𝑡) (38)

with the initial condition 𝑄(0) = 0. Figures 4 and 5 show the
time evolution of the variances 𝑞11(𝑡) = E{𝑋2(𝑡)} and 𝑞22(𝑡) =
E{𝑌2(𝑡)}.

Figure 6 shows the time evolution of the covariance𝑞12(𝑡) = E{𝑋(𝑡)𝑌(𝑡)}.
Figures 4–6 show that the variances of the normalized

deviations increase very rapidly and even at 𝑡 ≥ 20 it
cannot be recommended to use the most popular applied
statistics “3𝜎 rule”; that is, the inequality |𝑥𝜀(𝑡) − 𝑥(𝑡)| ≤3√𝜀√𝑞11(𝑡), |𝑦𝜀(𝑡) − 𝑦(𝑡)| ≤ 3√𝜀√𝑞22(𝑡) because the quanti-
ties either 𝑥(𝑡)−3√𝜀√𝑞11(𝑡) or 𝑦(𝑡)−3√𝜀√𝑞22(𝑡) can become
negative, which contradicts the definition of random pro-
cesses 𝑥𝜀(𝑡) and 𝑦𝜀(𝑡). For clarity, Figure 7 shows the process{𝑞11(𝑡), 𝑞22(𝑡)} trajectory on the time interval [0, 30] on the
phase plane {𝑥, 𝑦}.

Here the variable 3√𝜀√𝑞11(𝑡) = 0.3√𝑞11(𝑡) at some time
point already exceeds the value 0.3√10000 = 30, although
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Figure 5: Trajectory of the variance 𝑞22(𝑡) = E{𝑌2(𝑡)}.
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Figure 6: Trajectory of the covariance 𝑞12(𝑡) = E{𝑋(𝑡)𝑌(𝑡)}.
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Figure 7: Phase-plane trajectory for variances {𝑞11(𝑡), 𝑞22(𝑡)}.
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Figure 8: Phase portrait for (1), 𝑚 = 1, 𝑟 = 1, 𝐴 = 0.5, 𝐾 = 1, 𝛾 =1, and 𝛿 = 0.5.

the value 𝑥(𝑡) (the abscissa of the limit cycle in Figure 2) does
not exceed 24.

Unbounded increase of variances 𝑞11(𝑡), 𝑞22(𝑡) is a conse-
quence of a resonance in the equation (38). Let 𝜔 be a period
of the limit cycle {𝑥(𝑡), 𝑦(𝑡)}. Then 𝑈(𝑡)𝑈𝑇(𝑡) and 󳨀→𝜑(𝑡)󳨀→𝜑𝑇(𝑡)
are 2𝜔-periodic matrix functions and their elements may
be decomposed into a Fourier series by cos(𝑛𝜋/𝜔)𝑡 and
sin(𝑛𝜋/𝜔)𝑡, 𝑛 ∈ 𝑁. Therefore, the integrand in (37) contains
a constant component and lim𝑡→∞‖𝑄(𝑡)‖ = ∞. At a finite
time interval that depends on 𝜀 we can use the diffusion
approximation

{𝑥 (𝑡) + √𝜀𝑋 (𝑡) , 𝑦 (𝑡) + √𝜀𝑌 (𝑡) , 𝑡 ∈ [0, 𝑇 (𝜀)]} (39)

for estimation of finite dimensional distributions of the
process {𝑥𝜀(𝑡), 𝑦𝜀(𝑡)}.

Even if a deterministic limit cycle closely approaches one
of the axes (Figure 8) we can use diffusion approximation{𝑥(𝑡)+√𝜀𝑋(𝑡), 𝑦(𝑡)+√𝜀𝑌(𝑡)} (Figure 9) for prognoses of the
population growth up to time 𝑇 = 20, 𝜀 = 0.001.
4. Conclusions

During the analysis of population dynamics models, one
must find a compromise between accuracy and complexity
of the model. Numerical methods are helpful but their use
actualises the stability issues of dynamical systems.

In the case of interacting invertebrate type populations
of predator and prey, the fact that the time between predator
attacks on prey is random leads to a stochastic model. Even
though the deterministic model has an asymptotically stable
limit cycle, introducing random parameters into the model
changes its trajectories significantly. The algorithm proposed
and demonstrated in this paper allows one to analyse the
average motion of a system as well as the random deviations
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Figure 9: Phase trajectory {𝑥(𝑡)+√𝜀𝑋(𝑡), 𝑦(𝑡)+√𝜀𝑌(𝑡), 𝑡 ∈ [0, 20]},𝑚 = 1, 𝑟 = 1, 𝐴 = 0.5, 𝐾 = 1, 𝛾 = 1, and 𝛿 = 0.2. 𝑥(0) = 0.57,
and 𝑦(0) = 0.5.

from it and to find all characteristics of the resulting two-
dimensional Gaussian Markov process. This process has
an unboundedly increasing variance, leading to possible
significant deviations even on relatively short time intervals.
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