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There are many industrial and biological reaction diffusion systems which involve the time-varying features where certain
parameters of the system change during the process. A part of the transport-reaction phenomena is often modelled as an abstract
nonautonomous equation generated by a (generalized) Riesz-spectral operator on aHilbert space.The basic problems related to the
equations are existence of solutions of the equations and how to control dynamical behaviour of the equations. In contrast to the
autonomous control problems, theory of controllability and observability for the nonautonomous systems is less well established. In
this paper, we consider some relevant aspects regarding the controllability and observability for the nonautonomous Riesz-spectral
systems including the Sturm-Liouville systems using a 𝐶0-quasi-semigroup approach. Three examples are provided. The first is
related to sufficient conditions for the existence of solutions and the others are to confirm the approximate controllability and
observability of the nonautonomous Riesz-spectral systems and Sturm-Liouville systems, respectively.

1. Introduction

In the real problems, many underlying transport-reaction
phenomena are described by partial differential equations
with the time-varying coefficients. The phenomena arise
in processes such as crystal growth, metal casting and
annealing, solid-gas reaction systems (see [1–3]), and heat
conduction of a material undergoing decay or radioactive
damage [4]. The others also arise in solid-fluid mechanics
and biological systems. The time-dependencies of the system
parameters can be caused by changes in the boundary of
domain and variances in the diffusion characteristics. The
transport-reaction phenomena encourage the emergence of
nonautonomous linear control systems.

Let 𝑋, 𝑈, and 𝑌 be complex Hilbert spaces. Suppose that𝐵(𝑡) : 𝑈 → 𝑋 and 𝐶(𝑡) : 𝑋 → 𝑌 are bounded operators such
that 𝐵(⋅) ∈ 𝐿∞(R+,L𝑠(𝑈,𝑋)) and𝐶(⋅) ∈ 𝐿∞(R+,L𝑠(𝑋, 𝑌)),
where L𝑠(𝑉,𝑊) denotes the space of bounded operators
from 𝑉 to 𝑊 equipped with strong operator topology. We
consider the linear nonautonomous control systems on 𝑋
with state 𝑥, input 𝑢, and output 𝑦:

𝑥̇ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡) , 𝑡 ≥ 0, 𝑥 (0) = 𝑥0, (1)

𝑦 (𝑡) = 𝐶 (𝑡) 𝑥 (𝑡) , (2)

where 𝑥 is an unknown function from real interval [0,∞)
into𝑋 and 𝐴(𝑡) is a linear closed operator in𝑋 with domain
D(𝐴(𝑡)) = D, independent of 𝑡 and dense in 𝑋. We denote
the state linear system (1)-(2) by (𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡)). To avoid
clutter, we also use notations (𝐴(𝑡), 𝐵(𝑡), −) and (𝐴(𝑡), −, 𝐶(𝑡))
if 𝐶(𝑡) = 0 and 𝐵(𝑡) = 0, respectively.

There is an extensive amount of literatures which have
studied controllability for the system (𝐴(𝑡), 𝐵(𝑡), −) (1).
Barcenas and Leiva [5] prove some properties of attainable
sets for the systems (1) with time-varying constrained con-
trols and target sets. They also characterize the extremal
controls and give necessary and sufficient conditions for
the normality of the system. Elharfi et al. [6] study well-
posedness of a class of nonautonomous neutral control
systems in Banach spaces. The systems are represented by
absolutely regular nonautonomous linear systems in the
sense of Schnaubelt [7]. These works can be considered as
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the nonautonomous version of the works of Bounit and
Hadd [8]. By employing skew-product semiflow technique,
Barcenas et al. [9] give necessary and sufficient conditions
for exact and approximate controllability of a wide class of
linear infinite-dimensional nonautonomous control systems
(1). Ng et al. [10] characterize the some pertinent aspects
regarding the controllability and observability of system
(1)-(2) which are modelled by parabolic partial differential
equations with time-varying coefficients. By using theory of
linear evolution system and Schauder fixed point theorem,
Fu and Zhang [11] establish a sufficient result of exact null
controllability for a nonautonomous functional evolution
system with nonlocal conditions. Using evolution operators
and concept of Lebesgue extensions, Hadd [12] proposes a
new approach which brings nonautonomous linear systems
with state, input, and output delays in line with the standard
theory. Leiva and Barcenas [13] have established a quasi-
semigroup theory as an alternative approach in solving (1).
Even the control theory can be developed by this approach
although it is still limited to the time-invariant controls
[14]. In this context, 𝐴(𝑡) is an infinitesimal generator of a𝐶0-quasi-semigroup on 𝑋. Finally, the advanced properties
and some types of stabilities of the C0-quasi-semigroups in
Banach spaces can be determined by Sutrima et al. [15] and
Sutrima et al. [16], respectively.These results are important in
analysis and applications of the 𝐶0-quasi-semigroups.

In the autonomous case, that is, 𝐴(𝑡) = 𝐴, 𝐵(𝑡) = 𝐵, and𝐶(𝑡) = 𝐶, independent of 𝑡, there are many literatures which
have been devoted to study of the controllability and observ-
ability for the system (𝐴, 𝐵, 𝐶) of (1)-(2). Dolecki and Russell
[17] explore the duality relationships between observation
and control in an abstract Banach space setting. Investigation
is also given to the problem of optimal reconstruction
of system states from observations. Zhao and Weiss [18]
establish the well-posedness, regularity, exact (approximate)
controllability, and exact (approximate) observability results
for the coupled systems consisting of awell-posed and regular
subsystem and a finite-dimensional subsystem connected in
feedback. For neutral type linear systems in Hilbert spaces,
Rabah et al. [19] prove that exact null controllability and com-
plete stabilizability are equivalent. The paper also considers
the case when the feedback is not bounded. In particular,
if 𝐴 is a Riesz-spectral generator of a 𝐶0-semigroup on 𝑋,
then the solution of (1) for 𝐵 = 0 can be expressed as an
infinite sum of all its eigenvectors which form a Riesz basis
(see [20, 21]), and in this case the system (𝐴, 𝐵, −) is called a
Riesz-spectral system. It gives convenience to analyze some
problems in infinite-dimensional systems such as spectrum-
determined growth condition, controllability, observability,
stabilizability, and detectability; see, for example, [22, 23].

Although the aforementioned researches provide a well-
established theoretical basis on the nonautonomous Cauchy
problems and the controllability and observability theory,
there are a relatively scarce number of the researches using
quasi-semigroups. Even, there is no research which inves-
tigates the Riesz-spectral systems on Hilbert space for the
nonautonomous cases. These are challenges to study and to
realize the associated control problems, the controllability,

and observability, for the nonautonomous infinite-dimen-
sional systems.

In this paper, we are concerned with investigation of suf-
ficient conditions for𝐴(𝑡) to induce a nonautonomous Riesz-
spectral system. The obtained nonautonomous operator is
implemented to study the controllability and observability
for the nonautonomous systems. All the studies use the 𝐶0-
quasi-semigroup approach. The organization of this paper is
as follows. In Section 2, we provide notion of the generalized
Riesz-spectral operator and its sufficiency related to the
nonautonomous systems. The concepts of controllability and
observability for the nonautonomous systems are considered
in the Section 3. In Section 4, we confirm the obtained results
by the two examples.

2. Generalized Riesz-Spectral Generator

This section is a part of the main results. We first recall
the definition of a strongly continuous quasi-semigroups
following [13, 14].

Definition 1. Let L(𝑋) be the set of all bounded linear
operators onHilbert space𝑋. A two-parameter commutative
family {𝑅(𝑡, 𝑠)}𝑠,𝑡≥0 in L(𝑋) is called a strongly continuous
quasi-semigroup, in short 𝐶0-quasi-semigroup, on 𝑋 if, for
each 𝑟, 𝑠, 𝑡 ≥ 0 and 𝑥 ∈ 𝑋,

(a) 𝑅(𝑡, 0) = 𝐼, identity operator on𝑋,
(b) 𝑅(𝑡, 𝑠 + 𝑟) = 𝑅(𝑡 + 𝑟, 𝑠)𝑅(𝑡, 𝑟),
(c) lim𝑠→0+‖𝑅(𝑡, 𝑠)𝑥 − 𝑥‖ = 0,
(d) there exists a continuous increasing function 𝑀 :[0,∞) → [0,∞) such that

‖𝑅 (𝑡, 𝑠)‖ ≤ 𝑀 (𝑠) . (3)

In the sequel, for simplicity we denote the quasi-
semigroup {𝑅(𝑡, 𝑠)}𝑠,𝑡≥0 and family {𝐴(𝑡)}𝑡≥0 by 𝑅(𝑡, 𝑠) and𝐴(𝑡), respectively.

In this section we investigate sufficient conditions of𝐴(𝑡)
such that (1) forms a nonautonomous Riesz-spectral system.
It is well known that if 𝐴 is a Riesz-spectral operator, then it
can be represented as an infinite sum of all its eigenvectors.
However, as declared in Section 1 for nonautonomous system
(1), we assume that D = D(𝐴(𝑡)) is independent of 𝑡. This
implies that to be a Riesz-spectral operator, 𝐴(𝑡) has to have
eigenvectors which are independent of 𝑡. A class that meets
this criterion is a family of operators whose representation is
as follows:

𝐴 (𝑡) = 𝑎 (𝑡) 𝐴, (4)

where𝐴 is a Riesz-spectral operator on𝑋 and 𝑎 is a bounded
continuous function such that 𝑎(𝑡) > 0, 𝑡 ≥ 0. It is clear
that, for every 𝑡 ≥ 0, 𝐴(𝑡) and 𝐴 have the common domain
and eigenvectors. Moreover, if 𝜆𝑛, 𝑛 ∈ N, is an eigenvalue
of 𝐴, then 𝑎(𝑡)𝜆𝑛 are the eigenvalues of 𝐴(𝑡) of (4). Hence,
in general 𝐴(𝑡) may have the nonsimple eigenvalues. In case𝐴(𝑡) is a differential operator, then the operator𝐴(𝑡, 𝜉) of [10]
satisfying the conditions P1 and P2 verifies (4).These urge the
following notion.
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Definition 2. For every 𝑡 ≥ 0, let 𝐴(𝑡) be an operator of form
(4) on a Hilbert space 𝑋. 𝐴(𝑡) is called a generalized Riesz-
spectral operator if 𝐴 is a Riesz-spectral operator.

Definition 2 states that if 𝑎 is a nonnegative constant
function, then 𝐴(𝑡) is a Riesz-spectral operator. In the sequel
we always assume that, for every 𝑡 ≥ 0, 𝐴(𝑡) is an operator
of form (4). The following results are generalization of the
results of [21, 22] for autonomous case.

Theorem 3. For every 𝑡 ≥ 0, let 𝐴(𝑡) be an operator of (4)
where 𝐴 is a Riesz-spectral operator with simple eigenvalues{𝜆𝑛 : 𝑛 ∈ N} and corresponding eigenvectors {𝜙𝑛 : 𝑛 ∈ N}.
If {𝜑𝑛 : 𝑛 ∈ N} are the eigenvectors of𝐴∗, the adjoint of𝐴, such
that ⟨𝜙𝑛, 𝜑𝑚⟩ = 𝛿𝑚𝑛, then

(a) 𝜌(𝐴(𝑡)) = {𝜆𝑎(𝑡) : 𝜆 ∈ 𝜌(𝐴)}, 𝜎(𝐴(𝑡)) = {𝜆𝑎(𝑡) :𝜆 ∈ 𝜎(𝐴)}, and for 𝜆 ∈ 𝜌(𝐴(𝑡)), the resolvent operator
R(𝜆, 𝐴(𝑡)) is given by

R (𝜆, 𝐴 (𝑡)) 𝑥 = ∞∑
𝑛=1

1
𝜆 − 𝑎 (𝑡) 𝜆𝑛 ⟨𝑥, 𝜑𝑛⟩ 𝜙𝑛; (5)

(b) 𝐴(𝑡) has representation
𝐴 (𝑡) 𝑥 = 𝑎 (𝑡) ∞∑

𝑛=1

𝜆𝑛 ⟨𝑥, 𝜑𝑛⟩ 𝜙𝑛 (6)

for 𝑥 ∈ D = D(𝐴(𝑡)), where
D = {𝑥 ∈ 𝑋 : ∞∑

𝑛=1

󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨⟨𝑥, 𝜑𝑛⟩󵄨󵄨󵄨󵄨2 < ∞} ; (7)

(c) if sup𝑛∈NRe(𝜆𝑛) < ∞, then, for every 𝑡 ≥ 0, 𝐴(𝑡) is the
infinitesimal generator of a 𝐶0-quasi-semigroup 𝑅(𝑡, 𝑠)
given by

𝑅 (𝑡, 𝑠) 𝑥 = ∞∑
𝑛=1

𝑒𝜆𝑛(𝑔(𝑡+𝑠)−𝑔(𝑡)) ⟨𝑥, 𝜑𝑛⟩ 𝜙𝑛, (8)

where 𝑔(𝑡) = ∫𝑡
0
𝑎(𝜉)𝑑𝜉;

(d) the growth bound of the quasi-semigroup at 𝑡 is given
by

𝜔0 (𝑡) = inf
𝑠>0

(1𝑠 log ‖𝑅 (𝑡, 𝑠)‖) = 𝑎 (𝑡) sup
𝑛∈N

Re (𝜆𝑛) . (9)

Proof. Proofs of (a) and (b) follow the proofs of Theorem2.3.5 of [21] replacing (𝜆𝐼 − 𝐴)−1 and 𝑦𝑁 with

(𝜆𝐼 − 𝐴 (𝑡))−1 fl ∞∑
𝑛=1

1
𝜆 − 𝑎 (𝑡) 𝜆𝑛 ⟨𝑥, 𝜑𝑛⟩ 𝜙𝑛, (10)

𝑦𝑁 (𝑡) fl 𝑁∑
𝑛=1

1
𝜆 − 𝑎 (𝑡) 𝜆𝑛 ⟨𝑥, 𝜑𝑛⟩ 𝜙𝑛, (11)

respectively, for every 𝑡 ≥ 0. In this contextR(𝜆, 𝐴(𝑡)) = (𝜆𝐼−𝐴(𝑡))−1.

(c) Let 𝜔 = sup𝑛≥1Re(𝜆𝑛). Given 𝑡 ≥ 0 fixed, for 𝜆 such
that Re(𝜆) > 𝑎(𝑡)𝜔, from (a)

(𝜆𝐼 − 𝐴 (𝑡))−1 𝑥 = ∞∑
𝑛=1

1
𝜆 − 𝑎 (𝑡) 𝜆𝑛 ⟨𝑥, 𝜑𝑛⟩ 𝜙𝑛 (12)

and by iteration we have

(𝜆𝐼 − 𝐴 (𝑡))−𝑟 𝑥 = ∞∑
𝑛=1

1
(𝜆 − 𝑎 (𝑡) 𝜆𝑛)𝑟 ⟨𝑥, 𝜑𝑛⟩ 𝜙𝑛. (13)

So by the condition b of Lemma 2.3.2 of [21] for 𝑚 = ℎ and𝑀 = 𝐻, we have
󵄩󵄩󵄩󵄩(𝜆𝐼 − 𝐴 (𝑡))−𝑟 𝑥󵄩󵄩󵄩󵄩2

≤ 𝐻
𝑎 (𝑡)

∞∑
𝑛=1

1󵄨󵄨󵄨󵄨𝜆 − 𝑎 (𝑡) 𝜆𝑛󵄨󵄨󵄨󵄨2𝑟
󵄨󵄨󵄨󵄨⟨𝑥, 𝜑𝑛⟩󵄨󵄨󵄨󵄨2

≤ 𝐻
ℎ

‖𝑥‖2
(Re (𝜆) − 𝑎 (𝑡) 𝜔)2𝑟 .

(14)

Theorem 3.7 of [15] implies that 𝐴(𝑡) is an infinitesimal
generator of a 𝐶0-quasi-semigroup 𝑅(𝑡, 𝑠) with

‖𝑅 (𝑡, 𝑠)‖ ≤ √𝐻
ℎ 𝑒𝑎(𝑡)𝜔𝑠. (15)

We verify that the operators 𝑅(𝑡, 𝑠), 𝑡, 𝑠 ≥ 0, given by

𝑅 (𝑡, 𝑠) 𝑥 = ∞∑
𝑛=1

𝑒𝜆𝑛(𝑔(𝑡+𝑠)−𝑔(𝑡)) ⟨𝑥, 𝜑𝑛⟩ 𝜙𝑛 ∀𝑥 ∈ 𝑋, (16)

where 𝑔(𝑡) = ∫𝑡
0
𝑎(𝜉)𝑑𝜉 and sup𝑛∈NRe 𝜆𝑛 < ∞, are a 𝐶0-

quasi-semigroup on 𝑋 satisfying (15) with the infinitesimal
generator

𝐴 (𝑡) 𝑥 = 𝑎 (𝑡) ∞∑
𝑛=1

𝜆𝑛 ⟨𝑥, 𝜑𝑛⟩ 𝜙𝑛 (17)

on domain

D = {𝑥 ∈ 𝑋 : ∞∑
𝑛=1

󵄨󵄨󵄨󵄨𝜆𝑛 ⟨𝑥, 𝜑𝑛⟩󵄨󵄨󵄨󵄨2 < ∞} . (18)

(d) By (10) we have

𝜔0 (𝑡) = inf
𝑠>0

(1𝑠 log ‖𝑅 (𝑡, 𝑠)‖) ≤ 𝑎 (𝑡) sup
𝑛≥1

Re (𝜆𝑛) . (19)

On the other hand, taking 𝑥 = 𝜙𝑛 in (16) we get

1
𝑠 log ‖𝑅 (𝑡, 𝑠)‖ =

1
𝑠 (𝑔 (𝑡 + 𝑠) − 𝑔 (𝑡)) 󵄨󵄨󵄨󵄨Re (𝜆𝑛)󵄨󵄨󵄨󵄨

∀𝑛 ∈ N.
(20)

It implies

𝜔0 (𝑡) = inf
𝑠>0

(1𝑠 log ‖𝑅 (𝑡, 𝑠)‖) ≥ 𝑎 (𝑡) sup
𝑛≥1

Re (𝜆𝑛) . (21)



4 Abstract and Applied Analysis

Therefore

𝜔0 (𝑡) = inf
𝑠>0

(1𝑠 log ‖𝑅 (𝑡, 𝑠)‖) = 𝑎 (𝑡) sup
𝑛∈N

Re (𝜆𝑛) . (22)

Corollary 4. If, for every 𝑡 ≥ 0, 𝐴(𝑡) is the generalized Riesz-
spectral generator of a 𝐶0-quasi-semigroup 𝑅(𝑡, 𝑠) on a Hilbert
space 𝑋, then for any 𝑥0 ∈ D and 𝑟 ≥ 0 the initial value
problem

𝑥̇ (𝑡) = 𝐴 (𝑟 + 𝑡) 𝑥 (𝑡) , 𝑥 (0) = 𝑥0 (23)

admits a unique solution.

Proof. It follows from Theorem 2.2 of [13] that (23) admits a
unique solution.

3. Nonautonomous Riesz-Spectral Systems

In this section we shall apply the generalized Riesz-spectral
operator in the linear nonautonomous control system(𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡)) of (1)-(2), where 𝐴(𝑡) is the generalized
Riesz-spectral operator generating a 𝐶0-quasi-semigroup𝑅(𝑡, 𝑠) on 𝑋. In the sequel, we assume that the two requested
real numbers 𝑝 and 𝑞 always satisfy

1
𝑝 + 1

𝑞 = 1 (24)

and 1 < 𝑝 < ∞, unless specified.

Definition 5. Assume that the state linear system (𝐴(𝑡),𝐵(𝑡), −) holds for all initial state 𝑥0 ∈ 𝑋 and for all input𝑢 ∈ 𝐿𝑝(R+, 𝑈). The state

𝑥 (𝑡) = 𝑅 (0, 𝑡) 𝑥0 + ∫
𝑡

0
𝑅 (𝑠, 𝑡 − 𝑠) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

0 ≤ 𝑡 < ∞,
(25)

is defined to be a mild solution of (1).

We verify that 𝑥 ∈ C(R+, 𝑋) and the output 𝑦 defined
by (2) always belongs to 𝐿𝑞(R+, 𝑌). The definitions of the
controllability and observability in this paper follow the
definitions for the autonomous case; see, for example, [21].

Definition 6. The linear system (𝐴(𝑡), 𝐵(𝑡), −) is said to be

(a) exactly controllable on [0, 𝜏] if for each 𝑥0, 𝑥1 ∈ 𝑋
there exists a control 𝑢 ∈ 𝐿𝑝([0, 𝜏], 𝑈) such that the
mild solution 𝑥(⋅) of (1) corresponding to 𝑢(⋅) satisfies𝑥(𝜏) = 𝑥1;

(b) approximately controllable on [0, 𝜏] if for each𝑥0, 𝑥1 ∈ 𝑋 and any 𝜖 > 0 there exists a control𝑢 ∈ 𝐿𝑝([0, 𝜏], 𝑈) such that the mild solution 𝑥(⋅) of
(1) corresponding to 𝑢(⋅) satisfies ‖𝑥(𝜏) − 𝑥1‖ < 𝜖.

A controllability map of (𝐴(𝑡), 𝐵(𝑡), −) on [0, 𝜏] is a
bounded linear mapB𝜏 : 𝐿𝑝([0, 𝜏]; 𝑈) → 𝑋 defined by

B𝜏𝑢 = ∫𝜏

0
𝑅 (𝑠, 𝜏 − 𝑠) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝑠. (26)

It is easy to show that the system (𝐴(𝑡), 𝐵(𝑡), −) is exactly
controllable on [0, 𝜏] if and only if ran B𝜏 = 𝑋, where
ran 𝑇 denotes the range of 𝑇. Also, system (𝐴(𝑡), 𝐵(𝑡), −) is
approximately controllable on [0, 𝜏] if and only if ranB𝜏 =𝑋.
Lemma 7. The controllability map in (26) satisfies the follow-
ing conditions.

(a) The operator B𝜏 ∈ L(𝐿𝑝([0, 𝜏], 𝑈), 𝑋) and B𝑡 ∈
L(𝐿𝑝([0, 𝜏], 𝑈), 𝐿𝑝([0, 𝜏], 𝑋)) for 0 ≤ 𝑡 ≤ 𝜏.

(b) (B∗
𝜏𝑥)(𝑠) = 𝐵∗(𝑠)𝑅∗(𝑠, 𝜏 − 𝑠)𝑥 on [0, 𝜏].

Proof. (a) Since 𝑅(𝑡, 𝑠) is strongly continuous and 𝑢 ∈𝐿𝑝([0, 𝜏], 𝑈), then the map 𝑠 󳨃→ ⟨𝑥, 𝑅(𝑠, 𝜏 − 𝑠)𝐵(𝑠)𝑢(𝑠)⟩ is
measurable on [0, 𝜏] for every 𝑥 ∈ 𝑋. Moreover,

∫𝜏

0
‖𝑅 (𝑠, 𝜏 − 𝑠) 𝐵 (𝑠) 𝑢 (𝑠)‖𝑋 𝑑𝑠
≤ ∫𝜏

0
𝑀(𝜏 − 𝑠) ‖𝐵 (⋅)‖L(𝑈,𝑋) ‖𝑢‖𝐿𝑝 𝑑𝑠

≤ 𝜏𝑀 (𝜏) ‖𝐵 (⋅)‖L(𝑈,𝑋) ‖𝑢‖𝐿𝑝 < ∞.
(27)

Lemma A.5.5 of [21] states that the integral in (26) is well-
defined. We verify easily thatB𝜏 is linear. Now, for 0 ≤ 𝑡 ≤ 𝜏
we have

󵄩󵄩󵄩󵄩B𝑡𝑢󵄩󵄩󵄩󵄩 ≤ ∫𝑡

0
‖𝑅 (𝑠, 𝜏 − 𝑠) 𝐵 (𝑠) 𝑢 (𝑠)‖𝑋 𝑑𝑠

≤ ∫𝑡

0
𝑀(𝑡 − 𝑠) ‖𝐵 (⋅)‖L(𝑈,𝑋) ‖𝑢‖𝐿𝑝 𝑑𝑠

≤ 𝑡𝑀 (𝑡) ‖𝐵 (⋅)‖L(𝑈,𝑋) ‖𝑢‖𝐿𝑝 .
(28)

This shows thatB𝜏 is a bounded mapping from 𝐿𝑝([0, 𝜏], 𝑈)
to 𝑋 and 𝑢 󳨃→ B𝑡𝑢, 0 ≤ 𝑡 ≤ 𝜏, is a bounded mapping from𝐿𝑝([0, 𝜏], 𝑈) to 𝐿𝑝([0, 𝜏], 𝑋).

(b) The definition of adjoint operator shows that B∗
𝜏 is

bounded. Moreover,

⟨𝑢,B∗
𝜏𝑥⟩𝐿𝑝 = ⟨B𝜏𝑢, 𝑥⟩𝑋

= ⟨∫𝜏

0
𝑅 (𝑠, 𝜏 − 𝑠) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑥⟩

𝑋

= ∫𝜏

0
⟨𝑅 (𝑠, 𝜏 − 𝑠) 𝐵 (𝑠) 𝑢 (𝑠) , 𝑥⟩𝑋 𝑑𝑠

= ∫𝜏

0
⟨𝑢 (𝑠) , 𝐵∗ (𝑠) 𝑅∗ (𝑠, 𝜏 − 𝑠) 𝑥⟩𝑈 𝑑𝑠

= ⟨𝑢, 𝐵∗ (⋅) 𝑅∗ (⋅, 𝜏 − ⋅) 𝑥⟩𝐿𝑝 .

(29)

This proves thatB∗
𝜏𝑥 = 𝐵∗(𝑠)𝑅∗(𝑠, 𝜏 − 𝑠)𝑥 on [0, 𝜏].
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Theorem 8. For 𝑢 ∈ 𝐿𝑝([0, 𝜏], 𝑈), the system (𝐴(𝑡), 𝐵(𝑡), −)
is exactly controllable on [0, 𝜏] if and only if any one of the
following conditions holds for some 𝛾 > 0 and all 𝑥 ∈ 𝑋:

(a) 𝛾‖𝐵∗(⋅)𝑅∗(⋅, 𝜏 − ⋅)𝑥‖𝐿𝑝 ≥ ‖𝑥‖.
(b) ker B∗

𝜏 = {0} and ran B∗
𝜏 is closed.

Proof. (a) We set 𝑉 = 𝐿𝑝([0, 𝜏], 𝑈), so B𝜏 ∈ L(𝑉,𝑋). It is
enough to prove that ranB𝜏 = 𝑋. By similarity of adjoint and
dual operator in Hilbert space, Corollary 3.5 of [20] states

ranB𝜏 = 𝑋 (30)

if and only if there exists 𝛾 > 0 such that

𝛾 󵄩󵄩󵄩󵄩B∗
𝜏𝑥󵄩󵄩󵄩󵄩𝐿𝑝 ≥ ‖𝑥‖ , (31)

for all 𝑥 ∈ 𝑋. So, by condition (b) of Lemma 7 the assertion
is confirmed.

(b) The condition 𝛾‖B∗
𝜏𝑥‖𝐿𝑝 ≥ ‖𝑥‖ shows that B∗

𝜏

is injective, and so kerB∗
𝜏 = {0}. Next, let (B∗

𝜏𝑥𝑛) be a
Cauchy sequence in 𝐿𝑝([0, 𝜏], 𝑈). Condition (a) shows that(𝑥𝑛) is a Cauchy sequence in𝑋. However, Lemma 7 (a) forces
B∗

𝜏𝑥𝑛 → B∗
𝜏𝑥 for some 𝑥 ∈ B∗

𝜏 . Thus, B∗
𝜏 has a closed

range.

Theorem 9. The linear system (𝐴(𝑡), 𝐵(𝑡), −) is approximately
controllable on [0, 𝜏] if and only if any one of the following
conditions holds:

(a) 𝐵∗(𝑠)𝑅∗(𝑠, 𝜏 − 𝑠)𝑥 = 0, 0 ≤ 𝑠 ≤ 𝜏, implies 𝑥 = 0.
(b) ker B∗

𝜏 = {0}.
Proof. (a) We see that the system (𝐴(𝑡), 𝐵(𝑡), −) is approx-
imately controllable on [0, 𝜏] if and only if ranB𝜏 = 𝑋.
According to Lemma VI 2.8 of [24], this is equivalent to the
fact that the mapping B󸀠

𝜏 : 𝑋󸀠 → 𝐿𝑞([0, 𝜏], 𝑈󸀠) is injective.
The similarity between adjoint and dual operator gives

𝐵∗ (⋅) 𝑅∗ (⋅, 𝜏 − ⋅) 𝑥 = 0 (32)

which implies 𝑥 = 0 almost everywhere. Therefore, if

𝐵∗ (𝑠) 𝑅∗ (𝑠, 𝜏 − 𝑠) 𝑥 = 0, 0 ≤ 𝑠 ≤ 𝜏, (33)

this verifies that 𝑥 = 0.
(b) Condition (a) and condition (b) of Lemma 7 give the

desired result.

Complementary to Definition 6, we define the exact
observability and the approximate observability as follows.

Definition 10. The linear system (𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡)) is said to be
(a) exactly observable on [0, 𝜏] if the initial state can

be uniquely constructed from the knowledge of the
output in 𝐿𝑞([0, 𝜏], 𝑌);

(b) approximately observable on [0, 𝜏] if the knowledge of
the output in 𝐿𝑞([0, 𝜏], 𝑌) determines the initial state
uniquely.

The observability map of the system (𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡)) on[0, 𝜏] is a bounded linearmapC𝜏 : 𝑋 → 𝐿𝑞([0, 𝜏]; 𝑌) defined
by

C𝜏𝑥 = 𝐶 (𝑡) 𝑅 (0, 𝑡) 𝑥, (34)

for 0 ≤ 𝑡 ≤ 𝜏.
From Definition 10 and the definition of observability

map we verify that the system (𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡)) is exactly
observable on [0, 𝜏] if and only if C𝜏 is injective and its
inverse is bounded on ran C𝜏. Also, (𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡)) is
approximately observable on [0, 𝜏] if and only if ker C𝜏 = {0}.
Lemma 11. For the linear system (𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡)) one has the
following duality:

(a) The linear system (𝐴(𝑡), −, 𝐶(𝑡)) is approximately
observable on [0, 𝜏] if and only if the dual (𝐴∗(𝑡),𝐶∗(𝑡), −) is approximately controllable on [0, 𝜏].

(b) The linear system (𝐴(𝑡), −, 𝐶(𝑡)) is exactly observable
on [0, 𝜏] if and only if the dual (𝐴∗(𝑡), 𝐶∗(𝑡), −) is
exactly controllable on [0, 𝜏].

Proof. As a consequence of Proposition 1.2 and Theorem 1.6
of [14], if 𝐴(𝑡) generates a 𝐶0-quasi-semigroup 𝑅(𝑡, 𝑠) on a
Hilbert space, then 𝐴∗(𝑡) generates the 𝐶0-quasi-semigroup𝑅∗(𝑡, 𝑠). Furthermore, we verify that

C
∗
𝜏𝑦 = ∫𝜏

0
𝑅∗ (0, 𝑠) 𝐶∗ (𝑠) 𝑦 (𝑠) 𝑑𝑠. (35)

This implies that the range ofC∗
𝜏 equals that of the controlla-

bility map for the dual system (𝐴∗(𝑡), 𝐶∗(𝑡), −). IfB𝜏 denotes
the controllability map of the dual system, then C∗

𝜏 = B𝜏 or
C𝜏 = B∗

𝜏 .
(a)We see that (𝐴(𝑡), −, 𝐶(𝑡)) is approximately observable

on [0, 𝜏] if and only if {0} = ker C𝜏 = ker B∗
𝜏 . Condition

(b) of Theorem 9 implies that kerB∗
𝜏 = {0} if and only if(𝐴∗(𝑡), 𝐶∗(𝑡), −) is approximately controllable on [0, 𝜏]. This

proves the equivalence.
(b) Suppose that (𝐴(𝑡), −, 𝐶(𝑡)) is exactly observable on[0, 𝜏]. There exists an inverse C−1

𝜏 on ran C𝜏 and a constant𝜅 > 0 such that

‖𝑥‖𝑋 = 󵄩󵄩󵄩󵄩󵄩C−1
𝜏 C𝜏𝑥󵄩󵄩󵄩󵄩󵄩 ≤ 𝜅 󵄩󵄩󵄩󵄩C𝜏𝑥󵄩󵄩󵄩󵄩 = 𝜅 󵄩󵄩󵄩󵄩B∗

𝜏
󵄩󵄩󵄩󵄩 . (36)

The exact controllability of (𝐴∗(𝑡), 𝐶∗(𝑡), −) follows from
Theorem 8.

Conversely, assume that (𝐴∗(𝑡), 𝐶∗(𝑡), −) is exactly con-
trollable on [0, 𝜏]. Theorem 8 (a) gives that B∗

𝜏 is injective
and ranB∗

𝜏 is closed. Since B∗
𝜏 = C𝜏, then C𝜏 is injective

and ranC𝜏 is closed. This states that (𝐴(𝑡), −, 𝐶(𝑡)) is exactly
observable on [0, 𝜏].

Theorems 8 and 9 and Lemma 11 yield the following
conditions for observability.

Corollary 12. For the linear system (𝐴(𝑡), −, 𝐶(𝑡)), one has
the following necessary and sufficient conditions for exact and
approximate observability:
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(a) (𝐴(𝑡), −, 𝐶(𝑡)) is exactly observable on [0, 𝜏] if and only
if any one of the following conditions holds for some 𝛾 >0 and all 𝑥 ∈ 𝑋:
(i) 𝛾‖𝐶(⋅)𝑅(0, ⋅)𝑥‖𝐿𝑞 ≥ ‖𝑥‖.
(ii) kerC𝜏 = {0} and ran C𝜏 is closed.

(b) (𝐴(𝑡), −, 𝐶(𝑡)) is approximately observable on [0, 𝜏] if
and only if any one of the following conditions holds:

(i) 𝐶(𝑠)𝑅(0, 𝑠)𝑥 = 0, 0 ≤ 𝑠 ≤ 𝜏, implies 𝑥 = 0.
(ii) kerC𝜏 = {0}.

In the infinite-dimensional system, it is generally easier
to prove the approximate controllability and approximate
observability than the exact controllability and exact observ-
ability. Next, we shall derive easily verifiable criteria for the
approximate controllability and approximate observability of
the generalized Riesz-spectral systemswith finite-rank inputs
and outputs.

Consider system (1)-(2) with finite-rank inputs and out-
puts

𝑥̇ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑚∑
𝑖=1

𝑏𝑖 (𝑡) 𝑢𝑖 (𝑡) ,
𝑡 ≥ 0, 𝑥 (0) = 𝑥0,

(37)

𝑦 (𝑡) = (⟨𝑥 (𝑡) , 𝑐1 (𝑡)⟩ , . . . , ⟨𝑥 (𝑡) , 𝑐𝑘 (𝑡)⟩)tr , (38)
where 𝐴(𝑡) is the generalized Riesz-spectral operator of (4),𝑏𝑖(𝑡) ∈ 𝑋, 𝑖 = 1, . . . , 𝑚, 𝑐𝑖(𝑡) ∈ 𝑋, 𝑖 = 1, . . . , 𝑘, and 𝑢𝑖 ∈𝐿𝑝(R+), 1 < 𝑝 < ∞. The symbol 𝑆tr denotes the transpose of
𝑆. If we set 𝑢 = (𝑢1, . . . , 𝑢𝑚) ∈ 𝑈 fl R𝑚, 𝐵(𝑡)𝑢 fl ∑𝑚

𝑖=1 𝑏𝑖(𝑡)𝑢𝑖,
then 𝑢 ∈ 𝐿𝑝(R+, 𝑈). In this case we have

𝐶 (𝑡) 𝑥 (𝑡) = (⟨𝑥 (𝑡) , 𝑐1 (𝑡)⟩ , . . . , ⟨𝑥 (𝑡) , 𝑐𝑘 (𝑡)⟩)tr . (39)
Let𝐴 be the Riesz-spectral operator with simple eigenval-

ues {𝜆𝑛 : 𝑛 ∈ N} and corresponding eigenvectors {𝜙𝑛 : 𝑛 ∈ N}.
In addition, if {𝜑𝑛 : 𝑛 ∈ N} are the eigenvectors of𝐴∗ such that⟨𝜙𝑛, 𝜑𝑚⟩ = 𝛿𝑚𝑛 and sup𝑛∈NRe(𝜆𝑛) < ∞, then according to the
condition (c) ofTheorem 3 𝐴(𝑡) is the infinitesimal generator
of a 𝐶0-quasi-semigroup 𝑅(𝑡, 𝑠) given by

𝑅 (𝑡, 𝑠) 𝑥 = ∞∑
𝑛=1

𝑒𝜆𝑛(𝑔(𝑡+𝑠)−𝑔(𝑡)) ⟨𝑥, 𝜑𝑛⟩ 𝜙𝑛, (40)

where 𝑔(𝑡) = ∫𝑡
0
𝑎(𝜉)𝑑𝜉 and 𝐴(𝑡) is the form of (4). In this

context we verify that
𝐵∗ (𝑡) 𝑥 = (⟨𝑏1 (𝑡) , 𝑥⟩𝑋 , . . . , ⟨𝑏𝑚 (𝑡) , 𝑥⟩𝑋) ,

𝑅∗ (𝑡, 𝑠) 𝑥 = ∞∑
𝑛=1

𝑒𝜆𝑛(𝑔(𝑡+𝑠)−𝑔(𝑡)) ⟨𝑥, 𝜙𝑛⟩ 𝜑𝑛. (41)

By Theorem 9, system (37) is approximately controllable on[0, 𝜏] if and only if
∞∑
𝑛=1

𝑒𝜆𝑛(𝑔(𝜏)−𝑔(𝑡)) ⟨𝑥, 𝜙𝑛⟩ ⟨𝑏𝑖 (𝑡) , 𝜑𝑛⟩ = 0,
𝑖 = 1, . . . , 𝑚, 0 ≤ 𝑡 ≤ 𝜏

(42)

implies that 𝑥 = 0.

Next, we have

𝐶 (𝑡) 𝑅 (0, 𝑡) 𝑥 = ∞∑
𝑛=1

𝑒𝜆𝑛(𝑔(𝑡)) ⟨𝑥, 𝜑𝑛⟩𝐶 (𝑡) 𝜙𝑛. (43)

In virtue of Corollary 12, system (37)-(38) is approximately
observable on [0, 𝜏] if and only if

∞∑
𝑛=1

𝑒𝜆𝑛(𝑔(𝑡)) ⟨𝑥, 𝜑𝑛⟩𝐶 (𝑡) 𝜙𝑛 = 0 (44)

implies that 𝑥 = 0.
These two facts deal with the following theorem which is

a generalization of Theorem 4.2.3 of [21] for the autonomous
case.

Theorem 13. Consider the linear system (𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡)) of
(37)-(38), where 𝐴 is a Riesz-spectral operator with simple
eigenvalues {𝜆𝑛 : 𝑛 ∈ N} such that sup𝑛∈NRe(𝜆𝑛) < ∞ and
corresponding eigenvectors {𝜙𝑛 : 𝑛 ∈ N}. Let {𝜑𝑛 : 𝑛 ∈ N} be
the eigenvectors of 𝐴∗ such that ⟨𝜙𝑛, 𝜑𝑚⟩ = 𝛿𝑚𝑛. Then

(a) (𝐴(𝑡), 𝐵(𝑡), −) is approximately controllable on [0, 𝜏] if
and only if for all 𝑛

rank (⟨𝑏1 (𝑡) , 𝜑𝑛⟩ , . . . , ⟨𝑏𝑚 (𝑡) , 𝜑𝑛⟩) = 1 (45)

for all 𝑡 ∈ [0, 𝜏];
(b) (𝐴(𝑡), −, 𝐶(𝑡)) is approximately observable on [0, 𝜏] if

and only if for all 𝑛
rank (⟨𝜙𝑛, 𝑐1 (𝑡)⟩ , . . . , ⟨𝜙𝑛, 𝑐𝑘 (𝑡)⟩) = 1 (46)

for all 𝑡 ∈ [0, 𝜏].
Proof. (a) We consider the matrix 𝐵𝑛:

𝐵𝑛 = (⟨𝑏1 (𝑡) , 𝜑𝑛⟩ , . . . , ⟨𝑏𝑚 (𝑡) , 𝜑𝑛⟩) (47)

on [0, 𝜏]. By Lemma 3.14 of [20] and (42), (𝐴(𝑡), 𝐵(𝑡), −) is
approximately controllable on [0, 𝜏] if and only if for all 𝑛

⟨𝑥, 𝜙𝑛⟩ ⟨𝑏𝑖 (𝑡) , 𝜑𝑛⟩ = 0, 𝑖 = 1, . . . , 𝑚, 0 ≤ 𝑡 ≤ 𝜏 (48)

implies 𝑥 = 0. Suppose that (𝐴(𝑡), 𝐵(𝑡), −) is not approxi-
mately controllable on [0, 𝜏], there exists an 𝑛 ∈ N such that⟨𝑥, 𝜙𝑛⟩ ̸= 0 and

⟨𝑥, 𝜙𝑛⟩ ⟨𝑏𝑖 (𝑡) , 𝜑𝑛⟩ = 0, 𝑖 = 1, . . . , 𝑚, 0 ≤ 𝑡 ≤ 𝜏. (49)

This gives ⟨𝑏𝑖(𝑡), 𝜑𝑛⟩ = 0 for all 𝑖 = 1, . . . , 𝑚 and 𝑡 ∈ [0, 𝜏],
and so rank 𝐵𝑛 ̸= 1.

Conversely, suppose that rank 𝐵𝑛0 ̸= 1 for some 𝑛0, then⟨𝑏𝑖(𝑡), 𝜙𝑛0⟩ = 0, for all 𝑖 = 1, . . . , 𝑚 and 𝑡 ∈ [0, 𝜏]. So we can
find a nonzero 𝑥 ∈ 𝑋 such that

⟨𝑥, 𝜙𝑛0⟩ ⟨𝑏𝑖 (𝑡) , 𝜑𝑛0⟩ = 0. (50)

Thus, (42) is satisfied for 𝑥 ̸= 0. This is equivalent to the fact
that (𝐴(𝑡), 𝐵(𝑡), −) is not approximately controllable on [0, 𝜏].

(b) We can have similar proof to (a) for the matrix

𝐶𝑛 = (⟨𝜙𝑛, 𝑐1 (𝑡)⟩ , . . . , ⟨𝜙𝑛, 𝑐𝑘 (𝑡)⟩) (51)

on [0, 𝜏].
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4. Nonautonomous Sturm-Liouville Systems

In this section we shall discuss nonautonomous Sturm-
Liouville systems, the specifically nonautonomous Riesz-
spectral systems. First let us recall the definition of Sturm-
Liouville operators. In the sequel, we set 𝑋 to be the Hilbert
space of 𝐿2[𝑎, 𝑏]. Consider an operatorA on its domain

D (A) = {𝑥

∈ 𝑋 : 𝑥, 𝑑𝑥𝑑𝜉 are absolutely continuous, 𝑑2𝑥𝑑𝜉2
∈ 𝑋, 𝑎1 𝑑𝑥𝑑𝜉 (𝑎) + 𝑎2𝑥 (𝑎) = 0, 𝑏1 𝑑𝑥𝑑𝜉 (𝑏) + 𝑏2𝑥 (𝑏)

= 0} ,

(52)

where (𝑎1, 𝑎2) ̸= (0, 0) and (𝑏1, 𝑏2) ̸= (0, 0). Operator A is
called a Sturm-Liouville operator if

A𝑥 fl
1

𝑤 (𝜉) (−
𝑑
𝑑𝜉 (𝑝 (𝜉)

𝑑𝑥
𝑑𝜉 (𝜉)) + 𝑞 (𝜉) 𝑥 (𝜉)) , (53)

for 𝑥 ∈ D(A), where 𝑤, 𝑝, 𝑞, and 𝑑𝑝/𝑑𝜉 are real-valued
continuous functions on [𝑎, 𝑏] such that 𝑝(𝜉) > 0 and 𝑤(𝜉) >0.

Since 𝑎 and 𝑏 are finite, the definition only corresponds to
regular Sturm-Liouville problems. We verify thatA is a self-
adjoint operator with real, countable, and simple eigenvalues𝜆𝑛 such that 0 < 𝜆1 < 𝜆2 < ⋅ ⋅ ⋅ (see [25, 26]).

We define a nonautonomous Sturm-Liouville operator to
be an operator of form (4):

𝐴 (𝑡) = 𝑎 (𝑡)A, 𝑡 ≥ 0, (54)

where A is a Sturm-Liouville operator on its domain D(A)
given by (52).

Definition 14. The state linear system (𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡)) of (1)-
(2) is called a nonautonomous Sturm-Liouville system if𝐴(𝑡)
is the negative of a nonautonomous Sturm-Liouville operator
of form (54).

Corollary 15. For every 𝑡 ≥ 0, let 𝐴(𝑡) be the negative of a
nonautonomous Sturm-Liouville operator of the form (54) on
its domainD(𝐴) given by (52). Then

(a) 𝐴(𝑡) is generalized Riesz-spectral operator;
(b) 𝐴(𝑡) is the infinitesimal generator of a 𝐶0-quasi-

semigroup on𝑋.
Proof. (a) Lemma 1 of [27] gives the fact that 𝐴(𝑡) is
generalized Riesz-spectral operator.

(b) If {𝜆𝑛 : 𝑛 ∈ N} is the set of eigenvalues of −A, then
sup𝑛∈NRe(𝜆𝑛) < ∞. Hence, Theorem 3 concludes that, for
every 𝑡 ≥ 0, 𝐴(𝑡) is the infinitesimal generator of a 𝐶0-quasi-
semigroup on𝑋.

We note that Corollary 15 does not hold when 𝐴(𝑡) is
a nonautonomous Sturm-Liouville operator. Indeed, 𝐴(𝑡) =−𝑎(𝑡)(𝑑2/𝑑𝜉2) is a nonautonomous Sturm-Liouville opera-
tor, but it does not generate any 𝐶0-quasi-semigroup (see
Section 3 [14]). Corollary 15 also concludes that any nonau-
tonomous Sturm-Liouville system is the nonautonomous
Riesz-spectral system. Therefore, all of the results of the
controllability and observability in the previous section are
applicable on the nonautonomous Sturm-Liouville systems.

5. Applications

In this section, we consider two examples of applications to
confirm the results of the generalized Riesz-spectral operator
in the nonautonomous systems.

Example 1. Consider the boundary condition problem of the
PDE:

𝜕𝑥
𝜕𝑡 (𝑡, 𝜉) =

𝜉2
𝑡 + 1

𝜕2𝑥
𝜕𝜉2 (𝑡, 𝜉) +

𝜉
𝑡 + 1

𝜕𝑥
𝜕𝜉 (𝑡, 𝜉) ,
1 < 𝜉 < 𝑏, 𝑡 ≥ 0

𝑥 (𝑡, 1) = 𝑥 (𝑡, 𝑏) = 0, 1 < 𝑏 < ∞.
(55)

We are ready to show that the problem has a unique
solution. Let 𝑋 be a Hilbert space of 𝐿2[1, 𝑏]. Problem (55)
can be written as

𝑥̇ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) , 𝑡 ≥ 0, (56)

on𝑋, where 𝐴(𝑡) fl 𝑎(𝑡)𝐴, 𝑎(𝑡) = 1/(𝑡 + 1), and
𝐴𝑥 (𝜉) fl 𝜉2 𝑑2𝑥𝑑𝜉2 + 𝜉

𝑑𝑥
𝑑𝜉 (57)

onD with

D = {𝑥

∈ 𝑋 : 𝑥, 𝑑𝑥
𝑑𝜉 are absolutely continuous, 𝑑2𝑥𝑑𝜉2

∈ 𝑋, 𝑥 (1) = 𝑥 (𝑏) = 0} .

(58)

We verify that operator 𝐴 is not self-adjoint on D.
Furthermore, we obtain the eigenvalues and corresponding
eigenvectors of 𝐴 as

𝜆𝑛 = −(𝑛2𝜋2
log 𝑏) ,

𝜙𝑛 (𝜉) = √2 sin (𝑛𝜋 log 𝜉)
for 1 ≤ 𝜉 ≤ 𝑏,

(59)

respectively. It is obvious that every eigenvalue 𝜆𝑛 is simple
and the set {𝜙𝑛 : 𝑛 ∈ N} forms Riesz basis of 𝑋.
Moreover, {𝜆𝑛, 𝑛 ∈ N} is totally disconnected, that is, for 𝑐, 𝑑 ∈
{𝜆𝑛, 𝑛 ∈ N}, [𝑐, 𝑑] ̸⊆ {𝜆𝑛, 𝑛 ∈ N}.
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The adjoint of 𝐴 is

𝐴∗𝑥 (𝜉) fl 𝜉2 𝑑2𝑥𝑑𝜉2 + 3𝜉
𝑑𝑥
𝑑𝜉 + 𝑥 (𝜉) (60)

on D(𝐴∗) = D(𝐴). The eigenvalues and corresponding
eigenvectors of 𝐴∗ are

𝜇𝑛 = −(𝑛2𝜋2
log 𝑏) ,

𝜓𝑛 (𝜉) = √2𝜉−1 sin (𝑛𝜋 log 𝜉)
(61)

for all 1 ≤ 𝜉 ≤ 𝑏, 𝑛 ∈ N, and satisfy

⟨𝜙𝑚, 𝜓𝑛⟩ = 𝛿𝑚𝑛 ∀𝑚, 𝑛 ∈ N. (62)

Next, since the adjoint of any operator is always closed,
then 𝐴∗ is closed. But in this case we have 𝐴 = (𝐴∗)∗, so 𝐴
is closed.Thus,𝐴 is a Riesz-spectral operator. In other words,𝐴(𝑡), 𝑡 ≥ 0, is a generalized Riesz-spectral operator.

Since sup𝑛∈NRe(𝜆𝑛) = −(𝜋2/ log 𝑏) < ∞, condition (c) of
Theorem 3 forces that 𝐴(𝑡) is the infinitesimal generator of a𝐶0-quasi-semigroup 𝑅(𝑡, 𝑠) given by

𝑅 (𝑡, 𝑠) 𝑥 = ∞∑
𝑛=1

(𝑡 + 𝑠 + 1𝑡 + 1 )𝜆𝑛 ⟨𝑥, 𝜓𝑛⟩ 𝜙𝑛. (63)

Corollary 4 guarantees that for each 𝑥0 ∈ D problem (56)
admits a unique solution

𝑥 (𝑡) = 𝑅 (0, 𝑡) 𝑥0, 𝑥 (0) = 𝑥0. (64)

Thus, boundary condition problem (55) has a solution

𝑥 (𝑡, 𝜉) = ∞∑
𝑛=1

(𝑡 + 1)𝜆𝑛 ⟨𝑥0, 𝜓𝑛⟩ 𝜙𝑛. (65)

Example 2. Consider the controlled wave equation

𝜕2𝑥
𝜕𝑡2 (𝑡, 𝜉) =

𝜕2𝑥
𝜕𝜉2 (𝑡, 𝜉) + 𝑏 (𝑡) 𝑢 (𝑡, 𝜉) ,

0 < 𝜉 < 1, 𝑡 ≥ 0
𝑥 (𝑡, 0) = 𝑥 (𝑡, 1) = 0,

(66)

where 𝑏 : R+ → R is bounded uniformly continuous and𝑢(𝑡, ⋅) ∈ 𝐿2[0, 1] is a distributed control.
We shall analyze the approximate controllability and

approximate observability of the system. Problem (66) can be
formulated as a linear system:

𝑤̇ (𝑡) = 𝐴 (𝑡) 𝑤 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡) , 𝑡 ≥ 0, (67)

on the Hilbert space 𝑋 = D(𝐴1/2
0 ) ⊕ 𝐿2[0, 1] with the inner

product

⟨V, 𝑦⟩𝑋 = ⟨𝐴1/2
0 V1, 𝐴1/2

0 𝑦1⟩𝐿2[0,1] + ⟨V2, 𝑦2⟩𝐿2[0,1] , (68)

where V = ( V1V2 ) and 𝑦 = ( 𝑦1𝑦2 ) . In this context𝐴(𝑡) = ( 0 𝐼
−𝐴0 0

),
𝐵(𝑡) = ( 0

𝑏(𝑡) ), 𝑤 = ( 𝑥
𝑑𝑥/𝑑𝑡 ), and 𝐴0ℎ = −𝑑2ℎ/𝑑𝜉2 for ℎ ∈

D(𝐴0) with
D (𝐴0) = {ℎ

∈ 𝐿2 [0, 1] : ℎ, 𝑑ℎ
𝑑𝜉 are absolutely continuous 𝑑2ℎ𝑑𝜉2

∈ 𝐿2 [0, 1] , ℎ (0) = ℎ (1) = 0} .

(69)

We verify that 𝐴(𝑡) has the eigenvalues 𝜆𝑛 = 𝑖𝑛𝜋, 𝑛 =±1, ±2, . . . and the corresponding Riesz basis of eigenvectors
𝜙𝑛(𝜉) = (1/𝑖𝑛𝜋) ( sin(𝑛𝜋𝜉)

𝑖𝑛𝜋 sin(𝑛𝜋𝜉) ), where 𝑖 = √−1. We see that
𝜙𝑛(𝜉) = 𝜓𝑛(𝜉) for every 𝑛. Moreover, Example 2.3.8 of [21]
shows that𝐴(𝑡) is a Riesz-spectral operator on𝑋. Hence,𝐴(𝑡)
is the generalized Riesz-spectral operator generating a 𝐶0-
quasi-semigroup 𝑅(𝑡, 𝑠).

We assume that the system is controlled around the point𝜉𝑐. So, we may set

𝑢 (𝑡, 𝜉) = 𝑢 (𝑡) 12𝜖𝜒[𝜉𝑐−𝜖,𝜉𝑐+𝜖] (𝜉) , (70)

where 𝜒 is an indicator function. Theorem 13 shows that
system (67) is approximately controllable on [0, 𝜏] if and only
if

∫1

0
𝑏 (𝑡) sin (𝑛𝜋𝜉) 𝑑𝜉 = 𝑏 (𝑡)

𝑛𝜋𝜖 sin (𝑛𝜋𝜉𝑐) sin (𝑛𝜋𝜖) ̸= 0
for 𝑛 ≥ 1.

(71)

Equation (71) demonstrates that the control points 𝜉𝑐 for
which sin(𝑛𝜋𝜉𝑐) = 0 affect the loss of approximate control-
lability.This is also the case when 𝑏(𝑡) = 0, that is, at the zeros
of 𝑏 on interval [0, 𝜏].

Next, consider the observation

𝑦 (𝑡) = ∫1

0
𝑐 (𝑡, 𝜉) 𝑥 (𝑡, 𝜉) 𝑑𝜉, (72)

where 𝑐(𝑡, 𝜉) = (1/2])𝑐(𝑡)𝜒[𝜉𝑠−],𝜉𝑠+]](𝜉) is an output function
around the sensing point 𝜉𝑠. Following Example 4.2.5 of [21]
we can reformulate the observation map as an inner product
on𝑋:
𝐶 (𝑡) (V1

V2
) fl ∫1

0
𝑐 (𝑡, 𝜉) V1 (𝜉) 𝑑𝜉 = ⟨V1, 𝑐 (𝑡, 𝜉)⟩𝐿2[0,1]

= ⟨(V1
V2
) ,(𝑐 (𝑡) 𝑘0 )⟩

𝑋

,

where 𝑘 = 𝐴−1
0

1
2]𝜒[𝜉𝑠−],𝜉𝑠+]].

(73)

Condition (b) ofTheorem 13 gives the fact that (𝐴(𝑡), −, 𝐶(𝑡))
is approximately observable on [0, 𝜏] if and only if for all 𝑛

⟨𝜙𝑛, (𝑐 (𝑡) 𝑘0 )⟩
𝑋

̸= 0. (74)
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We verify that

⟨𝜙𝑛, (𝑐 (𝑡) 𝑘0 )⟩
𝑋

= 1
𝑖𝑛𝜋 ⟨sin (𝑛𝜋⋅) , 𝑐 (𝑡)2] 𝜒[𝜉𝑠−],𝜉𝑠+]] (⋅)⟩

𝐿2[0,1]
.

(75)

Therefore, the system is approximately observable on [0, 𝜏] if
and only if for all 𝑛

𝑐 (𝑡) ∫𝜉𝑠+]

𝜉𝑠−]
sin (𝑛𝜋𝜉) 𝑑𝜉 = 𝑐 (𝑡)

𝑛𝜋] sin (𝑛𝜋𝜉𝑠) sin (𝑛𝜋])
̸= 0.

(76)

This shows that the system loses the approximate observ-
ability at points for which sin(𝑛𝜋𝜉𝑠) = 0 for some 𝑛 or𝑐(𝑡) = 0. Specially, for 𝑐(𝑡) = sin(𝑓𝑠(𝑡)𝜋), where 𝑓𝑠(𝑡) is the
sampling frequency, then the system loses the approximate
observability at sampling frequencies of 𝑓𝑠 = 𝑘, for 𝑘 =0, 1, 2, . . . discrete measurement.

Example 3. Consider the controlled nonautonomous heat
equation on interval [1, 𝑏]:
𝜕𝑥
𝜕𝑡 (𝑡, 𝜉) = 𝑎 (𝑡) 𝜕

𝜕𝜉 (𝜉2
𝜕𝑥
𝜕𝜉 (𝑡, 𝜉)) + 𝛽 (𝑡) 𝑢 (𝑡, 𝜉) ,

𝑡 ≥ 0
𝑥 (𝑡, 1) = 𝑥 (𝑡, 𝑏) = 0,

(77)

where 𝑎, 𝛽 : R+ → R are bounded uniformly continuous and𝑢(𝑡, ⋅) ∈ 𝐿2[1, 𝑏] is a distributed control.
We shall analyze the approximate controllability and

approximate observability of the system. Let 𝑋 be a Hilbert
space of 𝐿2[1, 𝑏]. System (77) can be formulated as a nonau-
tonomous Sturm-Liouville system

𝑥̇ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡) , 𝑡 ≥ 0, (78)

on𝑋, where𝐴(𝑡) fl −𝑎(𝑡)A, 𝐵(𝑡) fl 𝛽(𝑡)𝐼, andA is a Sturm-
Liouville operator (53) with𝑤(𝜉) = 1, 𝑝(𝜉) = 𝜉2, and 𝑞(𝜉) = 0
on its domainD:

D = {𝑥

∈ 𝑋 : 𝑥, 𝑑𝑥
𝑑𝜉 are absolutely continuous, 𝑑2𝑥𝑑𝜉2

∈ 𝑋, 𝑥 (1) = 𝑥 (𝑏) = 0} .

(79)

The eigenvalues and corresponding eigenvectors of −A are

𝜆𝑛 = −(𝑛2𝜋2 + 14 log 𝑏 ) ,
𝜙𝑛 (𝜉) = √2𝜉−1/2 sin (𝑛𝜋 log 𝜉) ,

(80)

for 1 ≤ 𝜉 ≤ 𝑏, respectively. Moreover,𝐴(𝑡) is the infinitesimal
generator of a 𝐶0-quasi-semigroup 𝑅(𝑡, 𝑠) given by

𝑅 (𝑡, 𝑠) 𝑥 = ∞∑
𝑛=1

(𝑡 + 𝑠 + 1𝑡 + 1 )𝜆𝑛 ⟨𝑥, 𝜙𝑛⟩ 𝜙𝑛. (81)

As the previous example, we assume that the system is
controlled around the point 𝜉𝑐 and

𝑢 (𝑡, 𝜉) = 𝑢 (𝑡) 12𝜖𝜒[𝜉𝑐−𝜖,𝜉𝑐+𝜖] (𝜉) . (82)

Condition (a) of Theorem 13 shows that system (78) is
approximately controllable on [0, 𝜏] if and only if, for all 𝑛 ≥1,

𝛽 (𝑡) ∫𝜉𝑐+𝜖

𝜉𝑐−𝜖
𝜉−1/2 sin (𝑛𝜋 log 𝜉) 𝑑𝜉 ̸= 0. (83)

Equation (83) confirms that the zeros of 𝑏 on interval [0, 𝜏]
affect the loss of approximate controllability.

Next, we locate the measurement 𝑦(𝑡) at the system
output with the point measurement:

𝑦 (𝑡) = 𝑐 (𝑡) 1𝜖 ∫
𝑏

𝑏−𝜖
𝑥 (𝑡, 𝜉) 𝑑𝜉, (84)

where 𝑐(𝑡) is a continuous function. Condition (b) of Theo-
rem 13 implies that the system is approximately observable on[0, 𝜏] if and only if, for all 𝑛 ≥ 1,

𝑐 (𝑡) ∫𝑏

𝑏−𝜖
𝜉−1/2 sin (𝑛𝜋 log 𝜉) 𝑑𝜉 ̸= 0, (85)

for some 𝜖 > 0. TheMean ValueTheorem for integral implies
that (85) is equivalent to

𝜖𝑐 (𝑡) 𝜉−1/2𝑛 sin (𝑛𝜋 log 𝜉𝑛) ̸= 0, (86)

for some 𝜉𝑛 ∈ (𝑏 − 𝜖, 𝑏).
Remark 4. In this example we consider the nonautonomous
regular Sturm-Liouville problemwith theDirichlet boundary
condition. Actually, we can verify that all the results remain
valid for which the problem has theNeumann boundary con-
dition. Even, the nonautonomous singular Sturm-Liouville
problems can be applied for the results. However, the periodic
cases do not hold for the theory due to not simpleness of the
related eigenvalues.
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