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A discrete age-structured semelparous Leslie matrix model where density dependence is included both in the fecundity and in the
survival probabilities is analysed. Depending on strength of density dependence, we show in the precocious semelparous case that
the nonstationary dynamics may indeed be rich, ranging from SYC (a dynamical state where the whole population is in one age
class only) dynamics to cycles of low period where all age classes are populated. Quasiperiodic and chaotic dynamics have also
been identified. Moreover, outside parameter regions where SYC dynamics dominates, we prove that the transfer from stability
to instability goes through a supercritical Neimark−Sacker bifurcation, and it is further shown that when the population switches
from possessing a precocious to a delayed semelparous life history both stability properties and the possibility of periodic dynamics
become weaker.

1. Introduction

Within the framework of nonlinear discrete age-structured
population models, the dynamical properties and behaviour
of a great variety of species may be explored. Such species
may possess an iteroparous life history which means that
individuals in several age classes of the population are fertile,
or they may possess a semelparous life history which is
characterized by the property that only individuals of the last
age class are fertile.

Regarding iteroparity,most populationmodels (both age-
structured and stage-structured) focus on cases where non-
linearities (density dependence) are built into the fecundity
elements and not into the survivals. Particularly in fishery
models, this has often been motivated by the assumption
that most density effects are present only in the first year
of life. Examples of theoretical studies which deal with
nonstationary and chaotic behaviour as well as behaviour
linked to concrete species may be found in [1–7]. In case of
ergodic properties we refer to [8–10]; see also [11]. Another
strategy is to assume constant fecundity terms and non-
linear year-to-year survival probabilities, compare [12–16].
Depending on functional form of the nonlinear terms, a

crude conclusion found in several of the papers referred to
above is that, in case of small population densities, themodels
possess a stable nontrivial equilibrium where all age classes
are populated. At higher population densities there may be
nonstationary, periodic, and chaotic dynamics of stunning
complexity.

Now, turning to the semelparous case with nonlinear
fecundity element and constant survival probabilities a rather
peculiar phenomenon has been detected, compare [4]. Here,
in contrast to the iteroparous case, the nontrivial equilibrium
tends to be unstable in large parameter regions, also in case of
low population densities. Instead one finds, as time 𝑡 → ∞,
that a cyclic state is attained where the whole population
is in just one single age class at each time step. Such
behaviour, which is called synchronization or SYC (single
year class) dynamics, has been detected among insects; see
[17]. Hoppensteadt and Keller [18] presented a model for the
17-year cicada (magicicada) which included both predation
and intraspecific competition and in [19] cicada dynamics
is further explored. Regarding biennials and possible SYC
dynamicswe refer to [20]. In [21] SYCphenomena and related
MYC (multiple year class) dynamics are considered while
Kon [22] discusses in a general context conditions for SYC
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dynamics to occur in matrix models, also compare [23].
However, if we take the opposite approach, constant fecundity
term, and nonlinear year-to-year survivals probabilities, SYC
dynamics appear to be a rare event; see [16]. Instead, the
nontrivial equilibrium is stable whenever the population size
is sufficiently small and the nonstationary dynamics has a
strong resemblance of 4-cycles, either exact or approximate,
the chaotic regime included.

In contrast to most of the papers quoted above, the
purpose of this paper is to study the combined effect of
nonlinear recruitment and nonlinear survival probabilities
in semelparous population models. Several general results
about possible SYC dynamics and stability properties of the
nontrivial equilibrium in such problems may be obtained
in [23] (two age classes) and [24] (three age classes). In
case of the more general setting where an arbitrary number
of age classes is considered we refer to [25, 26]. Regarding
our study, we shall restrict the analysis to the case where
both the fecundity and the survival elements depend on
the total population and, moreover, the functional form of
these elements is of Ricker type. As we prove, under such
restrictions, it is possible to obtain explicit thresholds for
secondary bifurcations of flip and Neimark−Sacker type and
we may also prove (in some cases) that bifurcations involved
are of supercritical nature. We may also investigate how
the dynamics reported earlier will change as more density-
dependent terms are included. For example, given SYC cycles,
will the cycles persist if the strength of density dependence in
the survival terms is included? If not, what kind of qualitative
dynamics is it then possible to obtain? Assuming cycles of
low period where all age classes are populated, does the
inclusion of density dependence in the fecundity terms act
in a stabilizing or destabilizing fashion? Such questions are
difficult to address in the general models presented in [24–
26].

The paper is organized in the following way. In Section 2
we present the model, compute equilibria, and derive the 𝑛th
order eigenvalue equation which we need in order to perform
stability and bifurcation analysis. This is followed (Sections 3
and 4) by a rigorous analysis of possible dynamic outcomes
in two and three age class models, respectively. Finally, in
Section 5, we unify and discuss results when the number of
age classes exceeds three.

2. The Model, Fixed Points, and Stability

First we establish the model. At time 𝑡 we split the pop-
ulation 𝑥𝑡 into 𝑛 distinct nonoverlapping age classes 𝑥𝑡 =(𝑥1, . . . , 𝑥𝑛)𝑇 where the total population is given by 𝑥 = 𝑥1 +⋅ ⋅ ⋅ + 𝑥𝑛. Next, we introduce the transition matrix

𝐴 =((
(

0 0 ⋅ ⋅ ⋅ 0 𝑓𝑝1 0 00 𝑝2 0
d0 0 𝑝𝑛−1 0

))
)

, (1)

where 𝑓 is the average fecundity of a member of the last
age class at time 𝑡. 𝑝𝑖 denotes the survival probabilities, the
(year-to-year) survival from age class 𝑖 − 1 to 𝑖. In contrast to
most papers the assumption here is that both the fecundity
and the survivals are nonlinear terms. Thus, we write 𝑓 as𝑓 = 𝐹 exp(−𝛼𝑥)where the constant𝐹 > 1 and the survivals𝑝𝑖
as 𝑝𝑖 = 𝑃 exp(−𝛽𝑖𝑥) where the constant 𝑃 satisfies 0 < 𝑃 ≤ 1.
The parameters 𝛼 ≥ 0, 𝛽𝑖 ≥ 0may be regarded as parameters
thatmeasure the strength of density dependence.The relation
between 𝑥 at two consecutive time steps is then expressed
as

𝑥𝑡+1 = 𝐴𝑥𝑡 (2a)

which may also be formulated as a nonlinear map of the
form 𝑓 : R𝑛 󳨀→ R

𝑛𝑥 󳨀→ 𝐴𝑥. (2b)

Besides the trivial fixed point 𝑥 = (0, . . . , 0)𝑇 maps (2a)
and (2b) also possess a unique nontrivial point 𝑥∗ =(𝑥∗1 , . . . , 𝑥∗𝑛 )𝑇. The latter may be expressed as

(𝑥∗1 , . . . , 𝑥∗𝑖 , . . . , 𝑥∗𝑛 ) = ( 1𝐷𝑥∗, . . . , 𝑃𝑖−1𝑎𝛽1+⋅⋅⋅+𝛽𝑖−1𝐷⋅ 𝑥∗, . . . , 𝑃𝑛−1𝑎𝛽1+⋅⋅⋅+𝛽𝑛−1𝐷 𝑥∗) . (3)

The quantities 𝑎 and𝐷 are defined as

𝑎 = 𝑅−(1/(𝛼+𝛽1+⋅⋅⋅+𝛽𝑛−1))0 ,𝐷 = 1 + 𝑃𝑎𝛽1 + 𝑃2𝑎𝛽1+𝛽2 + ⋅ ⋅ ⋅ + 𝑃𝑛−1𝑎𝛽1+⋅⋅⋅+𝛽𝑛−1 , (4)

where 𝑅0 = 𝐹𝑃𝑛−1 and 𝑅0 > 1 is assumed throughout
the paper in order to have a feasible equilibrium. The total
equilibrium population 𝑥∗ is given as

𝑥∗ = 1𝛼 + ∑𝑛−1𝑖=1 𝛽𝑖 ln𝑅0. (5)

In order to investigate stability we linearize about the
fixed point. This gives birth to the 𝑛th order eigenvalue
equation

𝜆𝑛 + 𝑎1𝜆𝑛−1 + 𝑎2𝜆𝑛−2 + ⋅ ⋅ ⋅ + 𝑎𝑛−1𝜆 + 𝑎𝑛 = 0, (6)
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where the coefficients 𝑎1, . . . , 𝑎𝑛 satisfy
((((((
(

𝑎1𝑎2𝑎3...𝑎𝑛−1𝑎𝑛
))))))
)

=((((((
(

𝛼 𝛽1 𝛽2 𝛽𝑛−2 𝛽𝑛−1𝛽𝑛−1 𝛼 𝛽1 𝛽𝑛−3 𝛽𝑛−2𝛽𝑛−2 𝛽𝑛−1 𝛼 𝛽𝑛−4 𝛽𝑛−3... d
...𝛽2 𝛽3 𝛽4 𝛼 𝛽1𝛽1 𝛽2 𝛽3 𝛽𝑛−1 𝛼
))))))
)

((((((
(

𝑥∗1𝑥∗2𝑥∗3...𝑥∗𝑛−1𝑥∗𝑛
))))))
)

+((((((
(

000...0−1
))))))
)

.

(7)

𝑥∗ is a locally stable hyperbolic fixed point as long as all
eigenvalues 𝜆 of (6) are located inside the unit circle in the
complex plane.

There are three ways in which 𝑥∗ may fail to be stable.
It may lose its hyperbolicity when 𝜆 crosses the unit circle
through 1 which in the general case leads to a saddle node
bifurcation, alternatively through−1 which gives birth to a flip
(period doubling) bifurcation, or it may fail to be hyperbolic
as a pair of complex-valued eigenvalues cross the unit circle.
Then a Neimark−Sacker bifurcation occurs.The Jury criteria,
see the book by Murray [27], provide conditions for all
eigenvalues to satisfy |𝜆| < 1.
3. Two Age Classes

Let 𝑛 = 2 in maps (2a) and (2b). Then we have(𝑥1, 𝑥2) 󳨀→ (𝐹𝑒−𝛼𝑥𝑥2, 𝑃𝑒−𝛽1𝑥𝑥1) . (8)𝑅0 = 𝐹𝑃, 𝑅0 > 1, and 𝑥∗ = (𝛼 + 𝛽1)−1 ln𝑅0. Moreover, the
fixed point becomes(𝑥∗1 , 𝑥∗2 ) = ( 11 + 𝑃𝑎𝛽1 𝑥∗, 𝑃𝑎𝛽11 + 𝑃𝑎𝛽1 𝑥∗) (9)

and the eigenvalue equation may be cast in the form𝜆2 + 𝑎1𝜆 + 𝑎2 = 0, (10)

where 𝑎1 = 𝛼𝑥∗1 + 𝛽1𝑥∗2 and 𝑎2 = 𝛽1𝑥∗1 + 𝛼𝑥∗2 − 1.

Fixed point (9) is stable whenever the Jury criteria 1+𝑎1+𝑎2 > 0, 1− 𝑎1 +𝑎2 > 0, and 1− |𝑎2| > 0 hold, that is, as long as(𝛼 + 𝛽1) 𝑥∗ > 0, (11a)(𝛽1 − 𝛼) (1 − 𝑃𝑎𝛽1) 𝑥∗1 > 0, (11b)2 − (𝛽1𝑥∗1 + 𝛼𝑥∗2 ) > 0, (11c)

respectively.
There are two cases to consider: (A) the case 𝛼 > 𝛽1,

which means that the strength of density dependence in the
fecundity is stronger than the strength of density dependence
in the survival, and (B) the case 𝛽1 > 𝛼.

Considering (A), it is clear from (11b) that there does not
exist any stable fixed point. Moreover, since (11b) fails as an
eigenvalue crosses the unit circle through −1 it is natural to
search for a 2-cycle which should be stable provided 𝑥∗ is
small. Evidently, such a 2-cycle must be obtained from𝑥1,𝑡+2 = 𝑅0𝑒−𝛽1(𝑥1,𝑡+𝑥2,𝑡)𝑒−𝛼(𝑥1,𝑡+1+𝑥2.𝑡+1)𝑥1,𝑡𝑥2,𝑡+2 = 𝑅0𝑒−𝛼(𝑥1,𝑡+𝑥2,𝑡)𝑒−𝛽1(𝑥1,𝑡+1+𝑥2,𝑡+1)𝑥2,𝑡 (12)

and here there are two possibilities:

(1) 𝑥𝑡 = 𝑥𝑡+1 which leads to the trivial 2-cycle where
the unstable fixed point (𝑥∗1 , 𝑥∗2 ) is the only point the
cycle.

(2) The points are on the form (𝐴, 0) or (0, 𝐵). In this
case it follows from (12) that 𝐴 and 𝐵must satisfy the
equations 𝐴 − 1𝑃𝑒−𝛽1𝐴𝐵 = 0 (13a)𝛽1𝐴 − 𝛼𝐵 + ln𝑅0 = 0 (13b)

and by finding 𝐵 from (13b) and substitute back into (13a) we
arrive at 𝛼𝑃𝑒𝛽1𝐴 = 𝛽1 + ln𝑅0𝐴 . (13c)

Geometrically, it is now easy to see that the graph of the left
hand side of (13c) and that of the right side have a unique
intersection point lying in the first (positive) quadrant. In
the special case 𝛽1 = 0 we obtain 𝐴 = (𝛼𝑃)−1 ln𝑅0 and𝐵 = 𝛼−1 ln𝑅0. Hence, there exists a 2-cycle on the form (SYC
form) ( 1𝛼𝑃 ln𝑅0, 0) ,(0, 1𝛼 ln𝑅0) (14)

and as shown in [4] this cycle is stable in case of 𝐹 small (𝑃
fixed). In Figure 1(a) we show an orbit starting at (𝑥10, 𝑥20) ̸=(0, 0) which settles on the 2-cycle (14). If we continue to
increase 𝐹, we find that (14) goes unstable and cycles of
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Figure 1: (a) An orbit approaching the SYC 2-cycle (𝑃−1 ln𝑅0.0), (0, ln𝑅0). Parameter values (𝛼, 𝛽) = (1, 0), (𝑃, 𝐹) = (0.5, 10). (b) A 4-cycle
on SYC form. (𝛼, 𝛽) = (1, 0), (𝑃, 𝐹) = (0.5, 15). (c) Chaotic SYC dynamics. (𝛼, 𝛽) = (1, 0), (𝑃, 𝐹) = (0.5, 25).
period 2𝑘. 𝑘 = 2, 3, . . ., are established through successive
flip bifurcations. These cycles, which are all on SYC form,
are stable in smaller and smaller regions as 𝐹 is increased.
Eventually, the dynamics becomes chaotic but we emphasize
that it is on SYC form also in the chaotic regime. These
scenarios are demonstrated in Figures 1(b) and 1(c). Actually,
we have not accounted for what happens when 𝑅0 = 1 (or𝑥∗ = 0). Here, compare (10), the eigenvalues are 1 and −1,
respectively, and both the positive equilibrium and the SYC
2-cycle bifurcate forward. For proofs and details we refer to
[4, 23–26].

When 0 < 𝛽1 < 𝛼 we observe much of the same SYC
dynamics as in the 𝛽1 = 0 case. However, we may in a

sense argue that an increase of 𝛽1 acts in a stabilizing fashion.
Indeed, if 𝛽1 = 0 and 𝐹 = 25, map (8) generates chaotic
dynamics. On the other hand, if 𝛽1 = 0.8 and 𝐹 = 25 (𝑃 = 0.5
in both cases) the outcome is a stable period 4-cycle on SYC
form as shown in Figure 2.

Since the boundary of the positive cone is always invariant
for semelparous Leslie matrix models of any dimension,
see [26], initial conditions of the form (V, 0) or (0, 𝑤) in
the 2-dimensional case will always produce SYC dynamics.
However, if 𝛽1 → 𝛼 and (𝑥10, 𝑥2,0) ̸= (V, 0) or (0, 𝑤) the
dynamics occurs in the vicinity (mostly as a stable 2-cycle,
not on SYC form) of the unstable fixed point
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Figure 2: 4-periodic SYC dynamics. (𝛼, 𝛽) = (1, 0.8) and (𝑃, 𝐹) =(0.5, 25).
(𝑥∗1 , 𝑥∗2 ) = ( √𝐹√𝐹 + √𝑃𝑥∗, √𝑃√𝐹 + √𝑃𝑥∗) , (15)

where 𝑥∗ = (2𝛼)−1 ln𝑅0. Hence, 0 < 𝛽1 < 𝛼 does not
necessarily imply SYC dynamics although it is the most likely
outcome. A further discussion is postponed to Section 5.

Next, consider (B) (the case 0 < 𝛼 < 𝛽1). Our first
observation is that the Jury criteria (11a) and (11b) will never
be violated.Moreover, in case of sufficiently small equilibrium
populations𝑥∗1 , 𝑥∗2 the left hand side of (11c) will be positive as
well. Consequently, there exists a region in parameter space
where (9) is a hyperbolic stable fixed point. However, if we
increase the value of 𝑥∗ (by increasing 𝐹) such that (11c)
turns into an equality, (𝑥∗1 , 𝑥∗2 ) undergoes a Neimark−Sacker
bifurcation, loses its hyperbolicity, and becomes unstable at
the threshold

ln𝑅0 = (𝛼 + 𝛽1) 2 (1 + 𝑃𝑎𝛽1)𝛽1 + 𝛼𝑃𝑎𝛽1 (16)

while the corresponding modulus 1 solutions of the eigen-
value equation (10) may be cast in the form

𝜆 = −𝛼 + 𝛽1𝑃𝑎𝛽1𝛽1 + 𝛼𝑃𝑎𝛽1 ± √(𝛽21 − 𝛼2) (1 − 𝑃2𝑎2𝛽1)𝛽1 + 𝛼𝑃𝑎𝛽1 𝑖. (17)

As is well known, bifurcations may be of both supercritical
and subcritical nature. If a fixed point shall undergo a
supercritical bifurcation it means that an eigenvalue (pair
of eigenvalues) 𝜆 must cross the unit circle outwards at
instability and in the Neimark−Sacker case that an attracting
quasiperiodic orbit restricted to an invariant curve is created

beyond instability threshold. Now, considering our bifurca-
tion, we first express map (8), using the abbreviation 𝑏 =√(𝛽21 − 𝛼2)(1 − 𝑃2𝑎2𝛽1), as

(𝑢
V
) 󳨀→(−𝛼 + 𝛽1𝑃𝑎𝛽1𝛽1 + 𝛼𝑃𝑎𝛽1 − 𝑏𝛽1 + 𝛼𝑃𝑎𝛽1𝑏𝛽1 + 𝛼𝑃𝑎𝛽1 −𝛼 + 𝛽1𝑃𝑎𝛽1𝛽1 + 𝛼𝑃𝑎𝛽1)(𝑢

V
)

+ (𝑓 (𝑢, V)𝑔 (𝑢, V)) ,
(18)

where 𝑓(𝑢, V) and 𝑔(𝑢, V) contain second- and third-order
terms of 𝑢 and V. (Details of how (18) is derived and explicit
formulas of 𝑓(𝑢, V) and 𝑔(𝑢, V)may be found in Appendix.)

Following Wan [28], the bifurcation will be supercritical
if 𝛾 = −Re[(1 − 2𝜆) 𝜆21 − 𝜆 𝜉11𝜉20] − 12 󵄨󵄨󵄨󵄨𝜉11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝜉02󵄨󵄨󵄨󵄨2+ Re (𝜆𝜉21) (19)

is negative and that 𝑑|𝜆|/𝑑𝐹 > 0 at bifurcation.The quantities
in (19) are defined as𝜉11 = 14 [(𝑓𝑢𝑢 + 𝑓VV) + 𝑖 (𝑔𝑢𝑢 + 𝑔VV)]𝜉20 = 18 [(𝑓𝑢𝑢 − 𝑓VV + 2𝑔𝑢V) + 𝑖 (𝑔𝑢𝑢 − 𝑔VV − 2𝑓𝑢V)]𝜉02 = 18 [(𝑓𝑢𝑢 − 𝑓VV − 2𝑔𝑢V) + 𝑖 (𝑔𝑢𝑢 − 𝑔VV + 2𝑓𝑢V)]𝜉21 = 116 [(𝑓𝑢𝑢𝑢 + 𝑓𝑢VV + 𝑔𝑢𝑢V + 𝑔VVV)+ 𝑖 (𝑔𝑢𝑢𝑢 + 𝑔𝑢VV − 𝑓𝑢𝑢V − 𝑓VVV)] .

(20)

Due to the complexity of 𝑓(𝑢, V) and 𝑔(𝑢, V) it is out of reach
to compute the sign of 𝛾 in the most general case. However,
it works in the important special case 𝛼 = 0. Indeed, (18)
simplifies to

(𝑢
V
) 󳨀→ (− 1𝐹 − 𝑏𝐹𝑏𝐹 − 1𝐹)(𝑢

V
) + (𝑓 (𝑢, V)𝑔 (𝑢, V)) , (21)

where 𝑏 = 𝛽1√𝐹2 − 1 and𝑓 (𝑢, V) = 𝛽1𝑏𝑢V − 12𝐹𝑏2𝑢V2 + 1𝑏 𝐹2𝑏2𝛽1 V3,
𝑔 (𝑢, V) = 𝛽1𝑏𝐹𝑓 (𝑢, V) . (22)

Moreover, 𝜉11 becomes zero so 𝛾may be found as𝛾 = − 󵄨󵄨󵄨󵄨𝜉02󵄨󵄨󵄨󵄨2 + Re (𝜆𝜉21) = −𝛽2116 [𝛽21 + (𝐹2 − 1)] (23)

which is clearly negative.
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Figure 3: (a) An invariant curve. (𝛼, 𝛽) = (0, 1) and (𝑃, 𝐹) = (0.5, 20). (b) 4-periodic dynamics generated by map (8). (𝛼, 𝛽) = (0, 1) and(𝑃, 𝐹) = (0.5, 25). (c) Chaotic dynamics generated by (8). (𝛼, 𝛽) = (0, 1) and (𝑃, 𝐹) = (0.5, 32).
Finally, at threshold 𝑥∗2 = 2/𝐹, compare (11c) or (16)𝑑 |𝜆|𝑑𝐹 = 𝐹 + 22𝐹 (𝐹 + 1) > 0. (24)

Hence, we have proved that the Neimark−Sacker bifurcation
is of supercritical nature.

Still, assuming 𝛼 = 0, let us now focus on the dynamics
on the invariant curve.Whenever𝐹 > 𝐹𝑇 and |𝐹−𝐹𝑇| is small
where 𝐹𝑇 is the value of 𝐹 at threshold (for a given value of 𝑃,𝐹𝑇 is found from 𝑃 = (𝐹𝑇)−1 exp(2(1 + 𝐹𝑇)/𝐹𝑇 )), we find a
quasiperiodic orbit which fills the invariant curvewith points;
see Figure 3(a). In case of larger values of𝐹weobserve a stable
4-cycle, comapre Figure 3(b), and as we continue to increase𝐹 stable orbits of period 4 ⋅ 2𝑘, 𝑘 = 1, 2, . . ., are the outcomes.
(Note, however, that the points in these orbits are clustered in

such a way that one from an observational point of view may
argue that we have almost 4-periodic dynamics in these cases
as well.) The smaller 𝑃 is, the larger the interval (𝐹min, 𝐹max)
becomeswhere the 4-periodic structure occurs. Eventually, in
case of even larger fecundity values, the dynamics becomes
chaotic, but even in the chaotic regime a certain kind of 4-
periodicity is preserved in the sense that the chaotic attractor
is divided into 4 disjoint subsets that are visited once every
fourth iteration; see Figure 3(c).

The reason why we have all this 4-periodicity may be
understood along the following line. Once the invariant
curve is established we may regard map (8) (𝛼 = 0)
restricted to the curve as topological equivalent to a circle
map. Associated with a circle map there is a rotation number𝜎, and whenever 𝜎 is rational we have an orbit of finite
period. If 𝜎 is an irrational number the orbit is quasiperiodic.
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Now, at bifurcation threshold the modulus 1 eigenvalues
are 𝜆 = − 1𝐹 ± 1𝐹√𝐹2 − 1𝑖 (25)

and since 𝐹 is large at threshold, 𝜆 is located close to the
imaginary axis in the left half plane. FollowingGuckenheimer
and Holmes [29], arg 𝜆 gives asymptotic information about
the rotation number; thus 𝜎 ≈ 1/4. This accounts for
the 4-periodicity observed. Finally, note that when an orbit
becomes exact periodic as a result of changing parameter𝐹, the implicit function theorem guarantees that there exists
an interval around that specific parameter value where the
periodicity is preserved as well.

Next, consider the case 0 < 𝛼 < 𝛽. The location of the
modulus 1 eigenvalues is now given by (17) and they are not
so close to the imaginary axis anymore. For “small” values of𝛼 we find the invariant curve, but the 4-periodic dynamics
reported above (𝛼 = 0) is absent. Instead, as a result of
increasing 𝐹, the invariant curve becomes kinked and not
topological equivalent to a circle. We may also describe the
dynamics by use of the Lyapunov exponent 𝐿 of the orbit
generated by (8) [30, 31]. In Figure 4(a) we display the values
of 𝐿 in the 𝐹 range 10 < 𝐹 < 50 when (𝛼, 𝛽) = (0.1, 1.0)
and 𝑃 = 0.5. Whenever 10 < 𝐹 < 20.341, 𝐿 < 0. In
this interval the fixed point is stable. When 20.341 ≤ 𝐹 <29.3 the dynamics is quasiperiodic and restricted to invariant
attracting curves and the corresponding Lyapunov exponent
is 𝐿 = 0. 𝐿 < 0 in the parameter window 30.5 < 𝐹 < 32.7.
Periodic dynamics of period 11 is the outcome here. Finally,
when 𝐹 exceeds 32.7 and also in a tiny interval just below 30.5
we find that 𝐿 > 0 which means that the dynamics is chaotic.
These findings are also visualized in Figure 4(b) where the
dynamics is shown for selected values of 𝐹. From bottom to
top we recognize stable fixed points, invariant curves, kinked
curves, 11-periodic dynamics, and chaos.

In case of intermediate values of 𝛼, (𝛼, 𝛽) = (0.5, 10) we
observe a significant change of dynamics. Here, there exists a
critical 𝐹 value 𝐹𝐶, 𝐹𝐶 < 𝐹𝑇, where the third iterate of map
(8) undergoes a saddle node bifurcation which results in two
large amplitude 3-cycles, one stable and one unstable. Thus,
in the interval 𝐹𝐶 < 𝐹 < 𝐹𝑇 we find coexistence between
two stable attractors, the stable fixed point (9) and the stable
3-cycle. Consequently, the ultimate fate of an orbit depends
on the initial condition but since the trapping region of the
3-cycle appears to be (much) larger, 3-periodic dynamics
is the most likely outcome. Beyond 𝐹𝑇 there is an interval𝐹𝑇 < 𝐹 < 𝐹𝐾 where the invariant curve established at 𝐹𝑇
and the stable 3-cycle coexists. At 𝐹 = 𝐹𝐾 the invariant
curve disappears as it is hit by the unstable 3-cycle, and if𝐹 > 𝐹𝐾, |𝐹−𝐹𝐾| small, the 3-cycle is the only attractor. Similar
phenomena have also been found in iteroparous population
models, first by Guckenheimer et al. [1], later in [4]. At
even higher fecundity values the stable 3-cycle undergoes a
Neimark−Sacker bifurcation which leads to three invariant
curves which are visited once every third iteration. This is
followed by kinked curves, periodic dynamics, and chaos
through further enlargement of 𝐹. Values of 𝐿 as well as the
dynamics reported above are shown in Figures 4(c) and 4(d).

If 𝛼 is large but 𝛼 < 𝛽, we find that the dynamics
qualitatively is quite similar to the case where 𝛼 is small,
compare Figures 4(e) and 4(f) where (𝛼, 𝛽) = (0.8, 1.0) and𝑃 = 0, 5. However, there are several parameter values where
the dynamics is periodic but most of these have almost no
widths.The exception is the first windowwhere the dynamics
is 5-periodic. A final comment is that the larger 𝛼 is, (𝛼 < 𝛽),
the higher 𝐹 is at bifurcation threshold (16), so onemay argue
that the strength of density dependence in the fecundity (𝛼 <𝛽) acts in a stabilizing way.

4. Three Age Classes

In this section we study the map𝑓 : R3 󳨀→ R
3(𝑥1, 𝑥2, 𝑥3) 󳨀→ (𝐹𝑒−𝛼𝑥𝑥3, 𝑃𝑒−𝛽1𝑥𝑥1, 𝑃𝑒−𝛽2𝑥𝑥2) . (26)

The nontrivial fixed point (cf. (3)) may be expressed as(𝑥∗1 , 𝑥∗2 , 𝑥∗3 ) = ( 1𝐷𝑥∗, 𝑃𝑎𝛽1𝐷 𝑥∗, 𝑃2𝑎𝛽1+𝛽2𝐷 𝑥∗) , (27)

where 𝑎 = 𝑅−(1/(𝛼+𝛽1+𝛽2))0 ,𝐷 = 1 + 𝑃𝑎𝛽1 + 𝑃2𝑎𝛽1+𝛽2 , 𝑅0 = 𝐹𝑃2,𝑅0 > 1, and 𝑥∗ = (𝛼 + 𝛽1 + 𝛽2)−1 ln𝑅0.
From (6) it follows that the coefficient in the eigenvalue

equation 𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3 = 0 (28)

may be written as 𝑎1 = 𝛼𝑥∗1 +𝛽1𝑥∗2 +𝛽2𝑥∗3 , 𝑎2 = 𝛼𝑥∗2 +𝛽2𝑥∗1 +𝛽1𝑥∗3 , and 𝑎3 = 𝛼𝑥∗3 + 𝛽1𝑥∗1 + 𝛽2𝑥∗2 − 1.
Equilibrium (27) is locally asymptotic stable as long as the

Jury criteria 1+𝑎1+𝑎2+𝑎3 > 0, 1−𝑎1+𝑎2−𝑎3 > 0, 1−|𝑎3| > 0,
and |1 − 𝑎23 | − |𝑎2 −𝑎2𝑎1| > 0 hold. Hence, the stability criteria
are (𝛼 + 𝛽1 + 𝛽2) 𝑥∗ > 0 (29a)2 − (𝛼 + 𝛽1 − 𝛽2) 𝑥∗1 − (𝛽1 + 𝛽2 − 𝛼) 𝑥∗2− (𝛼 − 𝛽1 + 𝛽2) 𝑥∗3 > 0 (29b)

2 − (𝛽1𝑥∗1 + 𝛽2𝑥∗2 + 𝛼𝑥∗3 ) > 0 (29c)(2𝛽1 − 𝛼 − 𝛽2) 𝑥∗1 + (2𝛽2 − 𝛼 − 𝛽1) 𝑥∗2+ (2𝛼 − 𝛽1 − 𝛽2) 𝑥∗3 + (𝛼𝛽1 − 𝛽21) 𝑥∗21+ (𝛽1𝛽2 − 𝛽22) 𝑥∗22 + (𝛼𝛽2 − 𝛼2) 𝑥∗23+ (𝛽21 + 𝛼𝛽2 − 2𝛽1𝛽2) 𝑥∗1𝑥∗2+ (𝛼2 + 𝛽1𝛽2 − 2𝛼𝛽1) 𝑥∗1𝑥∗3+ (𝛼𝛽1 + 𝛽22 − 2𝛼𝛽2) 𝑥∗2𝑥∗3 > 0.
(29d)

A final observation from (28) is that when 𝑥∗ = 0 all
eigenvalues 𝜆 = exp[(2𝑘𝜋/3)𝑖], 𝑘 = 0, 1, 2, are located on
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Figure 4: Values of Lyapunov exponents and the dynamics generated by (8) when𝑃 = 0.5. Parameter values: (a) and (b) (𝛼, 𝛽) = (0.1, 1.0), (c)
and (d) (𝛼, 𝛽) = (0.5, 1.0), and (e) and (f) (𝛼, 𝛽) = (0.8, 1.0). (𝐿 < 0 corresponds to stable periodic orbits, 𝐿 = 0 corresponds to quasiperiodic
orbits restricted to attracting invariant curves, and 𝐿 > 0 corresponds to chaotic dynamics.)

the boundary of the unit circle. Thus, if all eigenvalues move
inside the unit circle when 𝑥∗ is increased, then (27) is a
hyperbolic stable equilibrium in case of 𝑥∗ small. If at least
one eigenvalue moves out, (27) is unstable. The Jury criteria
(29a), (29b), (29c), and (29d)will help us to decide.Whenever

(29c) and (29d) fail, a pair of complex valued eigenvalues will
have modulus larger (or equal to) than 1 and consequently
have a location outside (or on) the unit circle. If (29a) and
(29b) fail, an eigenvalue crosses the unit circle through 1 or−1, respectively.
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Moreover, due to the complexity of the Jury criteria we
limit the discussion in the rest of this section to 𝛽1 = 𝛽2 = 𝛽.
Then the Jury criteria may be expressed as(𝛼 + 2𝛽) 𝑥∗ > 0 (30a)2 − 𝛼 (𝑥∗1 − 𝑥∗2 + 𝑥∗3 ) − 2𝛽𝑥∗2 > 0 (30b)2 − 𝛼𝑥∗3 − 𝛽 (𝑥∗1 + 𝑥∗2 ) > 0 (30c)(𝛽 − 𝛼) {(𝑥∗1 − 𝑥∗3 ) [1 − (𝛼𝑥∗3 + 𝛽 (𝑥∗1 + 𝑥∗2 ))] + 𝑥∗2− 𝑥∗3 } > 0. (30d)

Criteria (30a), (30b), and (30c) obviously hold in case of small
equilibrium populations 𝑥∗. Regarding (30d) the same is true
only as long as 𝛽 > 𝛼.

(A) First, consider 𝛽 < 𝛼. Then (30d) fails whenever 𝑥∗ is
small but it holds for those 𝑥∗ which satisfy

𝑥∗ > (1 + 𝑃𝑎𝛽 − 2𝑃2𝑎2𝛽)𝐷(1 − 𝑃2𝑎2𝛽) [𝛼𝑃2𝑎2𝛽 + 𝛽 (1 + 𝑃𝑎𝛽)] = 𝑢. (31a)

On the other hand, (30b) holds only as long as𝑥∗ < 2𝐷𝛼 (1 − 𝑃𝑎𝛽 + 𝑃2𝑎2𝛽) + 2𝛽𝑃𝑎𝛽 = V. (31b)

Therefore, if 𝑥∗ satisfies the inequality 𝑢 < 𝑥∗ < V, then(𝑥∗1 , 𝑥∗2 , 𝑥∗3 ) is stable. Moreover, if this shall be the case, the
difference 𝑢 − Vmust be strictly negative which is equivalent
to say that𝛼 − 2𝛽 + √(2𝛽 − 𝛼) (10𝛽 − 13𝛼)2 (3𝛼 − 2𝛽) < 𝑃𝑎𝛽 < 1. (32)

The most transparent case to discuss is 𝛽 = 0. Then 𝑢 = (1 +𝑃−2𝑃2)(1+𝑃+𝑃2)(𝑃2 − 𝑃4)−1, V = 2(1+𝑃+𝑃2)(1 − 𝑃 + 𝑃2)−1,
and from (32) we find 𝑡1 = (1 + √13)/6 < 𝑃 < 1 in order to
ensure that 𝑢 − V < 0. Now, if we choose a 𝑃 value larger
than 𝑡1, say 𝑃 = 0.9, we find 𝑢 = 4.93, V = 5.96 and finally
if 170.92 < 𝐹 < 476.64 we obtain 𝑢 < 𝑥∗ < V. Hence, there
exists a parameter region where the fixed point is stable.

Turning to the dynamics, SYC dynamics is the only
outcome in the region where (30d) fails. In case of small 𝐹
values there exists a stable 3-cycle where the points in the
cycle are (𝛼−1𝑃−2𝑥∗, 0, 0), (0, 𝛼−1𝑃−1𝑥∗, 0), and (0, 0, 𝛼−1𝑥∗).
For higher fecundity values there are cycles of period 3 ⋅ 2𝑘
as well as chaotic dynamics. In the intermediate region where
all criteria (30a)–(30d) are valid, we find coexistence between
the fixed point and chaotic SYC dynamics. Whether an orbit
shall converge towards (𝑥∗1 , 𝑥∗2 , 𝑥∗3 ) or settle on a chaotic
attractor on SYC form depends on the initial condition. If
we continue to increase 𝐹 we find that (30b) fails and as
a result the fixed point will undergo a (supercritical) flip
bifurcation.This gives birth to a tiny parameter region where
SYC dynamics coexists with a stable 2-cycle not on SYC form.
Through further enlargement of 𝐹, SYC dynamics is the only
outcome.

In [4] it was proved that there also exists a 3-cycle where
two age classes are populated at each time.Within our frame-
work the points in such a cycle are found to be (𝛼−1𝑃−1(1 −𝑃2)𝑧∗, 𝛼−1𝑃(1 − 𝑃)𝑧∗, 0), (0, 𝛼−1(1 − 𝑃2)𝑧∗, 𝛼−1𝑃2(1 − 𝑃)𝑧∗),
and (𝛼−1(1 − 𝑃)𝑧∗, 0, 𝛼−1𝑃(1 − 𝑃2)𝑧∗) where 𝑧∗ = (1 −𝑃2)−1𝑥∗. In [21] it is proved that the cycle is unstable and
further, in a more general context, it is shown in [24] that
such 2-class cycles may be embedded in a heteroclinic cycle
which may be attracting. Indeed, depending of the kind of
competition within and between age classes, the analysis in
[24] accounts for possible loops and cycles. For example, if
the competition is asymmetric the bifurcating invariant loop
consists of a single year class 3-cycle with a synchronous
two-year class orbit that heteroclinically connect the phases
of this 3-cycle. Thus, all orbits on such a heteroclinic cycle
approach the single year class 3-cycle. This mechanism was
also found in Bulmer’s original work on periodical cicadas.
For further reading, compare [17, 24]. A final point is that
when 𝑃 = 1, the eigenvalue equation may be cast in the
form

𝜆3 + 13 ln𝑅0𝜆2 + 13 ln𝑅0𝜆 + 13 ln𝑅0 − 1 = 0, (33)

where the dominant roots are exp[±(2𝜋/3)𝑖].This means that
independent of population size there will always be 3-cyclic
dynamics in the sense that the total population at every point
in the cycle equals 𝑥∗ but the structure of the points is on SYC
form.

Turning to the case 0 < 𝛽 < 𝛼, it is still possible to find
combinations of𝑃 and𝐹 such that the fixed point is stable but
the parameter interval where this occurs appears to be (very)
small. Indeed, assuming 𝛽 = 𝛼/100, the choice 𝑃𝑎𝛽 = 0.8
satisfies (32) and if 𝑃 = 0.845 it is possible to find 𝐹 such that𝑃𝑎𝛽 = 0.8 as well as 𝑢 < 𝑥∗ < V. However, if we change to 𝑃 =0.84 or 0.85 it does not work.Therefore, our conclusion is that
SYC dynamics dominates almost completely in the region 0 <𝛽 < 𝛼.

(B) Next, consider 𝛽 > 𝛼. In this case all criteria
(30a)–(30d) hold whenever 𝑥∗ is sufficiently small. Thus,
there exists a parameter regionwhere (27) is stable. Instability
is introduced through a Neimark−Sacker bifurcation when𝑥∗ = 𝑢 (cf. (31a)) or equivalently when
𝑃
= √ 1𝐹 exp[(𝛼 + 2𝛽) (1 + 𝑃𝑎𝛽 − 2𝑃2𝑎2𝛽) (1 + 𝑃𝑎𝛽 + 𝑃2𝑎2𝛽)(1 − 𝑃2𝑎2𝛽) (𝛼𝑃2𝑎2𝛽 + 𝛽 (1 + 𝑃𝑎𝛽)) ]. (34)

Regarding the eigenvalue equation (28), coefficients 𝑎1 and 𝑎2
are always positive and at threshold (34), 𝑎3 = 𝑃𝑎𝛽(1 + 𝑃𝑎𝛽)−1
which is positive too. Consequently, there are no changes of
signs between the coefficients in (28) which implies that there
are two complex modulus 1 solutions and one real negative
solution which necessarily must be 𝜆 = −𝑃𝑎𝛽(1 − 𝑃𝑎𝛽)−1 and
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clearly −1 < 𝜆 < 0. These findings allow us to express (28)
as [𝜆2 + 𝛼 (1 + 𝑃𝑎𝛽 − 𝑃2𝑎2𝛽) + 2𝛽𝑃2𝑎2𝛽𝛼𝑃2𝑎2𝛽 + 𝛽 (1 + 𝑃𝑎𝛽) 𝜆 + 1]

⋅ (𝜆 + 𝑃𝑎𝛽1 + 𝑃𝑎𝛽) = 0 (35)

and the location of eigenvalue at threshold is given by the
complex roots.

Now, scrutinizing the special case 𝛼 = 0, 𝛽 > 0, we find
that instability threshold (34) becomes

𝑃 = √ 1𝐹 exp[2 (𝐹 + √𝐹 + 1) (𝐹 + √𝐹 − 2)(𝐹 + √𝐹) (𝐹 − 1) ] (36)

and moreover that the complex modulus 1 solutions of (35)
may be expressed as

𝜆 = − √𝐹 − 1√𝐹 (𝐹 − 1) ± √1 − (√𝐹 − 1)2𝐹 (𝐹 − 1)2 𝑖. (37)

From (36) it follows that 𝐹 is large at bifurcation threshold;
thus the eigenvalue (37) is located in the left half plane
close to the imaginary axis (in fact even closer than in the
corresponding 2-age class model); therefore arg𝜆 ≈ 𝜋/2 here
too. In order to visualize the dynamics we have studied the
case 𝑃 = 0.7 in somewhat more detail. In Figure 5(a), where𝐹 = 24, we show a quasiperiodic orbit which is restricted to
a invariant curve. When 𝐹 = 30, see Figure 5(b), an exact
4-period orbit is established through the frequency locking
mechanism. In case of higher 𝐹 values, the fourth iterate of
(24) undergoes a Neimark−Sacker bifurcation which results
in four invariant curves as displayed in Figure 5(c) (𝐹 = 39).
Through further enlargement of 𝐹 the dynamics becomes
chaotic, see Figure 5(d) where 𝐹 = 43.

Next, assume 𝛼 > 0. Whenever 𝛼 is small, 𝛼 ≪ 𝛽,
we observe qualitatively the same kind of dynamics as just
reported, that is, four periodicities either exact or approxi-
mate beyond instability threshold. Through further increase
of 𝛼 the tendency towards 4-periodic dynamics becomes
less pronounced and gradually disappears completely. More-
over, we experience that the fixed point may be stable for
much higher fecundity values than when 𝛼 is small. The
nonstationary dynamics is restricted to invariant curves, not
topologically equivalent to circles, compare Figure 5(e), or
chaotic. The curves appear to be weakly attracting.

5. Discussion

In the previous sectionswe have analysed different versions of
two and three-dimensional maps. We shall now consider the
more general situation where there are 𝑛 age classes and since
the parameter space is huge we will limit the discussion to the
case where we have the same “strength” of survival between
any two age classes. Hence, we let 𝛽 = 𝛽1 = ⋅ ⋅ ⋅ = 𝛽𝑛−1 which

means that the eigenvalue equation (6) may be cast in the
form 𝜆𝑛 + [𝛼𝑥∗1 + 𝛽( 𝑛∑

𝑖=2

𝑥∗𝑖 )]𝜆𝑛−1
+ [[[𝛼𝑥∗2 + 𝛽( 𝑛∑𝑖=1𝑖 ̸=2𝑥∗𝑖)]]]𝜆𝑛−2
+ [[[𝛼𝑥∗3 + 𝛽( 𝑛∑𝑖=1𝑖 ̸=3𝑥∗𝑖)]]]𝜆𝑛−3 + ⋅ ⋅ ⋅
+ [[[𝛼𝑥∗𝑛−1 + 𝛽( 𝑛∑

𝑖=1
𝑖 ̸=𝑛−1

𝑥∗𝑖)]]]𝜆+ [𝛼𝑥∗𝑛 + 𝛽(𝑛−1∑
𝑖=1

𝑥∗𝑖 )] − 1 = 0.

(38)

First, let us comment on the parameter region where 𝛼 ≥ 𝛽.
Whenever 𝑥∗ is small the fixed point is always unstable. This
is proved in a general setting in [26] which also applies to the
case under consideration in this paper. Next, suppose that 𝑛 is
even and 𝜆 = −1.Then left hand side of (38)may be expressed
as (𝑥∗1 −𝑥∗2 )(𝛽−𝛼)+(𝑥∗3 −𝑥∗4 )(𝛽−𝛼)+ ⋅ ⋅ ⋅+ (𝑥∗𝑛−1 −𝑥∗𝑛 )(𝛽−𝛼)
which is clearly ≤0. On the other hand, when 𝜆 → −∞,
then left hand side of (38)→ +∞; thus there must be a root𝜆̃ < −1 of the equation which actually proves that the fixed
point (𝑥∗1 , . . . , 𝑥∗𝑛 ) will always be unstable. When 𝑛 is odd
the argument presented above does not hold, compare our
analysis of the three age class model. However, it is possible
to show that the fixed point is unstable given that 𝑥∗ is
sufficiently large. To this end, assume that 𝑛 is odd and𝜆 = −1.
Then left hand side of (38) is positive as long as

𝑥∗ > 2∑𝑛−1𝑗=0 (𝑃𝑎𝛽)𝑗𝛼∑𝑛−1𝑗=0 (−1)𝑗 (𝑃𝑎𝛽)𝑗 (39)

and we observe that when 𝜆 → −∞, 𝜆𝑛 → −∞ too, so
evidently there must exist an eigenvalue 𝜆̃ < −1 where left
hand side of (38) is zero. Hence, there is no stable fixed point
in this case.

As the number of age classes increases there may also be
cycles where more than one age class is populated at each
time. Such cycles, referred to as multiple year class, MYC,
cycles have already been identified in the 𝑛 = 3 case (𝛽 =0). In [21] where no density dependence in the survivals is
assumed, MYC dynamics is further discussed and a major
finding is that stability properties of such cycles on the whole
are similar to the stability properties of (𝑥∗1 , . . . , 𝑥∗𝑛 ) (i.e.,
unstable). Consequently, assuming 𝛼 > 𝛽, we conclude that
the nontrivial fixed point (3)will always be unstable except for
small parameter windows when 𝑛 is odd. As demonstrated,
such windows may be hard to find when 0 < 𝛽 < 𝛼.
Regarding the dynamics, the general case is SYC dynamics.
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Figure 5: (a) A quasiperiodic orbit which settles on an invariant curve. (𝛼, 𝛽) = (0, 1) and (𝑃, 𝐹) = (0.7, 24). (b) Convergence towards
a 4-cycle. (𝛼, 𝛽) = (0, 1) and (𝑃, 𝐹) = (0.7, 30). (c) 4 invariant curves which are visited once every fourth iteration. (𝛼, 𝛽) = (0, 1) and(𝑃, 𝐹) = (0.7, 39). (d) Chaotic dynamics. (𝛼, 𝛽) = (0, 1) and (𝑃, 𝐹) = (0.7, 43). (e) Dynamics in the case (𝛼, 𝛽) = (0.9, 1) and (𝑃, 𝐹) = (0.7, 95).
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When 𝑥∗ is small, there is an attracting 𝑛 cycle on SYC form,
as𝑥∗ is increasedwe observe cycles of period 2𝑘𝑛, 𝑘 = 1, 2, . . .,
as well as chaotic dynamics. In parameter windows where
(3) is stable there is coexistence between the fixed point and
chaotic dynamics on SYC form.Considering the simplest case(𝛼, 𝛽) = (1, 0) the 𝑛 cycle may be written as(𝑃−(𝑛−1)𝑥∗, 0, . . . , 0) , . . . , (0, . . . , 0, 𝑃−(𝑖−1)𝑥∗, 0, . . . , 0) ,. . . , (0, . . . , 𝑥∗) . (40)

An increase of 𝛽 (𝛽 < 𝛼) acts in a stabilizing fashion in the
sense that the higher 𝛽 is, the higher 𝐹 value is necessary in
order to generate chaotic dynamics.

From a biological point of view it is not obvious how
one should interpret SYC dynamics. As far as we know,
Bulmer [17] is the first who has noticed SYC dynamics in
theoretical insect models. He explains its presence by saying
that competition between age classes is more severe than
competition within age classes. Bulmer’s argument is further
strengthened by the findings in [24], see Theorem 9, where
it is shown mathematically that strong competition within
age classes in general will lead to an equilibrium where
all age classes are populated (i.e., an equilibrium of form
(3) in our model ) while strong competition between age
classes destabilizes and promotes oscillations with missing
age classes. Another argument is presented in [21]. However,
it should be emphasized that the conclusion obtained there is
found from a simple model.

In the remaining part of the paper we shall deal exclu-
sively with the case 𝛽 > 𝛼. Denoting left hand side of (38) for𝑃(𝜆) it is immediately clear from our previous analysis that
when 𝑛 is even the Jury criterion (−1)𝑛𝑃(−1) > 0 will always
be satisfied. Hence, there is no flip bifurcation in this case.
When 𝑛 is odd the value of 𝑥∗ at threshold (−1)𝑛𝑃(−1) = 0 is
found to be𝑥∗ = 2𝐷2𝛽𝑃𝑎𝛽∑(𝑛−3)/2𝑗=0 (𝑃𝑎𝛽)2𝑗 + 𝛼∑𝑛−1𝑗=0 (−1)𝑗 (𝑃𝑎𝛽)𝑗 (41)

and if we substitute back into (38) the constant term becomes

𝑎𝑛 = 2𝛽∑(𝑛−3)/2𝑗=0 (𝑃𝑎𝛽)2𝑗 − 𝛼∑𝑏−1𝑗=0 (−1)𝑗 (𝑃𝑎𝛽)𝑗𝐾 , (42)

where 𝐾 is the denumerator of (41). Moreover, since 𝑎𝑛 > 1
we may rule out the flip here too. Consequently, the only
possible transfer from stability to instability goes through a
(supercritical) Neimark−Sacker bifurcation for any 𝑛 ≥ 2.

There are two more questions which we find natural to
discuss. (A)Will the 4-periodic dynamics observed when 𝑛 =2 and 𝑛 = 3 also persist in case of larger values of 𝑛 and (B)
what happens to the size of the stable parameter region when
the number of age classes increases?

Regarding (A), assume 𝑛 = 4 and (𝛼, 𝛽) = (0, 1) (the
values of 𝛼 and 𝛽 with the most pronounced 4-periodic
dynamics when 𝑛 = 2 and 𝑛 = 3). From the Jury criteria
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Figure 6:The curves 𝑥∗(𝑖) at threshold. From bottom to top: 𝑥∗(4), 𝑥∗(3),
and 𝑥∗(2).
(and a lengthy calculation!) it now follows that the size of 𝑥∗
at instability threshold must satisfy(𝐷 − 𝑃3) [(𝐷 − 𝑃3) 𝑃 + (𝐷 − 1)] 𝑥∗2+ 𝐷 [1 + 𝑃2 + 4𝑃4 − 2𝐷 (1 + 2𝑃)] 𝑥∗ + 4𝑃𝐷2= 0. (43)

Thus, for given values of 𝑃 we may compute 𝑥∗ from (43),
substitute back into (38) and solve in order to find the location
of the modulus 1 eigenvalues 𝜆 at threshold. For example,
if 𝑃 = 0.6 we find 𝜆1,2 = 0.111928 ± 0.993716𝑖 (𝜆3 =0.203731, 𝜆4 = 0.915659) while 𝑃 = 0.2 gives 𝜆1,2 =0.110914 ± 0.99383𝑖 (𝜆3 = 0.605291, 𝜆4 = 0.916205). Now,
the crucial observation from calculations as above is that 𝜆1,2
(as opposed to the 𝑛 = 2 and 𝑛 = 3 cases) are located in the
right half of the complex plane and not particularly close to
the imaginary axis. Hence, | arg 𝜆1,2 −𝜋/2| is not small, so the
tendency towards 4-periodic dynamics is much weaker than
in 𝑛 = 2, 𝑛 = 3 cases, a result which has also been verified
through several simulations. Therefore, our analysis clearly
suggests that periodic dynamics of low period, in particular
4-periodic dynamics, is limited to species with a few number
of age classes. If only the first age class is not fertile and density
effects occur in the survival terms exclusively, we may find 4-
periodic dynamics also for larger values of 𝑛; see [15].

Finally consider (B) and let 𝑥∗(2)(𝑃), 𝑥∗(3)(𝑃), and 𝑥∗(4)(𝑃)
be the size of 𝑥∗ at bifurcation threshold in the 𝑛 = 2, 3
and 4 cases, respectively. From (16), (31a), (31b), and (43) it
now follows that 𝑥∗(𝑖)(𝑃), 𝑖 = 2, 3, 4, are increasing functions
of 𝑃, 0 < 𝑃 < 1, and moreover, that 2 < 𝑥∗(2)(𝑃) <4, 1 < 𝑥∗(3)(𝑃) < 9/4, and 0 < 𝑥∗(4)(𝑃) < 4/3. These
findings are presented in Figure 6. Hence, for a given value
of 𝑃, 𝑥∗(4)(𝑃) < 𝑥∗(3)(𝑃) < 𝑥∗(2)(𝑃) which means that the
value of 𝑥∗ at threshold becomes smaller as the number
of age classes is increased; that is, an increase of 𝑛 acts as
a destabilizing effect. This argument is further increased if
we continue to increase 𝑛. Indeed, when 𝑛 = 5 we have
verified numerically that the fixed point is unstable in case
of 𝑃 sufficiently small. Only quasiperiodic orbits have been
identified. In [32] where a discrete stage-structured popula-
tion model was analysed, the authors concluded that species
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who possess delayed semelparous life histories tend to be
more stable than specieswho possess precocious semelparous
life histories. Results from the analysis of age-structured
models in [16] show a tendency in the opposite direction.
The findings in this paper support the latter, but we feel that
more work has to be done before one may conclude this
issue.

Appendix

Considering map (8), 𝛽 > 𝛼, we find that the Jacobian at
bifurcation threshold (11c) or (16) may be written as

𝐽 =(
(

− 2𝛼𝛽1 + 𝛼𝑃𝑎𝛽1 𝛽 − 𝛼𝑃𝑎𝛽1𝑃𝑎𝛽1 (𝛽1 + 𝛼𝑃𝑎𝛽1)
𝑃𝑎𝛽1 𝛼𝑃𝑎𝛽1 − 𝛽1𝛽1 + 𝛼𝑃𝑎𝛽1 − 2𝛽1𝑃𝑎𝛽1𝛽1 + 𝛼𝑃𝑎𝛽1

)
)

(A.1)

and as shown in the main text

𝜆 = −𝛼 + 𝛽1𝑃𝑎𝛽1𝛽1 + 𝛼𝑃𝑎𝛽1 ± 𝑏𝛽1 + 𝛼𝑃𝑎𝛽1 𝑖, (A.2)

where 𝑏 = √(𝛽21 − 𝛼2)(1 − 𝑃2𝑎2𝛽1). The corresponding
eigenvector becomes

{𝑤1, 𝑤2} = { 𝛼 − 𝛽1𝑃𝑎𝛽1𝑃𝑎𝛽1 (𝛽1 − 𝛼𝑃𝑎𝛽1)− 𝑏𝑃𝑎𝛽1 (𝛽1 − 𝛼𝑃𝑎𝛽1) 𝑖, 1 + 𝑂𝑖} . (A.3)

Further, define the matrix (cf. (A.3))𝑇
=( 𝛼 − 𝛽1𝑃𝑎𝛽1𝑃𝑎𝛽1 (𝛽 − 𝛼𝑃𝑎𝛽1) 𝑏𝑃𝑎𝛽1 (𝛽1 − 𝛼𝑃𝑎𝛽1)1 0 ) . (A.4)

Then, after expanding the components of (8) up to third
order, translating the bifurcation to the origin through the
change of coordinates (󵱰𝑥1, 󵱰𝑥2) = (𝑥1−𝑥∗1 , 𝑥2−𝑥∗2 ), and finally
applying the transformations

(󵱰𝑥1󵱰𝑥2) = 𝑇(𝑢
V
)

(𝑢
V
) = 𝑇−1 (󵱰𝑥1󵱰𝑥2) (A.5)

map (8) may be cast into standard form at the bifurcation as
(18) where𝑓 (𝑢, V) = 𝛼𝛽1𝑏2(𝛽1 + 𝛼𝑃𝑎𝛽1) (𝛽1 − 𝛼𝑃𝑎𝛽1)2 𝑢2+ 𝛽1𝑏 [𝛽21 − 𝛼2 − 𝛼2 (1 − 𝑃2𝑎2𝛽1)](𝛽1 + 𝛼𝑃𝑎𝛽1) (𝛽1 − 𝛼𝑃𝑎𝛽1)2 𝑢V

− 𝛼𝛽1𝑏2(𝛽1 + 𝛼𝑃𝑎𝛽1) (𝛽1 − 𝛼𝑃𝑎𝛽1)2 V2 + 𝑃𝑎𝛽1𝛽1 + 𝛼𝑃𝑎𝛽1× {[16𝛽21 (3𝛼𝑃𝑎𝛽1 + 𝛽1) 𝑘3 + 𝛼𝛽21𝑃𝑎𝛽𝑘2+ 12𝛽21 (𝛼𝑃𝑎𝛽1 − 𝛽1) 𝑘 − 𝛽313 ] 𝑢2+ [16𝛽21 (3𝛼𝑃𝑎𝛽1 + 𝛽1) 3𝑘2𝑙 + 2𝛽21𝛼𝑃𝑎𝛽1𝑘𝑙+ 12𝛽21 (𝛼𝑃𝑎𝛽1 − 𝛽1) 𝑙] 𝑢2V+ [16𝛽21 (3𝛼𝑃𝑎𝛽1 + 𝛽1) 3𝑘𝑙2 + 𝛽21𝛼𝑃𝑎𝛽1 𝑙2] 𝑢V2+ 16𝛽21 (3𝛼𝑃𝑎𝛽1 + 𝛽1) 𝑙3V3}

(A.6)

𝑔 (𝑢, V) = −𝛼 − 𝛽1𝑃𝑎𝛽1𝑏 𝑓 (𝑢.V)− 𝛼2𝑏𝑃𝑎𝛽1 (𝛽1 + 𝛼𝑃𝑎𝛽1) (𝛽1 − 𝛼𝑃𝑎𝛽1)2 𝑢2+ 𝛼 [𝛼2 − 𝛽21 + 𝛼2 (1 − 𝑃2𝑎2𝛽1)]𝑃𝑎𝛽1 (𝛽1 + 𝛼𝑃𝑎𝛽) (𝛽1𝛼𝑃𝑎𝛽1) 𝑢V+ 𝛼2𝑏𝑃𝑎𝛽1 (𝛽1 + 𝛼𝑃𝑎𝛽1) (𝛽1𝛼𝑃𝑎𝛽1)V2+ 𝛽1 − 𝛼𝑃𝑎𝛽1𝑏 (𝛽1 + 𝛼𝑃𝑎𝛽1) × {[−13𝛼3𝑃𝑎𝛽1𝑘3+ 12𝛼2 (𝛽1 − 𝛼𝑃𝑎𝛽1) 𝑘2 + 𝛼2𝛽1𝑘] 𝑢3 + [𝛼3𝑃𝑎𝛽1𝑘2𝑙+ 𝛼2 (𝛽1 − 𝛼𝑃𝑎𝛽1) 𝑘𝑙 + 𝛼2𝛽1𝑙] 𝑢2V + [−𝛼3𝑃𝑎𝛽𝑘𝑙2+ 12𝛼2 (𝛽1 − 𝛼𝑃𝑎𝛽1) 𝑙2] 𝑢V2 − 13𝛼3𝑃𝑎𝛽1 𝑙3V3} .

(A.7)

𝑘 and 𝑙 are defined as𝑘 = 𝛼 − 𝛽1𝑃𝑎𝛽1𝑃𝑎𝛽1 (𝛽1 − 𝛼𝑃𝑎𝛽1)𝑙 = 𝑏𝑃𝑎𝛽1 (𝛽1 − 𝛼𝑃𝑎𝛽1) , (A.8)

respectively.
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