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Considering the phenomenon of the mean reversion and the different speeds of stock prices in the bull market and in the bear
market, we propose four dynamic models each of which is represented by a parameterized ordinary differential equation in this
study. Based on existing studies, the models are in the form of either the logistic growth or the law of Newton’s cooling. We solve
the models by dynamic integration and apply them to the daily closing prices of the Taiwan stock index, Taiwan Stock Exchange
Capitalization Weighted Stock Index. The empirical study shows that some of the models fit the prices well and the forecasting
ability of the best model is acceptable even though the martingale forecasts the prices slightly better. To increase the forecasting
ability and to broaden the scope of applications of the dynamic models, we will model the coefficients of the dynamic models in
the future. Applying the models to the market without the price limit is also our future work.

1. Introduction

Stock indices draw a lot of attention in the financial field
and modelling stock prices is one of the major topics.
Nevertheless, in most existing studies, stock price returns
are modelled instead of stock prices themselves. It results
from the theory of random walks stated and published in
many books and theses. Fama’s 1965 article [1] is one of the
most commonly known ones. Among massive researches of
modelling stock prices, Chen et al. [2] have investigated and
modelled the mean reversion of stock prices.They character-
ized the phenomenon by three dynamicmodels derived from
the concept of Newton’s law of cooling. However, the type
of the stock movement other than mean reversion should be
included in a more reasonable model. Also, the speed of the
convergence to the implied equilibrium should be described
if we try to increase the accuracy of the model.

From past experiences, the uptrend and downtrend of the
stock price, usually during a bull market and a bear market,
respectively, move differently. The uptrend usually goes up

fast at first due to good news and then slows down gradually
as a result of selling pressure, but the downtrend generally
drops steeply. The stock price movement and the logistic
growth perform very much alike; nevertheless, stock prices
fluctuate more dynamically in the real world. Therefore,
modelling this phenomenon is the main goal in the study.

We examined a series of the daily closing prices of
Taiwan Stock Exchange CapitalizationWeighted Stock Index
(TAIEX) and treated it as a dynamic system. The only
assumption in this study is that the stock prices are related
to time. In order to depict the movement with respect to
time, we attempt to modify the logistic growth model and
bring in the technique of dynamic integration to construct
some models. Furthermore, the models describing the mean
reversion in the existing study only consist one time related
coefficient [2]. We include two time-varying coefficients for
constructing newmodels to increase the accuracy. Hence, we
will introduce the nonlinear dynamic models in this study.
From this point of view, modelling the stock prices may be
more reliable.
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In Section 2, we provide the literature review of the
logistic growth model and dynamic integration. Section 3 is
the methodology of how we build the nonlinear dynamic
models. Section 4 consists of the empirical study of applying
the dynamic models to TAIEX. In Section 5, we make some
conclusions from the empirical study and some suggestions
for future works.

2. Literature Review

The logistic growth model was named by the mathematician
Verhulst. He solved the logistic equation and called the
solution the logistic function [3–5] to express the population
growth. The logistic model is continuous in time and can be
stated by the differential equation:

𝑑𝑁
𝑑𝑡 = 𝑟𝑁(1 − 𝑁

𝐾) , (1)

where 𝑡 is time, 𝑟 is the growth rate,𝐾 is the carrying capacity,
and 𝑁 is the population size. The logistic growth model was
first used to describe the population growth in a restricted
environment and then extensively applied to all kinds of fields
such as Biology, Chemistry, Economics, Demography, and
Statistics.

Concerning the topic of macroeconomics, Teräsvirta and
Anderson [6] included logistic function to build a smooth
transition autoregressive (STAR) model for describing busi-
ness cycles. Based on their research, González-Rivera [7]
applied STGARCH model on stock returns and exchange
rates to explore the asymmetric response of conditional
variances to positive and negative news. Other than applying
logistic function, the nonlinear time series model such as
GARCH is applied to explain the nonlinear phenomenon
in the behaviors of the stock returns in the existing studies
[8, 9]. Besides, there are neural network models applied
to model the stock index [10–12]. Guresen et al. [10] list
a table of existing studies of artificial neural networks and
financial time series models.The exponential law of the stock
movement is described and analyzed by Gkranas et al. [13]
and Zarikas et al. [14]. However, applying logistic equation to
stock prices directly is absent in existing studies.

As for applying dynamic system and differential equa-
tions to stock prices, Chiang-Lin et al. [15] applied “parabola
approximation” and “dynamic integration” proposed in [16]
to model the Taiwan stock index, TAIEX, and evaluate its
derivative by considering the index as a dynamic system. Li
et al. [17] also applied the same methods to model German
DAX and tried to develop a risk detecting instrument of
approaching financial catastrophe. Chen et al. [2] further
combined Newton’s law of cooling and dynamic integration
to explain the phenomenon of mean reversion by modelling
TAIEX. On the basis of existing researches, we try to trans-
form the logistic model into some models by considering
the stock price, the velocity of the stock price, and the stock
return as the subject, respectively.We also solve the equations
representing the models by dynamic integration. The details
of the dynamic models are in the following section.

3. Methodology

In order to characterize the movement of the stock prices, we
only assume that the stock price is a function of time 𝑡 and
consider it as a dynamic system. Since we suspect that the rise
and fall of the stock prices may be described by the logistic
growthmodel, we combine the concept of the logistic growth
model and the dynamic integration to build dynamicmodels.
The models are represented by differential equations which
are detailed below along with their solutions.

Model A (dynamic logistic model)

𝑑𝑆 (𝑡)
𝑑𝑡 = 𝛼1 (𝑡) ⋅ 𝑆 (𝑡)2 + 𝛽1 (𝑡) ⋅ 𝑆 (𝑡) , (2)

where 𝑆(𝑡) is the stock price at time 𝑡. We can rewrite (2) as

𝑑𝑆 (𝑡)
𝑑𝑡 = 𝛽1 (𝑡) ⋅ 𝑆 (𝑡) ⋅ (1 − 𝑆 (𝑡)

(−𝛽1 (𝑡) /𝛼1 (𝑡))) , (3)

and hence model A is in the form of the logistic growth
model.

Because the stock prices change dynamically in reality,
we assume that the coefficients 𝛼1(𝑡) and 𝛽1(𝑡) are constant
during a very short time.Thenwe consider the parameterized
differential equation:

𝑑𝑆 (𝑡)
𝑑𝑡 = 𝛼1 ⋅ 𝑆2 (𝑡) + 𝛽1 ⋅ 𝑆 (𝑡) ,
𝑆 (𝑡0) = 𝑆0,
𝑆 (𝑡1) = 𝑆1,

𝑡0 < 𝑡1,

(4)

with given values of two points at time 𝑡0 and 𝑡1. Let 𝑐 =|(𝑆(𝑡0) + 𝛽1/𝛼1)/𝑆(𝑡0)| and the solution is

𝑆 (𝑡) = (𝛽1/𝛼1) (1/𝑐) 𝑒𝛽1(𝑡−𝑡0)1 − (1/𝑐) 𝑒𝛽1(𝑡−𝑡0) ,
if 𝑆 (𝑡) > 𝑆 (𝑡0) , (𝑆 (𝑡) + 𝛽1/𝛼1) ⋅ 𝑆 (𝑡) > 0;

(5)

𝑆 (𝑡) = − (𝛽1/𝛼1) (1/𝑐) 𝑒𝛽1(𝑡−𝑡0)1 + (1/𝑐) 𝑒𝛽1(𝑡−𝑡0) ,
if 𝑆 (𝑡) > 𝑆 (𝑡0) , (𝑆 (𝑡) + 𝛽1/𝛼1) ⋅ 𝑆 (𝑡) < 0;

(6)

𝑆 (𝑡) = (𝛽1/𝛼1) (1/𝑐) 𝑒−|𝛽1|(𝑡−𝑡0)1 − (1/𝑐) 𝑒−|𝛽1|(𝑡−𝑡0) ,
if 𝑆 (𝑡) < 𝑆 (𝑡0) , (𝑆 (𝑡) + 𝛽1/𝛼1) ⋅ 𝑆 (𝑡) > 0;

(7)

𝑆 (𝑡) = − (𝛽1/𝛼1) (1/𝑐) 𝑒−|𝛽1|(𝑡−𝑡0)1 + (1/𝑐) 𝑒−|𝛽1|(𝑡−𝑡0) ,
if 𝑆 (𝑡) < 𝑆 (𝑡0) , (𝑆 (𝑡) + 𝛽1/𝛼1) ⋅ 𝑆 (𝑡) < 0.

(8)

Model A describes the relationship between the stock
price, 𝑆(𝑡), and its velocity, 𝑑𝑆(𝑡)/𝑑𝑡. From the economic
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point of view, there exists an implied equilibrium in the
market. All other things being equal, if the stock price is below
the equilibrium, it will rise towards the equilibrium price;
if the stock price is above the equilibrium, it will decline.
The phenomenon is also called the mean reversion. This
model characterizes the mean reversion of the stock prices
if 𝛼1 is negative, 𝛽1 is positive and when the expected future
stock price is higher than the current stock price. Under the
circumstances, the implied equilibrium is at |𝛽1/𝛼1| and the
stock pricemoves as how the logistic growthmodel describes.
The convergence of the simulated theoretical stock prices by
(5), (6) is plotted in Figures 7 and 8.Otherwise, themovement
of the stock prices follows a quadratic differential equation
with no constant growth rate [15]. In this situation, the stock
prices will not converge to the implied equilibrium.

In addition to model A, we further consider both the
velocity, 𝑑𝑆(𝑡)/𝑑𝑡, and the acceleration, 𝑑2𝑆(𝑡)/𝑑𝑡2, of the
stock price to construct a model. In this instance, the model
may represent the movement more properly. Hence, we
propose model B in the following.

Model B (dynamic transformed logistic model)

𝑑2𝑆 (𝑡)
𝑑𝑡2 = 𝛼2 (𝑡) ⋅ (𝑑𝑆 (𝑡)𝑑𝑡 )2 + 𝛽2 (𝑡) ⋅ (𝑑𝑆 (𝑡)𝑑𝑡 ) , (9)

where 𝑆(𝑡) is the stock price at time 𝑡.
Assuming the coefficients 𝛼2(𝑡) and 𝛽2(𝑡) are constant

during a very short time, we consider the parameterized
differential equation with given values of two points at times𝑡0 and 𝑡1:

𝑑2𝑆 (𝑡)
𝑑𝑡2 = 𝛼2 ⋅ (𝑑𝑆 (𝑡)𝑑𝑡 )2 + 𝛽2 ⋅ 𝑑𝑆 (𝑡)𝑑𝑡 ,
𝑆 (𝑡0) = 𝑆0,
𝑆 (𝑡1) = 𝑆1,

𝑡0 < 𝑡1,

(10)

and it can be solved as follows. Let V(𝑡) = 𝑑𝑆(𝑡)/𝑑𝑡 and ℎ =|(V(𝑡0) + 𝛽2/𝛼2)/V(𝑡0)|; then the solution is

𝑆 (𝑡) = 𝑆 (𝑡0) − 1
𝛼2 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝛽2(𝑡−𝑡0) − ℎ

1 − ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

if (V (𝑡) + 𝛽2𝛼2) ⋅ V (𝑡) > 0, V (𝑡) > V (𝑡0) , 𝑆 (𝑡) > 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
𝛼2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝛽2󵄨󵄨󵄨󵄨𝛽2 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝛽2(𝑡−𝑡0) − ℎ

1 − ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

if (V (𝑡) + 𝛽2𝛼2) ⋅ V (𝑡) > 0, V (𝑡) > V (𝑡0) , 𝑆 (𝑡) < 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) − 1
𝛼2 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝛽2(𝑡−𝑡0) + ℎ

1 + ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

if (V (𝑡) + 𝛽2𝛼2) ⋅ V (𝑡) < 0, V (𝑡) > V (𝑡0) , 𝑆 (𝑡) > 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) −
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
𝛼2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝛽2󵄨󵄨󵄨󵄨𝛽2 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝛽2(𝑡−𝑡0) + ℎ

1 + ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

if (V (𝑡) + 𝛽2𝛼2) ⋅ V (𝑡) < 0, V (𝑡) > V (𝑡0) , 𝑆 (𝑡) < 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) + 1
𝛼2

𝛽2󵄨󵄨󵄨󵄨𝛽2󵄨󵄨󵄨󵄨 ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒−|𝛽2|(𝑡−𝑡0) − ℎ

1 − ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

if (V (𝑡) + 𝛽2𝛼2) ⋅ V (𝑡) > 0, V (𝑡) < V (𝑡0) , 𝑆 (𝑡) > 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) −
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
𝛼2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒−|𝛽2|(𝑡−𝑡0) − ℎ

1 − ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

if (V (𝑡) + 𝛽2𝛼2) ⋅ V (𝑡) > 0, V (𝑡) < V (𝑡0) , 𝑆 (𝑡) < 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) + 1
𝛼2

𝛽2󵄨󵄨󵄨󵄨𝛽2󵄨󵄨󵄨󵄨 ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒−|𝛽2|(𝑡−𝑡0) + ℎ

1 + ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

if (V (𝑡) + 𝛽2𝛼2) ⋅ V (𝑡) < 0, V (𝑡) < V (𝑡0) , 𝑆 (𝑡) > 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
𝛼2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒−|𝛽2|(𝑡−𝑡0) + ℎ

1 + ℎ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

if (V (𝑡) + 𝛽2𝛼2) ⋅ V (𝑡) < 0, V (𝑡) < V (𝑡0) , 𝑆 (𝑡) < 𝑆 (𝑡0) .
(11)

Model B describes the relationship between the velocity,𝑑𝑆(𝑡)/𝑑𝑡, and the acceleration, 𝑑2𝑆(𝑡)/𝑑𝑡2, of the stock price.
The relationship is in the form of the logistic growth model.
When 𝛼2 is negative and 𝛽2 is positive, the velocity moves in
the way that the logistic growth model depicts. That is, the
velocity reverses to an implied equilibriumvelocity so that the
stock price goes up or down with an approximately constant
speed. In the case of other combinations of the coefficients
(𝛼2 and 𝛽2), the velocity diverges and hence the stock prices
fluctuate more dynamically.

Other than the velocity, the relative growth rate of the
stock price, (𝑑𝑆(𝑡)/𝑑𝑡)/𝑆(𝑡), which is also known as the return
is a meaningful measure in the field of finance. Therefore,
we change the velocity and the acceleration in model B into
the relative growth rate and its derivative to build model
C. Model C provides another kind of differential equation
characterizing the stock price movement.

Model C (dynamic relative growth rate transformed logistic
model)

𝑑𝛿 (𝑡)
𝑑𝑡 = 𝛼3 (𝑡) ⋅ 𝛿2 (𝑡) + 𝛽3 (𝑡) ⋅ 𝛿 (𝑡) , (12)

where 𝑆(𝑡) is the stock price at time 𝑡 and 𝛿(𝑡) = (𝑑𝑆(𝑡)/𝑑𝑡)/𝑆(𝑡) is the relative growth rate of the stock price at time 𝑡.
Assuming the coefficients 𝛼3(𝑡) and 𝛽3(𝑡) are constant

during a very short time, we consider the parameterized
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differential equation with given values of two points at times𝑡0 and 𝑡1:
𝑑𝛿 (𝑡)
𝑑𝑡 = 𝑑

𝑑𝑡 (
𝑑𝑆 (𝑡) /𝑑𝑡
𝑆 (𝑡) ) = 𝛼3 ⋅ 𝛿2 (𝑡) + 𝛽3 ⋅ 𝛿 (𝑡) ,

𝑆 (𝑡0) = 𝑆0,
𝑆 (𝑡1) = 𝑆1,

𝑡0 < 𝑡1,

(13)

and it can be solved as follows. Let 𝑘 = |(𝛿(𝑡0) + 𝛽3/𝛼3)/𝛿(𝑡0)|
and the solution is

𝑆 (𝑡) = 𝑆 (𝑡0) ⋅ exp(− 1
𝛼3 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝛽3(𝑡−𝑡0) − 𝑘

1 − 𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ,

if (𝛿 (𝑡) + 𝛽3𝛼3) ⋅ 𝛿 (𝑡) > 0, 𝛿 (𝑡) > 𝛿 (𝑡0) , 𝑆 (𝑡) > 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) ⋅ exp(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
𝛼3
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝛽3󵄨󵄨󵄨󵄨𝛽3 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝛽3(𝑡−𝑡0) − 𝑘

1 − 𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ,

if (𝛿 (𝑡) + 𝛽3𝛼3) ⋅ 𝛿 (𝑡) > 0, 𝛿 (𝑡) > 𝛿 (𝑡0) , 𝑆 (𝑡) < 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) ⋅ exp(− 1
𝛼3 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝛽3(𝑡−𝑡0) + 𝑘

1 + 𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ,

if (𝛿 (𝑡) + 𝛽3𝛼3) ⋅ 𝛿 (𝑡) < 0, 𝛿 (𝑡) > 𝛿 (𝑡0) , 𝑆 (𝑡) > 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) ⋅ exp(−
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
𝛼3
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝛽3󵄨󵄨󵄨󵄨𝛽3 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝛽3(𝑡−𝑡0) + 𝑘

1 + 𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ,

if (𝛿 (𝑡) + 𝛽3𝛼3) ⋅ 𝛿 (𝑡) < 0, 𝛿 (𝑡) > 𝛿 (𝑡0) , 𝑆 (𝑡) < 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) ⋅ exp( 1
𝛼3

𝛽3󵄨󵄨󵄨󵄨𝛽3󵄨󵄨󵄨󵄨 ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒−|𝛽3|(𝑡−𝑡0) − 𝑘

1 − 𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ,

if (𝛿 (𝑡) + 𝛽3𝛼3) ⋅ 𝛿 (𝑡) > 0, 𝛿 (𝑡) < 𝛿 (𝑡0) , 𝑆 (𝑡) > 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) ⋅ exp(−
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
𝛼3
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒−|𝛽3|(𝑡−𝑡0) − 𝑘

1 − 𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ,

if (𝛿 (𝑡) + 𝛽3𝛼3) ⋅ 𝛿 (𝑡) > 0, 𝛿 (𝑡) < 𝛿 (𝑡0) , 𝑆 (𝑡) < 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) ⋅ exp( 1
𝛼3

𝛽3󵄨󵄨󵄨󵄨𝛽3󵄨󵄨󵄨󵄨 ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒−|𝛽3|(𝑡−𝑡0) + 𝑘

1 + 𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ,

if (𝛿 (𝑡) + 𝛽3𝛼3) ⋅ 𝛿 (𝑡) < 0, 𝛿 (𝑡) < 𝛿 (𝑡0) , 𝑆 (𝑡) > 𝑆 (𝑡0) ;

𝑆 (𝑡) = 𝑆 (𝑡0) ⋅ exp(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
𝛼3
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒−|𝛽3|(𝑡−𝑡0) + 𝑘

1 + 𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ,

if (𝛿 (𝑡) + 𝛽3𝛼3) ⋅ 𝛿 (𝑡) < 0, 𝛿 (𝑡) < 𝛿 (𝑡0) , 𝑆 (𝑡) < 𝑆 (𝑡0) .

(14)

Table 1: Classification of model forecasting ability by MAPE.

MAPE <10% 10%∼20% 20%∼50% >50%
Accuracy High Good Reasonable Inaccurate

Model C describes the relationship between the relative
growth rate of the stock price, 𝛿(𝑡), and its derivative. Since
the relative growth rate is the return of the stock price, when𝛼3 is negative and 𝛽3 is positive, the return moves in the way
that the logistic growth model depicts. That is, the return
reverses to a constant implied equilibrium. In the case of
other combinations of the coefficients (𝛼3 and 𝛽3), the return
diverges and the fluctuations of the stock prices are more
dynamical but different from what model B describes.

The dynamic models above are built on the work of Chen
et al. [2]. But all of them consist of two coefficients instead of
one as in their study. Hence we generalize one of their models
into a two-coefficient dynamic model and compare it with
the three models above. This extended model is stated in the
following.

Model D (dynamic general Newton model)

𝑑𝑆 (𝑡)
𝑑𝑡 = 𝛼4 (𝑡) ⋅ [𝑆 (𝑡) − 𝐴 (𝑡)] , (15)

where 𝑆(𝑡) is the stock price at time 𝑡. We assume the coeffi-
cients in (15) are constant during a very short time interval 𝑡 ∈[𝑡0, 𝑡1] and consider the parameterized differential equation:

𝑑𝑆 (𝑡)
𝑑𝑡 = 𝛼4 ⋅ [𝑆 (𝑡) − 𝐴] ,
𝑆 (𝑡0) = 𝑆0,
𝑆 (𝑡1) = 𝑆1,

𝑡0 < 𝑡1,

(16)

between two given data points at times 𝑡0 and 𝑡1.The solution
can be found in the article of Chen et al. [2].

As applying these dynamic models, we discretize and
convert them into difference equations since the time interval
between the two given points at times 𝑡0 and 𝑡1 is relatively
short compared to the interval of the complete data. The
discretization and the parameterization make the differential
equations solvable. In the empirical study, we fit and forecast
the data by the solutions. We also adopt the dynamic
forecasting method discussed in [2] to obtain more accurate
theoretical values.

The forecasting error is measured by MAPE (Mean
Absolute Percentage Error) and RMSPE (Root Mean
Square Percentage Error). They are defined as MAPE
= (1/𝑁)∑𝑁𝑖=1 |(𝑆(𝑖) − 𝑆(𝑖))/𝑆(𝑖)| × 100% and RMSPE =
√(1/𝑁)∑𝑁𝑖=1((𝑆(𝑖) − 𝑆(𝑖))/𝑆(𝑖))2 × 100%, where 𝑆(𝑖) is the
theoretical value of the model at time 𝑖, 𝑆(𝑖) is the market
value at time 𝑖, and 𝑁 is the length of data points. Lewis
[18] suggested that the forecasting ability of a model can be
classified as in Table 1.
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Table 2: MAPEs and RMSPEs, fits of the four dynamic models and the martingale.

MAPE RMSPE
Model A 2.0362% 3.5065%
Model D 0.3467% 0.5943%
Martingale
(2015/06/02∼2016/07/19) 0.7608% 1.0404%

Model B 0.6634% 1.0072%
Model C 0.6622% 1.0080%
Martingale
(2015/06/02∼2016/07/18) 0.7625% 1.0421%

RMSPE can also determine the forecasting ability of a
model by the classification of Table 1 althoughRMSPE ismore
affected by extreme values. In brief, the smaller the values of
MAPE and RMSPE are, the better the forecasting ability of a
model is. Besides, MAPE and RMSPE are also calculated to
measure the fitting accuracy of the models in this study.

4. Empirical Study

We collected and studied a series of Taiwan Stock Exchange
Capitalization Weighted Stock Index (TAIEX) closing prices
from June 1, 2015, to August 31, 2016. There are 310 trading
days during this period. Since the dynamic forecasting
method is applied, the length of forecasts needs not to be
long [2] so that we make 30 forecasts for each model. But the
forecasting periods of the four models are different because
first-order difference is revolved in calculations of model A,
D and second-order difference is revolved in calculations of
model B, C.

We apply forward difference method to numerical analy-
sis since the results do not differ much from applying back-
ward difference method [16]. For fitting with the dynamic
models, the future information is included in calculations.
To avoid the inclusion of future information for model
forecasting, the theoretical values are obtained assuming that
the situation is unchanged during a longer period from three
trading days before the date to be forecasted. That is, the
model coefficients are assumed to be constant in the interval𝑡 ∈ [𝑡0, 𝑡3] and the theoretical values at time 𝑡3 are obtained
by solving (4), (10), (13), and (16), respectively. Therefore, the
fitting periods ofmodel A, D begin from June 2, 2015, and end
at July 19, 2016, while the fitting periods of model B, C begin
from June 2, 2015, and end at July 18, 2016. Forecasts of model
A, D are both from July 20, 2016, to August 30, 2016; forecasts
of model B, C are both from July 19, 2016, to August 29, 2016.

In numerical analysis, the theoretical values of model D
sometimes blow up when the coefficient 𝛼4 are very large
because of its position in the power of exponential part of
the solution. The theoretical values make sense if they are
restricted in a range where market values exist. Hence, when𝛼4 is higher than 2 (resulting in the theoretical value out
of range of possible market values on the condition) the
theoretical value will be replaced with the theoretical value
of the previous trading day. Moreover, a 10% daily price
fluctuation limit in Taiwan stock market is set up since June

Model A fits from 2015-06-02 to 2016-07-19
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2-coefficient dynamic logistic model
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Figure 1: Time plot of raw data and model A fits.

1, 2015. Accordingly, the theoretical values of the four models
are restricted to the limit if they are above or below it.

The TAIEX series is also analyzed by examining its
sample ACF (autocorrelation function) and PACF (partial
autocorrelation function) and testing by Ljung-Box Test [19]
shown in Figure 9 and Table 4. The autocorrelation of the
series is not statistically significant. Under the circumstances,
we suppose the stock closing prices during the period is a
random walk and consequently the martingale is set as the
benchmark model. Once the theoretical values of the four
dynamic models are obtained, we compare them with the fits
and forecasts of the martingale.

We will first present the fits of the four dynamic models
and next their forecasts in the section. The fitting results are
in Figures 1–4.

The graphs show that the fits of model A fluctuate much
more than the other models and model D has the fewest
deviations of the fits from themarket values.TheMAPEs and
RMSPEs of the models are listed in Table 2. The order of the
model performance by the values coincides with the graphs.
Furthermore, the fits of the martingale are only closer to the
market values than those of model A.

We then examine the model coefficients. The graphs and
some statistics of the coefficients are in Table 5 and Figures
10–13. Basically the alphas and the betas move in the small
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Model B fits from 2015-06-02 to 2016-07-18
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Figure 2: Time plot of raw data and model B fits.

Model C fits from 2015-06-02 to 2016-07-18
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Figure 3: Time plot of raw data and model C fits.

range around their median except for some large jumps or
drops. The unusual jumps and drops seem to appear on the
same dates and should be studied more thoroughly.

As noted in the previous section, the phenomenon of
mean reversion shows if 𝛼1 < 0 and 𝛽1 > 0 for model A,𝛼2 < 0 and 𝛽2 > 0 for model B, 𝛼3 < 0 and 𝛽3 > 0
for model C, and 𝛼4 < 0 for model D. On the condition, if
the subject value is higher than the implied equilibrium, it
will reverse to the equilibriumwith a sharp decreasing speed;
if the subject value is lower than the implied equilibrium,
it will first reverse to the equilibrium with a steep rise and
then gradually slow down. The phenomenon is for different
subjects related to stock index: the stock index closing price
for model A, D; the velocity of stock price for model B;
the relative growth rate (return) of stock price for model C.
Therefore, themean reversion described inmodels A andD is
either the bull market or the bear market for the stock prices.
In models B and C, the bull market (upward trend) or the
bearmarket (downward trend) is used to describe the velocity
and the related growth rate of the stock prices, respectively.

Model D fits from 2015-06-02 to 2016-07-19
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Figure 4: Time plot of raw data and model D fits.

Comparisons of forecasts from 2016-07-19 to 2016-08-30
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Figure 5: Timeplot of rawdata and the forecasts of the four dynamic
models and the martingale.

The proportion of mean reversion shown during the studied
period of the data is 0.72 (199/278) for model A, D and 0.23
(64/277) for model B, C. Other than the mean reversion
phenomenon, the dynamicmodels also characterize different
types ofmarket trends aswell by different performances of the
model coefficients.

Next we forecast by the four dynamic models and com-
pare the results with the martingale in Figures 5 and 6.
The details of each model are shown in Figures 14–19. The
forecasts of model A fluctuate the most and have the most
deviations from the market values. Models B, C, and D all
forecast the trend of the stock prices well and model D seems
to have the most accurate forecasts. We list the errors of the
four dynamic models and the martingale in Table 3. The
forecasting ability of the martingale is the best among all
models; however, model D has similar results.

The sources of error include the disparity between the
differential equations and the difference equations, the dis-
agreement between the movement of the subject and the
model form, and the dynamics of themodel coefficients. If the
model form does not represent the movement of the subject
very accurately, the model will produce larger error and thus
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Table 3: MAPEs and RMSPEs, forecasts of the four dynamic models and the martingale.

MAPE RMSPE
Model A 2.5055% 4.4041%
Model D 0.4658% 0.5973%
Martingale
(2016/07/20∼2016/08/30) 0.4306% 0.5377%

Model B 0.7082% 0.8786%
Model C 0.7101% 0.8799%
Martingale
(2016/07/19∼2016/08/29) 0.4403% 0.5404%

Comparisons of forecasts from 2016-07-20 to 2016-08-30
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Figure 6: Time plot of raw data and the forecasts of model D and
the martingale.

Convergence of Model A solution, equation (5)
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Figure 7: The convergence of the simulated theoretical stock prices
by equation (5). (Implied equilibrium = |median(𝛽1)/median(𝛼1)|
= 8563.101 high stock index initial value 𝑆(𝑡0) = 8563.101 + 500
= 9063.101; low stock index initial value 𝑆(𝑡0) = 8563.101 – 500 =
8063.101).

the forecasting ability of the model will be lower. Model A
and model D both characterize the relationship between the
subject and its first-order derivative. Nevertheless, model D
forecasts much better than model A as a result of the concor-
dance between model D and the data. Besides, error comes
from the dynamics of the model coefficients. We assume the
model coefficients are constant in a four-day interval prior
to the forecast during the forecasting process. In real world,

Convergence of Model A solution, equation (6)
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Figure 8: The convergence of the simulated theoretical stock prices
by equation (6) (implied equilibrium = 8563.101; high stock index
initial value S(𝑡0) = 9063.101; low stock index initial value S(𝑡0) =
8063.101).
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Figure 9: ACF and PACF of TAIEX daily returns from June 2, 2015,
to August 31, 2016.

the coefficients are more dynamical and consequently error
shows.

5. Conclusions

We propose four dynamic models to characterize the move-
ment of the subject, the TAIEX closing prices. Some types
of the movement are considered in the models: the mean
reversion, different speeds of the uptrend and the downtrend,
and so forth. There are two forms of the models: the logistic
growth and the law of Newton’s cooling. We apply the
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Table 5: Centering tendency of the dynamic model coefficients.

Mean 10% Trimmed Mean Median
𝛼1 −0.000141 −0.000098 −0.000101
𝛽1 1.169824 0.832151 0.867041
𝛼2 0.031618 −0.004302 −0.000321
𝛽2 −1.144368 −0.044949 −0.911920
𝛼3 206.432875 −37.809327 −2.199180
𝛽3 −1.052092 −0.026376 −0.909614
𝛼4 −1.20276 −0.866740 −0.859210
A 8520.318324 8490.764107 8477.203518
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Figure 10: Time plots of model A coefficients-𝛼1 and 𝛽1
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Figure 11: Time plots of model B coefficients-𝛼2 and 𝛽2.

four dynamic models to fit and forecast the TAIEX closing
prices and compare them with the martingale. The fits of
models B, C, and D are closer to the market values than
those of the martingale which suggests that they characterize
the movement of the subject quite properly. However, the
martingale outperforms the dynamic models for forecasting
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Figure 12: Time plots of model C coefficients-𝛼3 and 𝛽3.
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Figure 13: Time plots of model D coefficients-𝛼4 and 𝐴.

since the error of the martingale is the smallest. But the
forecasts of model D are very similar to the martingale and
has the best performance among the four dynamicmodels. To
sumup,model D is themost propermodel to characterize the
TAIEX closing prices but we still need to examine and model
the coefficients to increase its forecasting ability. Modelling
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Model A forecasts from 2016-07-20 to 2016-08-30

Market index value
Forecasted value of 2-coefficient dynamic logistic model

7500

8000

8500

9000

9500

10000

2016-08-02 2016-08-16 2016-08-302016-07-20
Time

Figure 14: Time plots of raw data and the forecasts of model A.

Model B forecasts from 2016-07-19 to 2016-08-29
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Figure 15: Time plots of raw data and the forecasts of model B.

Model C forecasts from 2016-07-19 to 2016-08-29
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Figure 16: Time plots of raw data and the forecasts of model C.

the coefficients by some different methods such as time series
analysis and polynomial extrapolation is our future work.

Furthermore, there are some limits to the dynamicmodel
applications. For example, the theoretical values are limited in
a range of 10%price limit because of the regulation constraint.
Therefore, applying the dynamic models to the subject in the
market without the price limit may not be suitable. However,
the empirical study shows that the model in the form of the
law of Newton’s cooling (model D) is better than the models
in the form of the logistic growth (models A, B, and C).
This suggests that the former type of the model may be more

Model D forecasts from 2016-07-20 to 2016-08-30
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Figure 17: Time plots of raw data and the forecasts of model D.

Comparisons of forecasts from 2016-07-19 to 2016-08-29
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Figure 18: Time plots of raw data and the forecasts of model B, C
and the martingale.
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Figure 19: Time plots of raw data and the forecasts of model A, D
and the martingale.

proper for the market with price limit while the later type of
the model may be more proper for the market without price
limit. Confirming the conjecture and modifying the models
to generalize their applications are also our future work.
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