
Research Article
Adomian Decomposition Method with Modified
Bernstein Polynomials for Solving Ordinary and Partial
Differential Equations

Ahmed Farooq Qasim and Ekhlass S. AL-Rawi

College of Computer Sciences and Mathematics, University of Mosul, Iraq

Correspondence should be addressed to Ahmed Farooq Qasim; ahmednumerical@yahoo.com

Received 7 July 2018; Accepted 24 September 2018; Published 11 October 2018

Academic Editor: Jafar Biazar

Copyright © 2018 Ahmed Farooq Qasim and Ekhlass S. AL-Rawi. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

In this paper, we used Bernstein polynomials to modify the Adomian decomposition method which can be used to solve linear
and nonlinear equations. This scheme is tested for four examples from ordinary and partial differential equations; furthermore,
the obtained results demonstrate reliability and activity of the proposed technique. This strategy gives a precise and productive
system in comparison with other traditional techniques and the arrangements methodology is extremely straightforward and few
emphasis prompts high exact solution. The numerical outcomes showed that the acquired estimated solutions were in appropriate
concurrence with the correct solution.

1. Introduction

Adomian decomposition technique was established by
George Adomian and has as of late turned into an extremely
recognized strategy in connected sciences. The technique
does not require any diminutiveness presumptions or lin-
earization to solve the ordinary and partial differential
equations and this produces the strategy extremely effective
among alternate strategies. Recently, many iteration tech-
niques have been used for solving nonlinear equations from
ordinary, partial, and fractional equations [1], like variational
iteration method and differential transform method [2],
homotopy perturbation, and analysismethods [3]. Numerous
works have been tested in various different regions, for
example, warmth or mass exchange, incompressible fluid,
nonlinear optics and gas elements wonders [4, 5], frac-
tional Maxwell fluid [6, 7], and the Oldroyd-B fluid model
[8].

The approximation used polynomials extremely impor-
tant in scientific experiments where many rely on topics
such as the study of statistics different population and the
temperatures and others on the approximation theory. In
addition, many experiments rely mainly on the approximate
measurements and observations to be studied and processed

by the appropriate scientific methods in order to reach the
results expected from the study.

The Adomian decomposition technique is improved via
Chebyshev polynomials in [9, 10], with Legendre polynomials
[11] and with Laguerre polynomials [12].

This paper is organized as follows. In Section 2, the basic
ideas of the modified Bernstein polynomials are described.
Section 3 is devoted to solving a nonlinear differential
equations using Adomian decomposition method based on
modified Bernstein polynomials, the results and comparisons
of the numerical solutions are presented in Section 4, and
concluding remarks are given in Section 5.

2. The Modified Bernstein Polynomials

Polynomials are the mathematical technique as these can
be characterized, figured, separated, and incorporated effort-
lessly. The Bernstein premise polynomials are trying to
inexact the capacities. Bernstein polynomials are the better
guess to a capacity with a couple of terms. These polynomials
are utilized as a part of the fields of connected arithmetic and
material science and PC helped geometric outlines and are
likewise joined with different techniques like Galerkin and
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collocation technique to solve some differential and integral
equations [13].

Definition 1 (Bernstein basis polynomials). The Bernstein
basis polynomials of degree m over the interval [0, 1] are
defined by

𝐵𝑖,𝑚 (𝑥) = (𝑚𝑖 )𝑥𝑖 (1 − 𝑥)𝑚−𝑖 (1)

where the binomial coefficient is

(𝑚𝑖 ) = 𝑚!𝑖! (𝑚 − 𝑖)! (2)

For example, when m=5, then the Bernstein terms are

𝐵0,5 (𝑥) = (1 − 𝑥)5
𝐵1,5 (𝑥) = 5𝑥 (1 − 𝑥)4
𝐵2,5 (𝑥) = 10𝑥2 (1 − 𝑥)3
𝐵3,5 (𝑥) = 10𝑥3 (1 − 𝑥)2
𝐵4,5 (𝑥) = 5𝑥4 (1 − 𝑥)
𝐵5,5 (𝑥) = 𝑥5

(3)

Definition 2 (Bernstein polynomials). A linear combination
of Bernstein basis polynomials

𝐵𝑚 (𝑥) = 𝑚∑
𝑖=0

𝐵𝑖,𝑚 (𝑥) 𝛽𝑖 (4)

is called the Bernstein polynomials of degree m, where 𝛽𝑖 are
the Bernstein coefficients.

Definition 3. Let 𝑓 be a real valued function defined and
bounded on [0, 1]; let 𝐵𝑚(𝑓) be the polynomial on [0, 1],
defined by

𝐵𝑚 (𝑓) = 𝑚∑
𝑖=0

(𝑚𝑖 )𝑥𝑖 (1 − 𝑥)𝑚−𝑖 𝑓( 𝑖𝑚) (5)

where 𝐵𝑚(𝑓) is the m-th Bernstein polynomials for 𝑓(𝑥).
For each function 𝑓 : [0, 1] 󳨀→ 𝑅, we have

lim
𝑚󳨀→∞

𝐵𝑓𝑚 (𝑥) = 𝑓 (𝑥) (6)

Example. If 𝑓(𝑥) = 𝑒𝑥, 𝑥 ∈ [0, 1] then the Bernstein
expanded for the function 𝑓(𝑥) when m=5 is

𝐵𝑚 (𝑓) = 𝑓 (0) (1 − 𝑥)5 + 𝑓(15) 5𝑥 (1 − 𝑥)4
+ 𝑓(25) 10𝑥2 (1 − 𝑥)3
+ 𝑓(35) 10𝑥3 (1 − 𝑥)2
+ 𝑓(45) 5𝑥4 (1 − 𝑥) + 𝑓 (1) 𝑥5

𝐵𝑚 (𝑓) = 𝑒0 (1 − 𝑥)5 + 5𝑒1/5𝑥 (1 − 𝑥)4
+ 10𝑒2/5𝑥2 (1 − 𝑥)3 + 10𝑒3/5𝑥3 (1 − 𝑥)2
+ 5𝑒4/5𝑥4 (1 − 𝑥) + 𝑒1𝑥5

(7)

In (1986) [14] Lorentz, prove that if the 2k-th order derivative𝑓2𝑘(𝑥) is bounded in the interval (0,1) then for each 𝑥 ∈ [0, 1]
𝐵𝑓𝑚 (𝑥) = 𝑓 (𝑥) + 2𝑘−1∑

𝑎=2

𝑓(𝑎) (𝑥)𝑎!𝑚𝑎 𝑇𝑚,𝑎 (𝑥) + 𝑂( 1𝑚𝑘 ) (8)

where

𝑇𝑚,𝑎 (𝑥) = ∑
𝑘

(𝑘 − 𝑚𝑥)𝑎 (𝑚𝑘)𝑥𝑘 (1 − 𝑥)𝑚−𝑘 (9)

Remark (see [15]). Notice that 𝑇𝑚,𝑎(𝑥) is the a-th central
moment of a random variable with a binomial appropriation
with parameters 𝑚 and 𝑥. Clearly, 𝑇𝑚,0 = 1, 𝑇𝑚,1 = 0. It is
well known that the sequence {𝑇𝑚,𝑎(𝑥)} satisfies the following
recurrence:

𝑇𝑚,𝑎+1 (𝑥) = 𝑥 (1 − 𝑥) (𝑇󸀠𝑚,𝑎 (𝑥) + 𝑚𝑎𝑇𝑚,𝑎−1 (𝑥)) (10)

If we apply (8) to k = 1; 2; 3, then we obtain

𝐵𝑓𝑚 (𝑥) = 𝑓 (𝑥) + 𝑂( 1𝑚)
𝐵𝑓𝑚 (𝑥) = 𝑓 (𝑥) + 𝑥 (1 − 𝑥) 𝑓󸀠󸀠 (𝑥)2𝑚 + 𝑂( 1𝑚2)
𝐵𝑓𝑚 (𝑥) = 𝑓 (𝑥) + 𝑥 (1 − 𝑥) 𝑓󸀠󸀠 (𝑥)2𝑚

+ 𝑥 (1 − 𝑥) (4 (1 − 2𝑥) 𝑓(3) (𝑥) + 3𝑥 (1 − 𝑥) 𝑓(4) (𝑥))
24𝑚2

+ 𝑂( 1𝑚3)

(11)

and higher level approximations can be computed.

3. ADM Based on Modified
Bernstein Polynomials

Let us consider the following equation:

𝐿𝑢 + 𝑁𝑢 + 𝑅𝑢 = 𝑔 (𝑥) (12)

where 𝐿 is an invertible linear term, 𝑁 represents the
nonlinear term, and 𝑅 is the remaining linear part; from (12)
we have

𝐿𝑢 = 𝑔 (𝑥) − 𝑁𝑢 − 𝑅𝑢. (13)

Now, applying the inverse factor𝐿−1 to both sides of (13) then
via the initial conditions we find

𝑢 = 𝑓 (𝑥) − 𝐿−1𝑁𝑢 − 𝐿−1𝑅𝑢, (14)
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where 𝐿−1 = ∫𝑥
0
(.) ds and 𝑓(𝑥) are the terms having from

integrating the rest of the term g (x) and from utilizing the
given initial or boundary conditions. The ADM assumes that
N(u) (nonlinear term) can be decomposed by an infinite
series of polynomials which is expressed in form

𝑁(𝑢) = ∞∑
𝑛=0

𝐴𝑛 (𝑢𝑜, 𝑢1, . . . , 𝑢𝑛) (15)

where 𝐴n are the Adomian’s polynomials [16] defined as

𝐴𝑛 = 1𝑛! 𝑑𝑛𝑑𝜆n [𝑁(∞∑
𝑖=0

𝜆iui)]
𝜆=0

, n = 0, 1, 2, . . . (16)

We expand the function 𝑔(𝑥) by Bernstein series

𝑔 (𝑥) = 𝑚∑
𝑖=0

𝑎𝑖𝐵𝑖 (𝑥) (17)

where 𝐵𝑖(𝑥) is the Bernstein polynomials.
Now, using (14) and (17) we have

𝑢0 = 𝐿−1 (𝑎0𝐵0 (𝑥) + 𝑎1𝐵1 (𝑥) + 𝑎2𝐵2 (𝑥)
+ ⋅ ⋅ ⋅ .𝑎𝑚𝐵𝑚 (𝑥)) + 𝜃 (𝑥) ,

𝑢1 = −𝐿−1 (𝑅𝑢0) − 𝐿−1 (𝑁𝑢0) ,
𝑢2 = −𝐿−1 (𝑅𝑢1) − 𝐿−1 (𝑁𝑢1) ,

...

(18)

and so on.These formulas are easy to compute by usingMaple
13 software.

In this paper, we improve the function 𝑔(𝑥) using modi-
fied Bernstein series

𝑔 (𝑥) = 𝑚∑
𝑖=0

(𝑚𝑖 )𝑥𝑖 (1 − 𝑥)𝑚−𝑖 𝑓( 𝑖𝑚)

− 2𝑘−1∑
𝑎=2

𝑓(𝑎) (𝑥)𝑎!𝑚𝑎 𝑇𝑚,𝑎 (𝑥)
(19)

And we can approach the derivatives using the Bernstein
polynomials

𝑑𝑑𝑥𝐵𝑖,𝑚 (𝑥) = 𝑚 (𝐵𝑖−1,𝑚−1 (𝑥) − 𝐵𝑖,𝑚−1 (𝑥)) , (20)

Then (19) becomes

𝑔 (𝑥) = 𝑚∑
𝑖=0

(𝑚𝑖 )𝑥𝑖 (1 − 𝑥)𝑚−𝑖 𝑓( 𝑖𝑚)

− 2𝑘−1∑
𝑎=2

(𝑑(𝑎)/𝑑𝑥(𝑎)) 𝐵𝑖,𝑚 (𝑥)𝑎!𝑚𝑎 𝑇𝑚,𝑎 (𝑥)
(21)

Now, using (18) and (21) we have

𝑢0 = 𝐿−1 (𝐵𝑖,𝑚 (𝑥)) + 𝜃 (𝑥) ,
𝑢1 = −𝐿−1 (𝑅𝑢0) − 𝐿−1 (𝑁𝑢0) ,
𝑢2 = −𝐿−1 (𝑅𝑢1) − 𝐿−1 (𝑁𝑢1) ,

...

(22)

The above equation is governing equation of ADM using
modified Bernstein polynomials. The obtained approximate
solution, 𝜔𝑉(𝑥) = ∑𝑉𝑖=0 𝑢𝑖, by (22) has a comparison with the
classic approximation solution and the correct solution.

4. Numerical Results

In this section, we solve ordinary and partial differential
equations by ADM based on Bernstein polynomials and we
compare with ADM based on classical Bernstein polynomial.

Example 1. Consider the ordinary equation

𝑑2𝑦
𝑑𝑡2 + 𝑡𝑑𝑦𝑑𝑡 + 𝑡2𝑦3 = (2 + 6𝑡2) 𝑒𝑡2 + 𝑡2𝑒3𝑡2 ,

𝑦 (0) = 1,
𝑑𝑦𝑑𝑡 (0) = 0,

(23)

with the exact solution (𝑡) = 𝑒𝑡2 . Using (12) we have
𝐿𝑦 + 𝑁𝑦 + 𝑅𝑦 = 𝑔 (𝑥) (24)

where 𝐿 = 𝑑2/𝑑𝑡2, 𝑅𝑦 = 𝑡(𝑑/𝑑𝑡), 𝑁𝑦 = 𝑡2𝑦3, and 𝑔(𝑡) = (2 +
6𝑡2)𝑒𝑡2 + 𝑡2𝑒3𝑡2 .

The Adomian polynomials for representing the nonlinear
term Ny are

𝐴0 = 𝑡2𝑦30 ,
𝐴1 = 𝑡2 (3𝑦20𝑦1) ,

𝐴2 = 𝑡2 (3𝑦20𝑦2 + 3𝑦0𝑦21) ,
...

(25)

Now 𝐿−1 = ∫𝑡
0
∫𝑡
0
(.)𝑑𝑡 𝑑𝑡; then using (5) the classical Bernstein

polynomials of 𝑔(𝑡) when v=m=6 are

𝑔𝑏 (𝑡) = 2 + 1.547324𝑡 + 9.290164𝑡2 + 7.83289𝑡3
+ 9.751887𝑡4 + 7.659668𝑡5 + 3.749864𝑡6 (26)

Andmodified Bernstein polynomials (21) of 𝑔(𝑡)with k=2 are
𝑔𝑚𝑏 (𝑡) = 2 − 0.001037𝑡 + 6.922082𝑡2 + 1.997441𝑡3

+ 6.737662𝑡4 + 11.051121𝑡5 + 13.124523𝑡6 (27)
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Table 1: Comparison of absolute errors using 𝑦6 when m=v=6 and k=2.

𝑡 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑏󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑚𝑏󵄨󵄨󵄨󵄨
0 0 0
0.01 2.580000 E-7 2.000000 E-9
0.02 2.068000 E-6 2.900000 E-8
0.03 6.992000 E-6 1.420000 E-7
0.04 1.660300 E-5 4.450000 E-7
0.05 3.249600 E-5 1.074000 E-6
0.06 5.629000 E-5 2.207000 E-6
0.07 8.962800 E-5 4.057000 E-6
0.08 1.341850 E-4 6.872000 E-6
0.09 1.916690 E-4 1.093000 E-5
0.1 2.638350 E-4 1.654900 E-5
MSE 1.369383957 E-8 4.632475500 E-11
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Figure 1: The absolute error between ADM with modified Bernstein polynomials and the exact solution when m=v=6 and k=2.

By (22), we have

𝑦0 = 𝐿−1 (𝑔𝑚𝑏 (𝑡)) + 𝑦 (0) + 𝑑𝑦𝑑𝑡 (0) 𝑡 = 1 + 𝑡2
− 0.000173𝑡3 + 0.57684𝑡4 + 0.099872𝑡5
+ 0.224589𝑡6 + 0.263122𝑡7 + 0.234367𝑡8,

𝑦1 = −𝐿−1 (𝑡 𝑑𝑑𝑡𝑦0) − 𝐿−1 (𝐴0) = −0.25𝑡4
+ 0.000026𝑡5 − 0.176912𝑡6 − 0.011877𝑡7 + ⋅ ⋅ ⋅ ,

𝑦2 = −𝐿−1 (𝑡 𝑑𝑑𝑡𝑦1) − 𝐿−1 (𝐴1) = 0.033333𝑡6

− 0.000003𝑡7 + 0.032348𝑡8 + 0.011536𝑡9 + ⋅ ⋅ ⋅ ,
...

(28)

And we obtain

𝑦𝑚𝑏 (𝑡) = 6∑
𝑖=0

𝑦𝑖
= 1 + 𝑡2 − 0.000173𝑡3 + 0.32684𝑡4 + ⋅ ⋅ ⋅ .

(29)

The absolute error of 𝑦𝑚𝑏(𝑡) and 𝑦𝑏(𝑡) is presented in Table 1
and Figure 1.

Figure 1 presents the absolute error of ADM with Bern-
stein polynomial in (a) and ADM with modified Bernstein
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Table 2: Comparison of absolute errors using 𝑦10 when m=16, v=4, and k=2.

𝑡 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑏󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑚𝑏󵄨󵄨󵄨󵄨
0 0 0
0.1 2.061126 E-6 3.074560 E-7
0.2 1.145239 E-5 1.058636 E-5
0.3 1.315732 E-5 5.114716 E-5
0.4 2.165603 E-4 1.331415 E-4
0.5 8.646500 E-4 2.420463 E-4
0.6 2.311555 E-3 3.299021 E-4
0.7 4.905204 E-3 3.231831 E-4
0.8 8.829753 E-3 1.540876 E-4
0.9 1.391114 E-2 1.870564 E-4
1 1.946226 E-2 6.088701 E-4
MSE 6.804632 E-5 7.217798344 E-8

polynomial in (b) at m=v=6 and k=2. The absolute errors
generated using the ADM with Bernstein polynomial are
of 10−4 while the errors yielded from ADM with modified
Bernstein polynomial are of 10−5.
Example 2. Consider the ordinary equation

𝑑2𝑦
𝑑𝑡2 + 𝑦𝑑𝑦𝑑𝑡 = 𝑡 sin (2𝑡2) − 4𝑡2 sin (𝑡2) + 2 cos (𝑡2) ,

0 ≤ 𝑡 ≤ 1,
𝑦 (0) = 0,

𝑑𝑦𝑑𝑡 (0) = 0,

(30)

with the exact solution (𝑡) = sin(𝑡2).
Here, 𝐿 = 𝑑2/𝑑𝑡2,𝑁𝑦 = 𝑦(𝑑𝑦/𝑑𝑡), and 𝑔(𝑡) = 𝑡 sin(2𝑡2) −4𝑡2 sin(𝑡2) + 2 cos(𝑡2).
The Adomian polynomials for represent the nonlinear

term Nu are

𝐴0 = 𝑦0 𝑑𝑑𝑡𝑦0,
𝐴1 = 𝑦1 𝑑𝑑𝑡𝑦0 + 𝑦0 𝑑𝑑𝑡𝑦1,

𝐴2 = 𝑦2 𝑑𝑑𝑡𝑦0 + 𝑦1 𝑑𝑑𝑡𝑦1 + 𝑦0 𝑑𝑑𝑡𝑦1,
...

(31)

Then using (5) the classical Bernstein polynomials of 𝑔(𝑡)
when v=4 and m=16 is

𝑔𝑏 (𝑡) = 20.00659171𝑡 + 0.2233190𝑡2 + 0.098085𝑡3
− 3.39540𝑡4 + ⋅ ⋅ ⋅ (32)

Andmodified Bernstein polynomials (21) of g(t) with k=2 are

𝑔𝑚𝑏 (𝑡) = 2 − 0.007366𝑡 + 0.2188855𝑡2 + 1.389751𝑡3
− 4.50213𝑡4 + ⋅ ⋅ ⋅ (33)

By (22), we have

𝑦𝑚𝑏 (𝑡) = 4∑
𝑖=0

𝑦𝑖
= 𝑡2 − 0.001228𝑡3 + 0.018241𝑡4 − 0.030513𝑡5

+ ⋅ ⋅ ⋅ ,
(34)

The absolute error of 𝑦𝑚𝑏(𝑡) and 𝑦𝑏(𝑡) is presented in Table 2
and Figure 2.

Figure 2 presents the absolute error of ADM with Bern-
stein polynomial in (a) and ADM with modified Bernstein
polynomial in (b) at m=v=10 and k=3. The absolute errors
generated using the ADM with Bernstein polynomial are
of 10−2 while the errors yielded from ADM with modified
Bernstein polynomial are of 10−4.
Example 3. Consider the ordinary equation

𝑑𝑦𝑑𝑡 − 𝑡𝑦 + 𝑦2 = 𝑒𝑡2 ,
𝑦 (0) = 1,

(35)

with the exact solution (𝑡) = 𝑒𝑡2/2.
Here 𝐿 = 𝑑/𝑑𝑡, 𝑅𝑢 = −𝑡𝑦,𝑁𝑦 = 𝑦2, and 𝑔(𝑡) = 𝑒𝑡2 .
Then using (5) the classical Bernstein polynomials of 𝑔(𝑡)

when v=8 and m=12 is

𝑔𝑏 (𝑡) = 1 + 0.083623𝑡 + 0.939177𝑡2 + 0.197729𝑡3
+ 0.331572𝑡4 + ⋅ ⋅ ⋅ , (36)
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Table 3: Comparison of absolute errors using 𝑦10 when m=12, v=8, and k=3.

𝑡 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑏󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑚𝑏󵄨󵄨󵄨󵄨
0 0 0
0.01 4.134000 E-6 1.750000 E-7
0.02 1.635300 E-5 6.400000 E-7
0.03 3.639700 E-5 1.314000 E-6
0.04 6.402400 E-5 2.123000 E-6
0.05 9.900900 E-5 2.999000 E-6
0.06 1.411460 E-4 3.883000 E-6
0.07 1.902410 E-4 4.720000 E-6
0.08 2.461180 E-4 5.463000 E-6
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0.1 3.775690 E-4 6.501000 E-6
MSE 3.699974901 E-8 1.619641710 E-11
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Figure 2:The absolute error between ADM with modified Bernstein polynomials and the exact solution when m=v=10 and k=3.

andmodified Bernstein polynomials (21) of 𝑔(𝑡) with k=3 are
𝑔𝑚𝑏 (𝑡) = 1 + 0.003794𝑡 + 0.957094𝑡2 + 0.103509𝑡3

+ 0.410289𝑡4 + ⋅ ⋅ ⋅ . (37)

By (22), we have

𝑢𝑚𝑏 (𝑡) = 8∑
𝑖=0

𝑢𝑖
= 1 + 0.501897𝑡2 − 0.015567𝑡3 + 0.159135𝑡4

+ ⋅ ⋅ ⋅ ,
(38)

The absolute error of 𝑢𝑚𝑏(𝑡) and 𝑢𝑏(𝑡) is presented in Table 3
and Figure 3.

Figure 3 presents the absolute error of ADM with Bern-
stein polynomial in (a) and ADM with modified Bernstein

polynomial in (b) at m=12, v=8, and k=3. The absolute errors
generated using the ADM with Bernstein polynomial are
of 10−4 while the errors yielded from ADM with modified
Bernstein polynomial are of 10−6.
Example 4. Consider the partial differential equation

𝜕𝑦𝜕𝑡 + 𝑦𝜕𝑦𝜕𝑥 − V
𝜕2𝑦𝜕𝑥2 = 𝑥 (2𝑡 cos (𝑡2) + sin2 (𝑡2)) ,

𝑦 (𝑥, 0) = 0,
(39)

Using (12) we have

𝐿𝑦 + 𝑁𝑦 + 𝑅𝑦 = 𝑔 (𝑥, 𝑡) (40)

where 𝐿 = 𝑑/𝑑𝑡, 𝑅𝑦 = −V(𝜕2𝑦/𝜕𝑥2), 𝑁𝑦 = 𝑦(𝜕𝑦/𝜕𝑥), and𝑔(𝑥, 𝑡) = 𝑥(2𝑡 cos(𝑡2) + sin2(𝑡2)).
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Figure 3: The absolute error between ADM with modified Bernstein polynomials and the exact solution when m=12, v=8, and k=3.

The Adomian polynomials for Ny are

𝐴0 = 𝑦𝑜 𝜕𝑦𝑜𝜕𝑥 ,
𝐴1 = 𝑦𝑜 𝜕𝑦1𝜕𝑥 + 𝑦1 𝜕𝑦𝑜𝜕𝑥 ,

𝐴2 = 𝑦𝑜 𝜕𝑦2𝜕𝑥 + 𝑦2 𝜕𝑦𝑜𝜕𝑥 + 𝑦1 𝜕𝑦1𝜕𝑥 ,
...

(41)

Then using (5) the classical Bernstein polynomials of 𝑔(𝑥, 𝑡)
when v=m=6 is
𝑔𝑏 (𝑥, 𝑡) = 2.003859𝑥𝑡 + 0.103475𝑥𝑡2 + 0.149954𝑥𝑡3

− 0.27935𝑥𝑡4 + ⋅ ⋅ ⋅ , (42)

and modified Bernstein polynomials (21) of 𝑔(𝑥, 𝑡) with k=2
are

𝑔𝑚𝑏 (𝑥, 𝑡) = 1.986611𝑥𝑡 + 0.045744𝑥𝑡2
+ 0.504281𝑥𝑡3 − 0.25375𝑥𝑡4 + ⋅ ⋅ ⋅ . (43)

By (22) with V = 1, we have
𝑦0 = 𝐿−1 (𝑔𝑚𝑏 (𝑥, 𝑡)) + 𝑦 (𝑥, 0) = 0.993306𝑥𝑡2

+ 0.015248𝑥𝑡3 + 0.12607𝑥𝑡4 − 0.050750𝑥𝑡5 . . . ,
𝑦1 = −𝐿−1 (−V𝜕2𝑦0𝜕𝑥2 ) − 𝐿−1 (𝐴0) = −0.197331𝑥𝑡5

− 0.005049𝑥𝑡6 − 0.035812𝑥𝑡7 + 0.012122𝑥𝑡8
+ ⋅ ⋅ ⋅ ,

𝑦2 = −𝐿−1(−V𝜕2𝑦1𝜕𝑥2 ) − 𝐿−1 (𝐴1) = 0.049003𝑥𝑡8
+ 0.001783𝑥𝑡9 + 0.012105𝑥𝑡10 − 0.003795𝑥𝑡11
+ ⋅ ⋅ ⋅ ,

...
(44)

And we obtain

𝑦𝑚𝑏 (𝑥, 𝑡) = 6∑
𝑖=0

𝑦𝑖
= 0.993306𝑥𝑡2 + 0.015248𝑥𝑡3

+ 0.126070𝑥𝑡4 − 0.248081𝑥𝑡5
− 0.083749𝑥𝑡6 + ⋅ ⋅ ⋅ ,

(45)

The absolute error of 𝑦𝑚𝑏(𝑥, 𝑡) and 𝑦𝑏(𝑥, 𝑡) is presented in
Table 4 and Figure 4 with the exact solution 𝑦(𝑥, 𝑡) =𝑥 sin(𝑡2).

Also Figure 4 presents the absolute error of ADM with
Bernstein polynomial in (a) and ADM with modified Bern-
stein polynomial in (c) atm=v=6 and k=2.The absolute errors
generated using the ADM with Bernstein polynomial are
of 10−3 while the errors yielded from ADM with modified
Bernstein polynomial are of 10−4.
5. Conclusions

In this paper, we show that utilizing modified Bernstein
polynomials is smartly thought to modify the performance
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Table 4: Comparison of absolute errors using 𝑦6 when m=v=6, k=2, and x=0.1.

𝑡 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑏󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑚𝑏󵄨󵄨󵄨󵄨
0 0 0
0.1 5.512102 E-6 4.149093 E-6
0.2 3.401160 E-5 1.849504 E-6
0.3 8.851342 E-5 2.838128 E-5
0.4 1.404426 E-5 9.121566 E-5
0.5 1.256008 E-4 1.620426 E-4
0.6 4.250973 E-5 1.880417 E-4
0.7 4.360788 E-4 1.086168 E-4
0.8 1.050197 E-3 1.020235 E-4
0.9 1.718854 E-3 3.752218 E-4
1 2.024768 E-3 4.863297 E-4
MSE 8.393551358 E-7 4.702782622 E-8
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(c) The absolute error for modified Bernstein polynomials
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Figure 4:The absolute error between ADMwith classical andmodified Bernstein polynomials and the exact solution using 𝑦6 whenm=v=6,
k=2, and x=0.1.
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of the Adomian decomposition technique. The fundamental
preferred standpoint of this strategy is that it can be used
specifically for all sort of differential and integral equations.

We utilize modified Bernstein extensions of the nonlinear
term to get more exact outcomes. Figures empower us
to consider the difference between utilizing two strategies
graphically. Tables are additionally given to demonstrate the
variety of the outright mistakes for bigger estimation, to
be specific for bigger m. We observed from the numerical
outcomes in Tables 1–4 and Figures 1–4 that the ADM
with modification Bernstein polynomials gives more exact
and robust numerical solution than the classical Bernstein
polynomials. Every one of the calculations was done with the
guide of Maple 13 programming.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The research is supported by College of Computer Sciences
and Mathematics, University of Mosul, Republic of Iraq,
under Project no. 11251357.

References

[1] S. Muhammad and I. Muhammad, “Some multi-step iterative
methods for solving nonlinear equations,” Open Journal of
Mathematical Sciences, vol. 1, no. 1, pp. 25–33, 2017.

[2] Y. Yang and L. Hua, “Variational iteration transformmethod for
fractional differential equationswith local fractional derivative,”
Abstract and Applied Analysis, vol. 2014, Article ID 760957, 9
pages, 2014.

[3] U. R. Hamood, S. S. Muhammad, and A. Ayesha, “Combination
of homotopy perturbationmethod (HPM) and double sumudu
transform to solve fractional KDV equations,” Open Journal of
Mathematical Sciences, vol. 2, no. 1, pp. 29–38, 2018.

[4] A. M. Wazwaz, “Construction of solitary wave solutions and
rational solutions for the KdV equation by Adomian decom-
position method,” Chaos, Solitons & Fractals, vol. 12, no. 12, pp.
2283–2293, 2001.

[5] N. Bildik and A. Konuralp, “The use of variational itera-
tion method, differential transform method and Adomian
decomposition method for solving different types of nonlinear
partial differential equations,” International Journal ofNonlinear
Sciences andNumerical Simulation, vol. 7, no. 1, pp. 65–70, 2006.

[6] T. Madeeha, N. N. Muhammad, S. Rabia, V. Dumitru, I.
Muhammad, and S. Naeem, “On unsteady flow of a viscoelastic
fluid through rotating cylinders,” Open Physics, vol. 1, no. 1, pp.
1–15, 2017.

[7] A. Sannia, Q. Haitao, A. Muhammad, J. Maria, and I. Muham-
mad, “Exact solutions of fractional Maxwell fluid between two

cylinders,” Open Journal of Mathematical Sciences, vol. 1, no. 1,
pp. 52–61, 2017.

[8] Q.Haitao, F.Nida,W.Hassan, and S. Junaid, “Analytical solution
for the flow of a generalized Oldroyd-B fluid in a circular
cylinder,” Open Journal of Mathematical Sciences, vol. 1, no. 1,
pp. 85–96, 2017.

[9] M.M.Hosseini, “Adomian decompositionmethodwith Cheby-
shev polynomials,” Applied Mathematics and Computation, vol.
175, no. 2, pp. 1685–1693, 2006.

[10] N. Bildik and Deniz, “Modified Adomian decomposition
method for solving Riccati differential equations,” Review of the
Air Force Academy, vol. 3, no. 30, pp. 21–26, 2015.

[11] Y. Liu, “Adomian decompositionmethod with orthogonal poly-
nomials: Legendre polynomials,” Mathematical and Computer
Modelling, vol. 49, no. 5-6, pp. 1268–1273, 2009.

[12] Y. Mahmoudi et al., “Adomian decomposition method with
Laguerre polynomials for solving ordinary differential equa-
tion,” Journal of Basic and Applied Scientific Research, vol. 2, no.
12, pp. 12236–12241, 2012.

[13] D. Rani and V. Mishra, “Approximate solution of boundary
value problem with bernstein polynomial laplace decompo-
sition method,” International Journal of Pure and Applied
Mathematics, vol. 114, no. 4, pp. 823–833, 2017.

[14] G.G. Lorentz,Bernstein Polynomials, Chelsea Publishing Series,
1986.

[15] J. Cicho and Z. Goi, “On Bernoulli sums and Bernstein
polynomials,” Discrete Mathematics and �eoretical Computer
Science, pp. 1–12, 2009.

[16] G. Adomian, Nonlinear Stochastic Operator Equations, Aca-
demic Press, San Diego, CA, USA, 1986.


