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Let𝑋 be a real locally uniformly convex reflexive Banach space with locally uniformly convex dual space𝑋∗. Let 𝑇 : 𝑋 ⊇ 𝐷(𝑇) →2𝑋∗ be maximal monotone, 𝑆 : 𝑋 → 2𝑋∗ be bounded and of type (𝑆+), and 𝐶 : 𝐷(𝐶) → 𝑋∗ be compact with 𝐷(𝑇) ⊆ 𝐷(𝐶)
such that 𝐶 lies in Γ𝜏

𝜎 (i.e., there exist 𝜎 ≥ 0 and 𝜏 ≥ 0 such that ‖𝐶𝑥‖ ≤ 𝜏‖𝑥‖ + 𝜎 for all 𝑥 ∈ 𝐷(𝐶)). A new topological degree
theory is developed for operators of the type 𝑇 + 𝑆 + 𝐶. The theory is essential because no degree theory and/or existence result is
available to address solvability of operator inclusions involving operators of the type 𝑇+ 𝑆 +𝐶, where 𝐶 is not defined everywhere.
Consequently, new existence theorems are provided. The existence theorem due to Asfaw and Kartsatos is improved. The theory is
applied to prove existence of weak solution (s) for a nonlinear parabolic problem in appropriate Sobolev spaces.

1. Introduction: Preliminaries

In what follows, the norm of the spaces 𝑋 and 𝑋∗ will be
denoted by ‖ ⋅ ‖. For 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋∗, the pairing ⟨𝑥∗, 𝑥⟩
denotes the value 𝑥∗(𝑥). Let 𝑋 and 𝑌 be real Banach spaces.
For an operator 𝑇 : 𝑋 → 2𝑌, we define the domain 𝐷(𝑇)
of 𝑇 by 𝐷(𝑇) = {𝑥 ∈ 𝑋 : 𝑇𝑥 ̸= 0}, and the range 𝑅(𝑇)
of 𝑇 by 𝑅(𝑇) = ⋃𝑥∈𝐷(𝑇) 𝑇𝑥. We also use the symbol 𝐺(𝑇)
for the graph of 𝑇: 𝐺(𝑇) = {(𝑥, 𝑥∗) : 𝑥 ∈ 𝐷(𝑇), 𝑥∗ ∈ 𝑇𝑥}.
An operator 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 𝑌 is “demicontinuous” if it
is continuous from the strong topology of 𝐷(𝑇) to the weak
topology of 𝑌. It is “compact” if it is strongly continuous and
maps bounded subsets of 𝐷(𝑇) to relatively compact subsets
of𝑌.An operator 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑌 is “bounded” if it maps
each bounded subset of𝐷(𝑇) into a bounded subset of𝑌. It is
“finitely continuous” if it is upper semicontinuous from each
finite dimensional subspace 𝐹 of 𝑋 to the weak topology of𝑌. Let 𝜙 : [0,∞) → (−∞,∞) be a continuous and strictly
increasing function such that 𝜙(𝑡) → ∞ as 𝑡 → ∞. The
mapping 𝐽𝜙 : 𝑋 → 2𝑋∗ defined by

𝐽𝜙 (𝑥)
= {𝑥∗ ∈ 𝑋∗ : ⟨𝑥∗, 𝑥⟩ = 𝜙 (‖𝑥‖) ‖𝑥‖ , 󵄩󵄩󵄩󵄩𝑥∗󵄩󵄩󵄩󵄩 = 𝜙 (‖𝑥‖)} (1)

is called the “duality mapping” associated with 𝜙. As a
consequence of the Hahn-Banach theorem, it is well-known
that 𝐽𝜙(𝑥) ̸= 0 for all 𝑥 ∈ 𝑋. Since 𝑋 and 𝑋∗ are locally uni-
formly convex, 𝐽𝜙 is single valued, bounded, monotone, and
bicontinuous. The following definitions are needed through-
out the paper.

Definition 1. An operator 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ is said to be

(i) “monotone” if for every𝑥 ∈ 𝐷(𝑇),𝑦 ∈ 𝐷(𝑇),𝑢∗ ∈ 𝑇𝑥,
and V∗ ∈ 𝑇𝑦, we have ⟨𝑢∗ − V∗, 𝑥 − 𝑦⟩ ≥ 0;

(ii) “maximal monotone” if 𝑇 is monotone and 𝑅(𝑇 +𝜆𝐽) = 𝑋∗ for every 𝜆 > 0; that is, 𝑇 is maximal
monotone if and only if 𝑇 is monotone and ⟨𝑢∗ −𝑢∗

0 , 𝑥 − 𝑥0⟩ ≥ 0 for every (𝑥, 𝑢∗) ∈ 𝐺(𝑇) implies𝑥0 ∈ 𝐷(𝑇) and 𝑢∗
0 ∈ 𝑇𝑥0;

(iii) “coercive” if either 𝐷(𝑇) is bounded or there exists a
function𝜓 : [0,∞) → (−∞,∞) such that 𝜓(𝑡) → ∞
as 𝑡 → ∞ and ⟨𝑦∗, 𝑥⟩ ≥ 𝜓(‖𝑥‖)‖𝑥‖ for all 𝑥 ∈ 𝐷(𝑇)
and 𝑦∗ ∈ 𝑇𝑥;

(iv) “weakly coercive” if either𝐷(𝑇) is bounded or |𝑇𝑥| →∞ as ‖𝑥‖ → ∞, where for each 𝑥 ∈ 𝐷(𝑇), |𝑇𝑥| =
inf{‖V∗‖ : V∗ ∈ 𝑇𝑥}.
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2 Abstract and Applied Analysis

It is important to note here that the class of weakly
coercive operators includes the classes of coercive operators.
For a maximal monotone operator 𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2𝑋∗ , we
know that𝑅(𝑇+𝜆𝐽) = 𝑋∗ for all 𝜆 > 0 and (𝑇+𝜆𝐽)−1 : 𝑋∗ →𝐷(𝑇) is single valued and demicontinuous. In addition, the
operator 𝑇𝑡 : 𝑋 → 𝑋∗, 𝑡 ∈ (0,∞), defined by 𝑇𝑡𝑥 = (𝑇−1 +𝑡𝐽−1)−1𝑥, is the “Yosida approximant” of 𝑇. It is bounded,
continuous, andmaximalmonotonewith domain𝑋 such that𝑇𝑡𝑥 ⇀ 𝑇(0)𝑥 as 𝑡 → 0+, for every 𝑥 ∈ 𝐷(𝑇), where ‖𝑇(0)𝑥‖ =
inf{‖𝑦∗‖ : 𝑦∗ ∈ 𝑇𝑥}. Furthermore, the operator 𝐽𝑡 : 𝑋 →𝐷(𝑇), defined by 𝐽𝑡𝑥 = 𝑥 − 𝑡𝐽−1(𝑇𝑡𝑥), is called the “Yosida
resolvent” of𝑇. It is continuous,𝑇𝑡𝑥 ∈ 𝑇(𝐽𝑡𝑥) for every𝑥 ∈ 𝑋,
and lim𝑡→0𝐽𝑡𝑥 = 𝑥 for all 𝑥 ∈ co𝐷(𝑇), where co𝐷(𝑇) is the
convex hull of the set𝐷(𝑇). Furthermore, for each 𝑥 ∈ 𝐷(𝑇),‖𝑇𝑡𝑥‖ ≤ |𝑇𝑥| for all 𝑡 > 0. Browder and Hess [1] introduced
the following definitions. The original definition of single
valued pseudomonotone operator is due to Brèzis [2].

Definition 2. An operator 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ is said to be

(a) “pseudomonotone” if the following conditions are
satisfied:

(i) For every 𝑥 ∈ 𝐷(𝑇), 𝑇𝑥 is nonempty, closed,
convex, and bounded subset of𝑋∗;

(ii) 𝑇 is finitely continuous; that is, for every 𝑥0 ∈𝐷(𝑇) ∩ 𝐹 and every weak neighborhood 𝑉 of𝑇𝑥0 in 𝑋∗, there exists a neighborhood 𝑈 of 𝑥0

in 𝐹 such that 𝑇𝑈 ⊂ 𝑉;
(iii) for each sequence {𝑥𝑛} ⊂ 𝐷(𝑇) with 𝑦∗

𝑛 ∈ 𝑇𝑥𝑛

such that 𝑥𝑛 ⇀ 𝑥0 ∈ 𝐷(𝑇) and
lim sup

𝑛→∞
⟨𝑦∗

𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0, (2)

we have that, for every 𝑥 ∈ 𝐷(𝑇), there exists𝑦∗(𝑥) ∈ 𝑇𝑥0 such that

⟨𝑦∗ (𝑥) , 𝑥0 − 𝑥⟩ ≤ lim inf
𝑛→∞

⟨𝑦∗
𝑛 , 𝑥𝑛 − 𝑥⟩ ; (3)

in particular, letting 𝑥0 in place of 𝑥 in the above
inequality, the pseudomonotonicity of𝑇 implies

lim inf
𝑛→∞

⟨𝑦∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≥ 0; (4)

(b) “of type (𝑆+)” if (i) and (ii) of (a) hold and for each
sequence {𝑥𝑛} in𝐷(𝑇) such that 𝑥𝑛 ⇀ 𝑥0 in𝑋 as 𝑛 →∞ and every 𝑤∗

𝑛 ∈ 𝑆𝑥𝑛 with

lim sup
𝑛→∞

⟨𝑤∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0, (5)

we have 𝑥𝑛 → 𝑥0 ∈ 𝐷(𝑇) and there exists a
subsequence of {𝑤∗

𝑛 }, denoted again by {𝑤∗
𝑛 }, such that𝑤∗

𝑛 ⇀ 𝑤∗
0 ∈ 𝑇𝑥0 as 𝑛 → ∞;

(c) “of type (𝑆)” if (i) and (ii) of (a) hold and for any
sequence 𝑥𝑛 ∈ 𝐷(𝑇), V∗

𝑛 ∈ 𝑇𝑥𝑛 such that V∗
𝑛 → V∗

0

as 𝑛 → ∞, it follows that there exists a subsequence
of {𝑥𝑛}, denoted again by {𝑥𝑛}, such that 𝑥𝑛 → 𝑥0 as𝑛 → ∞.

It is not difficult to see that the class of operators of type(𝑆) includes the classes of operators of type (𝑆+). Furthermore,
it holds that 𝑇 + 𝐶 is of type (𝑆) provided that 𝑇 is of type (𝑆)
and 𝐶 is compact. The main goals of this paper are

(i) to develop suitable degree theory for operators of the
type𝑇+𝑆+𝐶, where𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2𝑋∗ is maximal
monotone, 𝑆 : 𝑋 → 2𝑋∗ is bounded of type (𝑆+), and𝐶 : 𝐷(𝐶) → 𝑋∗ is compact with 𝐷(𝑇) ⊆ 𝐷(𝐶) and
sublinear; that is, there exist 𝜏 ≥ 0 and 𝜎 ≥ 0 such that‖𝐶𝑥‖ ≤ 𝜏‖𝑥‖ +𝜎 for all 𝑥 ∈ 𝐷(𝐶). The existing degree
theories for operators of the type 𝑇 + 𝑆 cannot be
used to treat inclusions involving operators of the type𝑇 + 𝑆 + 𝐶 because the compact operator is not every-
where defined. For recent degree theories for multi-
valued bounded (𝑆+) or bounded pseudomonotone
perturbations of arbitrary maximal monotone oper-
ators, the reader is referred to the papers by Asfaw
and Kartsatos [3], Asfaw [4], Adhikari and Kartsatos
[5], and the references therein. In these theories,
the maximal monotone operator is arbitrary and(𝑆+) and/or pseudomonotone operator is everywhere
defined.The original degree mapping due to Browder
[6] is for operators of the type 𝑇+𝑓, where 𝑓 is single
valued bounded operator of type (𝑆+) defined from
the closure of a nonempty, bounded, and open subset𝐺 of 𝑋. Hu and Papageorgiou [7] generalized Brow-
der’s theory for multivalued compact perturbation of𝑇+𝑓, where the compact operator is defined on𝐺. All
these theories do not include the case where 𝐶 is not
defined on𝐺, in particular, when𝐷(𝐶) contains𝐷(𝑇).
In view of these, our work in developing a degree
theory for operators of the type 𝑇+𝑆+𝐶, where𝐶 is a
compact operator with𝐷(𝑇) ⊆ 𝐷(𝐶), is essential. It is
worth mentioning that the theory associated with (i)
is a generalization of the previous degree theories for
bounded (𝑆+) perturbations of maximal monotone
operators due to Browder [6], Kobayashi and Otani
[8], Hu and Papageorgiou [7], Asfaw and Kartsatos
[3], and the references therein. The most general
degree theory currently available which is due to
Asfaw [9] is for pseudomonotone perturbations of the
sum of two maximal monotone operators with one of
the maximal monotone operators which is of type Γ𝛽

𝜙 ;

(ii) to derive existence theorem(s) in order to establish
solvability of operator inclusion problems involving
operators of the type 𝑇 + 𝑆 + 𝐶. Consequently, the
theory developed in (i) is applied to prove exis-
tence of solution for the inclusion problem 𝑓∗ ∈(𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)) provided that there exists𝑅 = 𝑅(𝑓∗) > 0 such that

⟨V∗ + 𝑤∗ + 𝐶𝑥 − 𝑓∗, 𝑥⟩ > 0 (6)

for all 𝑥 ∈ 𝐷(𝑇) ∩ 𝜕𝐵𝑅(0), V∗ ∈ 𝑇𝑥, and 𝑤∗ ∈ 𝑆𝑥;
that is, 𝑅(𝑇 + 𝑆 + 𝐶) = 𝑋∗ provided that 𝑇 + 𝑆 + 𝐶 is
coercive.The result is a generalization of the existence
result due to Asfaw and Kartsatos [3, Theorem 17] for
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the operator 𝑇 + 𝑆. This result yields the surjectivity
of 𝑇 + 𝑆 + 𝐶 provided that 𝑇 + 𝑆 + 𝐶 is coercive and
either 𝑆 is bounded of type (𝑆+) or 𝑇+𝑆 is operator of
type (𝑆).

Throughout the paper, we shall use the following definition
of a homotopy of class (𝑆+).
Definition 3. Let 𝑡 ∈ [0, 1] and 𝑆𝑡 : 𝑋 ⊃ 𝐷(𝑆𝑡) → 2𝑋∗ . The
family {𝑆𝑡}𝑡∈[0,1] is said to be a “homotopy of type (𝑆+)” if the
following are true:

(i) For each 𝑡 ∈ [0, 1], 𝑥 ∈ 𝐷(𝑆𝑡), 𝑆𝑡𝑥 is a nonempty,
closed, convex, and bounded subset of𝑋∗.

(ii) For each 𝑡 ∈ [0, 1], 𝑆𝑡 is finitely continuous.
(iii) Let {𝑡𝑛} ⊂ [0, 1], 𝑥𝑛 ∈ 𝐷(𝑆𝑡𝑛) be such that 𝑡𝑛 → 𝑡0 and𝑥𝑛 ⇀ 𝑥0 ∈ 𝑋. Let 𝑓𝑛 ∈ 𝑆𝑡𝑛𝑥𝑛 be such that

lim sup
𝑛→∞

⟨𝑓𝑛, 𝑥𝑛 − 𝑥0⟩ ≤ 0. (7)

Then 𝑥𝑛 → 𝑥0 ∈ 𝐷(𝑆𝑡0) and there exists a
subsequence of {𝑓𝑛}, denoted again by {𝑓𝑛}, such that𝑓𝑛 ⇀ 𝑓 ∈ 𝑆𝑡0𝑥0 as 𝑛 → ∞.

The following lemma is due to Ibrahimou and Kartsatos
[10].

Lemma 4. Let 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ be maximal monotone
and 𝐺 ⊂ 𝑋 be bounded. Let 0 < 𝑠1 ≤ 𝑠2, 0 < 𝑡1 < 𝑡2. Let𝑇𝑠 fl 𝑠𝑇. Then there exists a constant 𝐾1 > 0, independent of𝑡 and 𝑠, such that ‖𝑇𝑠

𝑡𝑢‖ ≤ 𝐾1 for all 𝑢 ∈ 𝐺, 𝑠 ∈ [𝑠1, 𝑠2], and𝑡 ∈ [𝑡1, 𝑡2].
For basic definitions and further properties of mappings

of monotone type, the reader is referred to Barbu [11], Pascali
and Sburlan [12], Browder and Hess [1], and Zeidler [13].

The content of the following important lemma is due to
Brezis et al. [14].

Lemma 5. Let 𝐵 be a maximal monotone set in 𝑋 × 𝑋∗. If(𝑢𝑛, 𝑢∗
𝑛 ) ∈ 𝐵 such that 𝑢𝑛 ⇀ 𝑢 in𝑋, 𝑢∗

𝑛 ⇀ 𝑢∗ in𝑋∗, and

lim sup
𝑛→∞

⟨𝑢∗
𝑛 − 𝑢∗, 𝑢𝑛 − 𝑢⟩ ≤ 0, (8)

then (𝑢, 𝑢∗) ∈ 𝐵 and ⟨𝑢∗
𝑛 , 𝑢𝑛⟩ → ⟨𝑢∗, 𝑢⟩ as 𝑛 → ∞.

Browder [6] introduced the concept of a pseudomono-
tone homotopy as given below.

Definition 6. Let {𝑇𝑡}𝑡∈[0,1] be a family of maximal monotone
operators from 𝑋 to 2𝑋∗ such that 0 ∈ 𝑇𝑡(0), 𝑡 ∈ [0, 1].
Then {𝑇𝑡}𝑡∈[0,1] is called a “pseudomonotone homotopy” if it
satisfies the following equivalent conditions:

(i) Suppose that 𝑡𝑛 → 𝑡0 ∈ [0, 1] and (𝑥𝑛, 𝑦𝑛) ∈ 𝐺(𝑇𝑡𝑛)
are such that 𝑥𝑛 ⇀ 𝑥0 in𝑋, 𝑦𝑛 ⇀ 𝑦0 in𝑋∗ and

lim sup
𝑛→∞

⟨𝑦𝑛, 𝑥𝑛⟩ ≤ ⟨𝑦0, 𝑥0⟩ . (9)

Then (𝑥0, 𝑦0) ∈ 𝐺(𝑇𝑡0) and lim𝑛→∞⟨𝑦𝑛, 𝑥𝑛⟩ =⟨𝑦0, 𝑥0⟩.

(ii) The mapping 𝜙 : 𝑋∗ × [0, 1] → 𝑋 defined by

𝜙 (𝑤, 𝑡) fl (𝑇𝑡 + 𝐽)−1 (𝑤) (10)

is continuous.
(iii) For each 𝑤 ∈ 𝑋∗, the mapping 𝜙𝑤 : [0, 1] → 𝑋

defined by

𝜙𝑤 (𝑡) fl (𝑇𝑡 + 𝐽)−1 (𝑤) (11)

is continuous.
(iv) For any (𝑥, 𝑦) ∈ 𝐺(𝑇𝑡0) and any sequence 𝑡𝑛 → 𝑡0,

there exists a sequence (𝑥𝑛, 𝑦𝑛) ∈ 𝐺(𝑇𝑡𝑛) such that𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦 as 𝑛 → ∞.

For a maximal monotone operator 𝑇 : 𝑋 ⊇𝐷(𝑇) → 2𝑋∗ , Kobayashi and Otani [8] proved that
the family {𝑡𝑇}𝑡∈[0,1] is a pseudomonotone homotopy of
maximal monotone operators if and only if 𝑇 is densely
defined. It is worth mentioning that the proof of this fact
does not require the hypothesis 0 ∈ 𝑇(0). It is essential
herein to mention that the original degree theory for single-
value (𝑆+) perturbations of maximal monotone operators
is due to Browder [6]. For a generalization of Browder’s
degree formultivalued compact perturbations of𝑇+𝑓, where𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ is maximal monotone and 𝑓 :𝐺 → 𝑋∗ is bounded demicontinuous of type (𝑆+), the reader
is referred to the paper due to Hu and Papageorgiou [7].
For existence results for compact perturbation of maximal
monotone operators, the reader is referred to the paper due
to Kartsatos [15]. For a relevant degree mapping for single
multivalued operator of type (𝑆+), we cite the paper of Zhang
and Chen [16]. Recent developments on degree theories
for perturbations of the sum of two maximal monotone
operators can be found in the papers due to Adhikari and
Kartsatos [5] and Asfaw [4].

In Section 2 we construct a degree mapping for operators
of the type 𝑇+ 𝑆 +𝐶, where 𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2𝑋∗ is maximal
monotone, 𝑆 : 𝑋 → 2𝑋∗ is bounded and of type (𝑆+) or
bounded pseudomonotone, and 𝐶 : 𝐷(𝐶) → 𝑋∗ is compact
with 𝐷(𝑇) ⊆ 𝐷(𝐶) and satisfies a sublinearity condition. The
existence of solutions for operator inclusion problems of the
type 𝑇𝑢+𝑆𝑢+𝐶𝑢 ∋ 𝑓∗ is included in Section 3. In Section 4,
the theory is applied to establish existence of weak solution(s)
for a nonlinear parabolic problem in appropriate Sobolve
spaces.

2. Degree Theory for 𝑇+𝑆+𝐶 with 𝐷(𝑇) ⊆ 𝐷(𝐶)
2.1. Degree Theory for 𝑇 + 𝑆 + 𝐶 with 𝑆 Bounded and of Type(𝑆+). Thegoal of this section is to develop a degree theory for
operators of the type 𝑇 + 𝑆 + 𝐶, where 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗

is maximal monotone, 𝑆 : 𝑋 → 2𝑋∗ is bounded and of type(𝑆+), and 𝐶 : 𝐷(𝐶) → 𝑋∗ is compact with 𝐷(𝑇) ⊆ 𝐷(𝐶).
Throughout the paper, we assume that 𝐶 belongs to Γ𝜏

𝜎 (i.e.,
there exist 𝜎 ≥ 0 and 𝜏 ≥ 0 such that ‖𝐶𝑥‖ ≤ 𝜏‖𝑥‖ + 𝜎 for
all 𝑥 ∈ 𝐷(𝐶)). To this end, we start by proving the following
useful lemma.
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Lemma 7. Let 𝐺 be a nonempty, bounded, and open subset of𝑋. Let 𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2𝑋∗ be maximal monotone, 𝑆 : 𝑋 →2𝑋∗ be bounded and of type (𝑆+), and 𝐶 : 𝑋 ⊇ 𝐷(𝐶) → 𝑋∗

be compact with 𝐷(𝑇) ⊆ 𝐷(𝐶) such that 𝐶 belongs to class Γ𝜏
𝜎 .

Assume, further, that 𝑓∗ ∉ (𝑇+𝑆+𝐶)(𝐷(𝑇)∩𝜕𝐺). Then there
exists 𝜀0 > 0 such that 𝑑(𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀, 𝐺, 𝑓∗) is well-defined
and independent of 𝜀 ∈ (0, 𝜀0].
Proof. In the first step, we claim that there exists 𝜀0 > 0 such
that 𝑑(𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀, 𝐺, 𝑓∗) is well-defined for all 𝜀 ∈ (0, 𝜀0].
Suppose that this is false; that is, there exist 𝜀𝑛 ↓ 0+, 𝑥𝑛 ∈ 𝜕𝐺,
and 𝑤∗

𝑛 ∈ 𝑆𝑥𝑛 such that

V∗
𝑛 + 𝑤∗

𝑛 + 𝐶𝐽𝜀𝑛𝑥𝑛 = 𝑓∗ ∀𝑛, (12)

where V∗
𝑛 = 𝑇𝜀𝑛

𝑥𝑛. By the definitions of 𝑇𝜀𝑛
and 𝐽𝜀𝑛 , we have

𝐽𝜀𝑛𝑥𝑛 = 𝑥𝑛 − 𝜀𝑛𝐽−1 (V∗
𝑛 ) ∈ 𝐷 (𝑇) ,

V∗
𝑛 ∈ 𝑇 (𝐽𝜀𝑛𝑥𝑛) ∀𝑛. (13)

Since {𝑥𝑛} and 𝑆 are bounded, it follows that {𝑤∗
𝑛 } is bounded.

Since 𝐶 belongs to Γ𝜏
𝜎 , we get that

󵄩󵄩󵄩󵄩V∗
𝑛
󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑓∗ − 𝑤∗

𝑛
󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝐶𝐽𝜀𝑛𝑥𝑛

󵄩󵄩󵄩󵄩󵄩 ≤ 𝜅0 + 𝜏 󵄩󵄩󵄩󵄩󵄩𝐽𝜀𝑛𝑥𝑛

󵄩󵄩󵄩󵄩󵄩 + 𝜎
= 𝜅0 + 𝜏 󵄩󵄩󵄩󵄩󵄩𝑥𝑛 − 𝜀𝑛𝐽−1 (V∗

𝑛 )󵄩󵄩󵄩󵄩󵄩 + 𝜎
≤ 𝜅0 + 𝜏 󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝜏𝜀𝑛 󵄩󵄩󵄩󵄩V∗
𝑛
󵄩󵄩󵄩󵄩 + 𝜎

(14)

for all 𝑛, where 𝜅0 is an upper bound for {𝑓∗−𝑤∗
𝑛 }.This yields

the estimate

(1 − 𝜏𝜀𝑛) 󵄩󵄩󵄩󵄩V∗
𝑛
󵄩󵄩󵄩󵄩 ≤ 𝜅0 + 𝜏 󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝜎 (15)

for all 𝑛. Since 𝜀𝑛 ↓ 0+ and {𝑥𝑛} is bounded, it follows that{V∗
𝑛 } and {𝐽𝜀𝑛𝑥𝑛} are bounded. The compactness of 𝐶 implies

the boundedness of {𝐶𝐽𝜀𝑛𝑥𝑛}. Now, assume without loss of
generality that 𝑥𝑛 ⇀ 𝑥0, V

∗
𝑛 ⇀ V∗

0 , and 𝑤∗
𝑛 ⇀ 𝑤∗

0 as𝑛 → ∞. Since 𝐶 is compact, we may assume, by passing into
a subsequence if necessary, that 𝐶𝐽𝜀𝑛𝑥𝑛 → 𝑔∗

0 as 𝑛 → ∞. The
maximality of 𝑇 along with Lemma 5 gives

lim inf
𝑛→∞

⟨V∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≥ 0; (16)

that is, we obtain from (12) that

lim sup
𝑛→∞

⟨𝑤∗
𝑛 , 𝑥𝑛 − 𝑥0⟩

= lim sup
𝑛→∞

(− ⟨V∗
𝑛 + 𝐶𝐽𝜀𝑛𝑥𝑛 − 𝑓∗, 𝑥𝑛 − 𝑥0⟩)

= −lim inf
𝑛→∞

(⟨V∗
𝑛 + 𝐶𝐽𝜀𝑛𝑥𝑛 − 𝑓∗, 𝑥𝑛 − 𝑥0⟩)

≤ −lim inf
𝑛→∞

⟨V∗
𝑛 , 𝑥𝑛 − 𝑥0⟩

− lim inf
𝑛→∞

⟨𝐶𝐽𝜀𝑛𝑥𝑛 − 𝑓∗, 𝑥𝑛 − 𝑥0⟩
= −lim inf

𝑛→∞
⟨V∗

𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0.

(17)

Since 𝑆 is of type (𝑆+), we conclude that 𝑥𝑛 → 𝑥0 ∈ 𝜕𝐺 as𝑛 → ∞ and 𝑤∗
0 ∈ 𝑆𝑥0. Consequently, using (12) we arrive at

lim sup
𝑛→∞

⟨V∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0. (18)

The maximality of 𝑇 along with Lemma 5 yields 𝑥0 ∈ 𝐷(𝑇) ∩𝜕𝐺 and V∗
0 ∈ 𝑇𝑥0 and ⟨V∗

𝑛 , 𝑥𝑛⟩ → ⟨V∗
0 , 𝑥0⟩ as 𝑛 → ∞. Since 𝐶

is compact and 𝐽𝜀𝑛𝑥𝑛 = 𝑥𝑛 − 𝜀𝑛𝐽−1(V∗
𝑛 ) → 𝑥0 ∈ 𝐷(𝑇) ⊆ 𝐷(𝐶)

as 𝑛 → ∞, it follows that 𝐶𝐽𝜀𝑛𝑥𝑛 → 𝐶𝑥0 = 𝑔∗
0 as 𝑛 → ∞.

Letting 𝑛 → ∞ in (12), we get 𝑓∗ ∈ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝜕𝐺).
However, this is impossible.Thus, there exists 𝜀0 > 0 such that𝑑(𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀, 𝐺, 𝑓∗) is well-defined for all 𝜀 ∈ (0, 𝜀0].

Next, we shall prove that 𝑑(𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀, 𝐺, 𝑓∗) is
independent of 𝜀 ∈ (0, 𝜀0]. Let 𝜀𝑖 ∈ (0, 𝜀0] (𝑖 = 1, 2) be such
that 0 < 𝜀1 < 𝜀2 ≤ 𝜀0, 𝑞(𝑡) = 𝑡𝜀1 + (1 − 𝑡)𝜀2, 𝑡 ∈ [0, 1]. We
consider the homotopy operator

𝐻(𝑡, 𝑥) = 𝑇𝑞(𝑡)𝑥 + 𝑆𝑥 + 𝐶𝐽𝑞(𝑡)𝑥, (𝑡, 𝑥) ∈ [0, 1] × 𝐺. (19)

We will show that the family {𝐻(𝑡, ⋅)}𝑡∈[0,1] is a homotopy of
class (𝑆+) such that 0 ∉ 𝐻(𝑡, 𝜕𝐺) for all 𝑡 ∈ [0, 1]. To this end,
let𝑥𝑛 ∈ 𝐺,𝑤∗

𝑛 ∈ 𝑆𝑥𝑛, 𝑡𝑛 ∈ [0, 1],𝑓∗
𝑛 = 𝑇𝑞(𝑡𝑛)

𝑥𝑛+𝑤∗
𝑛+𝐶𝐽𝑞(𝑡𝑛)𝑥𝑛,𝑥𝑛 ⇀ 𝑥0, and 𝑡𝑛 → 𝑡0 as 𝑛 → ∞ be such that

lim sup
𝑛→∞

⟨𝑓∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0. (20)

Since {𝑥𝑛} and 𝑆 are bounded, it follows that {𝑤∗
𝑛 } is also

bounded. Since 𝑞(𝑡𝑛) ∈ [𝜀1, 𝜀2] for all 𝑛, we apply Lemma 4
to conclude that {𝑇𝑞(𝑡𝑛)

𝑥𝑛} and {𝐽𝑞(𝑡𝑛)𝑥𝑛} are bounded. On the
other hand, we see that

lim sup
𝑛→∞

⟨𝑤∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ lim sup

𝑛→∞
⟨𝑓∗

𝑛

− (𝑇𝑞(𝑡𝑛)
𝑥𝑛 − 𝑇𝑞(𝑡𝑛)

𝑥0 + 𝐶𝐽𝑞(𝑡𝑛)𝑥𝑛) , 𝑥𝑛 − 𝑥0⟩
− lim

𝑛→∞
⟨𝑇𝑞(𝑡𝑛)

𝑥0, 𝑥𝑛 − 𝑥0⟩ .
(21)

By the compactness of 𝐶, we may assume without loss of
generality that 𝐶𝐽𝑞(𝑡𝑛)𝑥𝑛 → ℎ∗

0 as 𝑛 → ∞. Since 𝑞(𝑡𝑛) → 𝑞 =𝑞(𝑡0) > 0 as 𝑛 → ∞, we use the continuity of (0,∞) × 𝑋 ∋(𝑡, 𝑥) → 𝑇𝑡(𝑥) ([3], Lemma 6) to conclude that 𝑇𝑞(𝑡𝑛)
𝑥0 →𝑇𝑞𝑥0 as 𝑛 → ∞. Combining these along with the mono-

tonicity of 𝑇𝑞(𝑡𝑛)
, we obtain

lim sup
𝑛→∞

⟨𝑤∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0. (22)

Since 𝑆 is of type (𝑆+), we see that 𝑥𝑛 → 𝑥0 as 𝑛 → ∞ and
there exists a subsequence of {𝑤∗

𝑛 }, denoted again by {𝑤∗
𝑛 },

such that 𝑤∗
𝑛 ⇀ 𝑤∗

0 ∈ 𝑆𝑥0 as 𝑛 → ∞. Since (0,∞) × 𝑋 ∋(𝑡, 𝑥) 󳨃→ 𝑇𝑡𝑥 is continuous, we conclude that

𝑓∗
𝑛 ⇀ 𝑇𝑞𝑥0 + 𝑤∗

0 + 𝐶𝐽𝑞𝑥0 ∈ 𝑇𝑞𝑥0 + 𝑆𝑥0 + 𝐶𝐽𝑞𝑥0

as 𝑛 󳨀→ ∞; (23)

that is, {𝐻(𝑡, ⋅)}𝑡∈[0,1] is a homotopy of class (𝑆+) such that0 ∉ 𝐻(𝑡, 𝜕𝐺) for all 𝑡 ∈ [0, 1]. Therefore, 𝑑(𝐻(𝑡, ⋅), 𝐺, 𝑓∗) is
independent of 𝑡 ∈ [0, 1]; that is, 𝑑(𝑇𝜀1

+ 𝑆 + 𝐶𝐽𝜀1 , 𝐺, 𝑓∗) =𝑑(𝑇𝜀2
+𝑆+𝐶𝐽𝜀2 , 𝐺, 𝑓∗). Since 𝜀1 and 𝜀2 are arbitrary in (0, 𝜀0],

we conclude that 𝑑(𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀, 𝐺, 𝑓∗) is well-defined and
independent of 𝜀 ∈ (0, 𝜀0]. This completes the proof.
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Based on Lemma 7, the associated degree mapping is
defined as follows.

Definition 8. Let𝐺 be a nonempty, bounded, and open subset
of 𝑋, 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ be maximal monotone, 𝑆 : 𝑋 →2𝑋∗ be bounded and of type (𝑆+), and 𝐶 : 𝑋 ⊇ 𝐷(𝐶) → 𝑋∗

be compact with𝐷(𝑇) ⊆ 𝐷(𝐶) and belonging to the class Γ𝜏
𝜎 .

Assume, further, that 𝑓∗ ∉ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝜕𝐺). Then the
degree mapping 𝑑 for 𝑇 + 𝑆 + 𝐶 at 𝑓∗ ∈ 𝑋∗ with respect to 𝐺
is defined by

𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺, 𝑓∗) = lim
𝜀↓0+

𝑑𝑆+
(𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀, 𝐺, 𝑓∗) , (24)

where 𝑑𝑆+
is the degree mapping for multivalued bounded

operators of type (𝑆+) from [16].

2.2. Basic Properties of the Degree

Theorem 9. Let 𝐺 be a nonempty, bounded, and open subset
of 𝑋. Let 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ be maximal monotone, 𝑆 :𝑋 → 2𝑋∗ be bounded and of type (𝑆+), and𝐶 : 𝐷(𝐶) → 𝑋∗ be
compact with𝐷(𝑇) ⊆ 𝐷(𝐶) such that𝐶 belongs to Γ𝜏

𝜎 .Then the
following properties hold:

(i) (Normalization) 𝑑(𝐽, 𝐺, 0) = 1 if 0 ∈ 𝐺 and 𝑑(𝐽, 𝐺,0) = 0 if 0 ∉ 𝐺.
(ii) (Existence) if 𝑓∗ ∉ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝜕𝐺) and 𝑑(𝑇 +𝑆 + 𝐶, 𝐺, 𝑓∗) ̸= 0, then 𝑓∗ ∈ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝐺).
(iii) (Decomposition) let 𝐺1 and 𝐺2 be nonempty, disjoint,

and open subsets of𝐺 such that𝑓∗ ∉ (𝑇+𝑆+𝐶)(𝐷(𝑇)∩(𝐺 \ (𝐺1 ∪ 𝐺2))).Then

𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺, 𝑓∗) = 𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺1, 𝑓∗)
+ 𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺2, 𝑓∗) . (25)

(iv) (Translation invariance) let 𝑓∗ ∉ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩𝜕𝐺).Then we have

𝑑 (𝑇 + 𝑆 + 𝐶 − 𝑓∗, 𝐺, 0) = 𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺, 𝑓∗) . (26)

(v) Let 𝑀(𝑡, 𝑥) = 𝑇𝑥 + 𝑡(𝑆1𝑥 + 𝐶𝑥) + (1 − 𝑡)𝑆2𝑥, (𝑡, 𝑥) ∈[0, 1] × (𝐷(𝑇) ∩ 𝐺), where 𝑆𝑖 : 𝑋 → 2𝑋∗(𝑖 = 1, 2) is
bounded and of type (𝑆+) and 0 ∉ 𝑀(𝑡, 𝐷(𝑇) ∩ 𝜕𝐺)
for all 𝑡 ∈ [0, 1]. Then 𝑑(𝑀(𝑡, ⋅), 𝐺, 0) is independent of𝑡 ∈ [0, 1].

(vi) Let 0 ∈ 𝐺, 𝑁(𝑡, 𝑥) = 𝑡(𝑇𝑥 + 𝑆1𝑥 + 𝐶𝑥) + (1 − 𝑡)𝑆2𝑥,(𝑡, 𝑥) ∈ [0, 1]×(𝐷(𝑇)∩𝐺), where𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 𝑋∗

is densely defined maximal monotone and positively
homogeneous of order 𝛼 > 0, 𝑆𝑖 : 𝑋 → 2𝑋∗(𝑖 = 1, 2) is
bounded and of type (𝑆+) such that ⟨𝑢∗, 𝑥⟩ ≥ ‖𝑥‖2 for
all 𝑥 ∈ 𝑋, 𝑢∗ ∈ 𝑆2𝑥, and 0 ∉ 𝑁(𝑡, 𝐷(𝑇) ∩ 𝜕𝐺) for all𝑡 ∈ [0, 1]. Assume, further, that 0 ∉ 𝑀(𝑡, 𝐷(𝑇) ∩ 𝜕𝐺)
for all 𝑡 ∈ [0, 1]. Then 𝑑(𝑁(𝑡, ⋅), 𝐺, 0) is independent of𝑡 ∈ [0, 1].

Proof. The proof of (i) follows by setting 𝑇 = {0} and𝐶 = {0}.
To prove (ii), assume that 𝑓∗ ∉ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝜕𝐺) and𝑑(𝑇 + 𝑆 + 𝐶, 𝐺, 𝑓∗) ̸= 0. By the definition of 𝑑, there exists𝜀0 > 0 such that 𝑑(𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀, 𝐺, 𝑓∗) ̸= 0 for all 𝜀 ∈ (0, 𝜀0];
that is, for each 𝜀𝑛 ↓ 0+ there exist𝑥𝑛 ∈ 𝐷(𝑇)∩𝐺 and𝑤∗

𝑛 ∈ 𝑆𝑥𝑛

such that

V∗
𝑛 + 𝑤∗

𝑛 + 𝐶𝐽𝜀𝑛𝑥𝑛 = 𝑓∗, V∗
𝑛 = 𝑇𝜀𝑛

𝑥𝑛 ∀𝑛. (27)

Since 𝑆 is bounded, it follows that {𝑤∗
𝑛 } is bounded. By usingΓ𝜏

𝜎 condition on 𝐶 along with the arguments used in the
proofs of Lemma 7, it is easy to see that {V∗

𝑛 } and {𝐽𝜀𝑛𝑥𝑛} are
bounded. Assume without loss of generality that 𝑥𝑛 ⇀ 𝑥0,𝑤∗

𝑛 ⇀ 𝑤∗
0 , V

∗
𝑛 ⇀ V∗

0 , and 𝐶𝐽𝜀𝑛𝑥𝑛 → 𝑔∗
0 as 𝑛 → ∞. By the

maximality of 𝑇, the (𝑆+) condition on 𝑆, and the arguments
used in the proof of Lemma7,we conclude that𝑥0 ∈ 𝐷(𝑇)∩𝐺,
V∗
0 ∈ 𝑇𝑥0, and 𝑤∗

0 ∈ 𝑆𝑥0 such that V∗
0 + 𝑤∗

0 + 𝐶𝑥0 = 𝑓∗. This
shows that 𝑓∗ ∈ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝐺).

Next we prove (iii). Suppose the hypotheses in (iii) hold.
By the definition of 𝑑, we see that 𝑑(𝑇+𝑆+𝐶, 𝐺, 𝑓∗) = 𝑑(𝑇𝜀+𝑆+𝐶𝐽𝜀, 𝐺, 𝑓∗) for all sufficiently small 𝜀 > 0. Since𝑇𝜀+𝑆+𝐶𝐽𝜀
is bounded and of type (𝑆+), the decomposition property of
the degree mapping for multivalued (𝑆+) operators implies

𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺, 𝑓∗) = lim
𝜀↓0+

𝑑 (𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀, 𝐺, 𝑓∗)
= lim

𝜀↓0+
𝑑 (𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀, 𝐺1, 𝑓∗)

+ lim
𝜀↓0+

𝑑 (𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀, 𝐺2, 𝑓∗)
= 𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺1, 𝑓∗)

+ 𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺2, 𝑓∗) ;

(28)

that is, (iii) holds.

(iv) Suppose that 𝑓∗ ∉ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝜕𝐺); that is,0 ∉ (𝑇+𝑆+𝐶−𝑓∗)(𝐷(𝑇)∩𝜕𝐺).This implies that 𝑑(𝑇+𝑆+𝐶−𝑓∗, 𝐺, 0) is well-defined. Since 𝑑(𝑇+𝑆+𝐶−𝑓∗, 𝐺, 0) = 𝑑(𝑇𝜀+𝑆 + 𝐶𝐽𝜀 − 𝑓∗, 𝐺, 0), by the translation property of the degree
mapping for multivalued bounded operators of type (𝑆+), we
see that 𝑑(𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀 − 𝑓∗, 𝐺, 0) = 𝑑(𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀, 𝐺, 𝑓∗).
Thus,

𝑑 (𝑇 + 𝑆 + 𝐶 − 𝑓∗, 𝐺, 0)
= lim

𝜀↓0+
𝑑 (𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀 − 𝑓∗, 𝐺, 0)

= lim
𝜀↓0+

𝑑 (𝑇𝜀 + 𝑆 + 𝐶𝐽𝜀, 𝐺, 𝑓∗)
= 𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺, 𝑓∗) .

(29)

(v) Suppose that 0 ∉ 𝑀(𝑡, 𝐷(𝑇) ∩ 𝜕𝐺) for all 𝑡 ∈ [0, 1],
where𝑀(𝑡, 𝑥) = 𝑇𝑥+𝑡(𝑆1𝑥+𝐶𝑥)+(1−𝑡)𝑆2𝑥, (𝑡, 𝑥) ∈ [0, 1]×(𝐷(𝑇) ∩ 𝐺). For every 𝜀 > 0, we consider
𝑀𝜀 (𝑡, 𝑥) = 𝑇𝜀𝑥 + 𝑡 (𝑆1𝑥 + 𝐶𝐽𝜀𝑥) + (1 − 𝑡) 𝑆2𝑥,

(𝑡, 𝑥) ∈ [0, 1] × 𝐺. (30)
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We shall show that there exists 𝜀0 > 0 such that 𝑑(𝑀𝜀(𝑡, ⋅),𝐺, 0) is well-defined and independent of all (𝑡, 𝜀) ∈ [0, 1] ×(0, 𝜀0]. To do this, we assume to the contrary that there exist𝜀𝑛 ↓ 0+, 𝑥𝑛 ∈ 𝜕𝐺, 𝑡𝑛 ∈ [0, 1], 𝑤∗
𝑛 ∈ 𝑆1𝑥𝑛, and 𝑢∗

𝑛 ∈ 𝑆2𝑥𝑛 such
that

V∗
𝑛 + 𝑡𝑛 (𝑤∗

𝑛 + 𝐶𝐽𝜀𝑛𝑥𝑛) + (1 − 𝑡𝑛) 𝑢∗
𝑛 = 0,

V∗
𝑛 = 𝑇𝜀𝑛

𝑥𝑛 ∀𝑛. (31)

Since {𝑥𝑛}, 𝑆1, and 𝑆2 are bounded, it follows that {𝑤∗
𝑛 } and{𝑢∗

𝑛 } are bounded. By the Γ𝜏
𝜎 condition on𝐶, the boundedness

of 𝑆1 and 𝑆2, and the arguments used in the proof of Lemma 7,
we conclude that {𝐽𝜀𝑛𝑥𝑛} and {V∗

𝑛 } are bounded. Assume with-
out loss of generality that 𝑡𝑛 → 𝑡0, 𝑥𝑛 ⇀ 𝑥0, 𝑤∗

𝑛 ⇀ 𝑤∗
0 , 𝑢∗

𝑛 ⇀𝑢∗
0 , V

∗
𝑛 ⇀ V∗

0 , 𝐽𝜀𝑛𝑥𝑛 = 𝑥𝑛 − 𝜀𝑛𝐽−1(V∗
𝑛 ) ⇀ 𝑥0, and 𝐶𝐽𝜀𝑛𝑥𝑛 →𝑔∗

0 as 𝑛 → ∞. Suppose that 𝑡0 = 0. We have V∗
𝑛 + 𝑢∗

𝑛 → 0 as𝑛 → ∞. Since 𝑆2 is of type (𝑆+), it follows that 𝑥𝑛 → 𝑥0 ∈ 𝜕𝐺,
V∗
0 ∈ 𝐷(𝑇), and 0 ∈ 𝑇𝑥0+𝑆2𝑥0; that is, 0 ∈ (𝑇+𝑆2)(𝐷(𝑇)∩𝜕𝐺),
that is, 0 ∈ 𝑀(0,𝐷(𝑇) ∩ 𝜕𝐺). However, this is impossible.
A similar proof covers the case 𝑡0 ̸= 1. Assume 𝑡0 ∈ (0, 1).
Suppose there exists a subsequence of {𝑡𝑛}, denoted again by{𝑡𝑛}, such that 𝑡𝑛 ≥ 𝜏0 > 0 for all 𝑛. Since 𝑇 is maximal
monotone, Lemma 5 implies lim inf𝑛→∞⟨V∗

𝑛 , 𝑥𝑛 − 𝑥0⟩ ≥ 0.
As a result, (31) implies

lim sup
𝑛→∞

⟨𝑤∗
𝑛 , 𝑥𝑛 − 𝑥0⟩

= −lim inf
𝑛→∞

( 1𝑡𝑛 ⟨V∗
𝑛 + (1 − 𝑡𝑛) 𝑢∗

𝑛 , 𝑥𝑛 − 𝑥0⟩)
− lim sup

𝑛→∞
⟨𝐶𝐽𝜀𝑛𝑥𝑛, 𝑥𝑛 − 𝑥0⟩

= − 1𝑡0 lim inf
𝑛→∞

⟨V∗
𝑛 + (1 − 𝑡𝑛) 𝑢∗

𝑛 , 𝑥𝑛 − 𝑥0⟩
− lim inf

𝑛→∞
⟨𝐶𝐽𝜀𝑛𝑥𝑛, 𝑥𝑛 − 𝑥0⟩ ≤ 0.

(32)

Since 𝑆1 is of type (𝑆+), it follows that 𝑥𝑛 → 𝑥0 ∈ 𝜕𝐺 as 𝑛 →∞ and 𝑤∗
0 ∈ 𝑆𝑥0. Moreover, one can show that 𝑥0 ∈ 𝐷(𝑇),

V∗
0 ∈ 𝑇𝑥0, and 𝑢∗

0 ∈ 𝑆2𝑥0 so that 0 = V∗
0 + 𝑡0(𝑤∗

0 + 𝐶𝑥0) + (1 −𝑡0)𝑢∗
0 ; that is, 0 ∈ (𝑇 + 𝑡0(𝑆 + 𝐶))(𝐷(𝑇) ∩ 𝜕𝐺). However, this

is a contradiction.
To show that 𝑑(𝑀𝜀(𝑡, ⋅), 𝐺, 0) is constant for all 𝑡 ∈ [0, 1]

and 𝜀 ∈ (0, 𝜀0], with 𝜀0 as in the proof of (ii), we let 0 < 𝜀1 <𝜀2 ≤ 𝜀0 and consider the homotopy operator

𝑀̃ (𝑡, 𝑥) = 𝑇𝑞(𝑡)𝑥 + 𝑡 (𝑆1𝑥 + 𝐶𝐽𝑞(𝑡)𝑥) + (1 − 𝑡) 𝑆2𝑥,
𝑞 (𝑡) = 𝑡𝜀1 + (1 − 𝑡) 𝜀2, (𝑡, 𝑥) ∈ [0, 1] × 𝐺. (33)

Since for each 𝑡 ∈ [0, 1] 𝑇𝑞(𝑡) is monotone, 𝑆1 and 𝑆2 are
bounded and of type (𝑆+) and 𝐶𝐽𝑞(𝑡) is compact, it follows
that 𝑀1(𝑡, ⋅) is bounded demicontinuous and of type (𝑆+).
It is not hard to verify that 0 ∉ 𝑀̃(𝑡, 𝜕𝐺) for all 𝑡 ∈ [0, 1].
As in the arguments used in the proof of Lemma 7, we shall
show that {𝑀̃(𝑡, ⋅)}𝑡∈[0,1] is a homotopy of class (𝑆+). To this
end, let 𝑥𝑛 ∈ 𝐺 and 𝑡𝑛 ∈ [0, 1] be such that 𝑥𝑛 ⇀ 𝑥0 and

𝑡𝑛 → 𝑡0 ∈ [0, 1] as 𝑛 → ∞, 𝑤∗
𝑛 ∈ 𝑆1𝑥𝑛 and 𝑢∗

𝑛 ∈ 𝑆2𝑥𝑛 be such
that

lim sup
𝑛→∞

⟨𝑇𝑞(𝑡𝑛)
𝑥𝑛 + 𝑡𝑛 (𝑤∗

𝑛 + 𝐶𝐽𝑞(𝑡𝑛)𝑥𝑛)
+ (1 − 𝑡𝑛) 𝑢∗

𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0. (34)

Since 𝑇𝑞(𝑡𝑛)
is monotone with domain𝑋, it follows that

⟨𝑇𝑞(𝑡𝑛)
𝑥𝑛 − 𝑇𝑞(𝑡𝑛)

𝑥0, 𝑥𝑛 − 𝑥0⟩ ≥ 0 (35)

for all 𝑛. Since 𝑞(𝑡𝑛) → 𝑞(𝑡0) > 0 as 𝑛 → ∞ and (0,∞) ×𝑋 ∋ (𝑡, 𝑥) → 𝑇𝑡𝑥 is continuous, we get 𝑇𝑞(𝑡𝑛)
𝑥0 → 𝑇𝑞(𝑡0)

𝑥0 as𝑛 → ∞. As a result of this, we get

lim sup
𝑛→∞

⟨𝑇𝑞(𝑡𝑛)
𝑥0 + 𝑡𝑛 (𝑤∗

𝑛 + 𝐶𝐽𝑞(𝑡𝑛)𝑥𝑛)
+ (1 − 𝑡𝑛) 𝑢∗

𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0; (36)

that is,

lim sup
𝑛→∞

⟨𝑡𝑛 (𝑤∗
𝑛 + 𝐶𝐽𝑞(𝑡𝑛)𝑥𝑛) + (1 − 𝑡𝑛) 𝑢∗

𝑛 , 𝑥𝑛 − 𝑥0⟩
≤ 0. (37)

Since 𝑞(𝑡) ∈ [𝜀1, 𝜀2] for all 𝑡 ∈ [0, 1], an application of
Lemma 4 says that there exists 𝛾0 > 0 independent of 𝑛 such
that ‖𝑇𝑞(𝑡𝑛)

𝑥𝑛‖ ≤ 𝛾0 for all 𝑛. In addition, by the definition of𝐽𝑞(𝑡𝑛), we see that
󵄩󵄩󵄩󵄩󵄩𝐽𝑞(𝑡𝑛)𝑥𝑛

󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞 (𝑡𝑛) 𝐽−1 (𝑇𝑞(𝑡𝑛)
𝑥𝑛)󵄩󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 + 𝑞 (𝑡𝑛) 󵄩󵄩󵄩󵄩󵄩𝐽−1 (𝑇𝑞(𝑡𝑛)

𝑥𝑛)󵄩󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝑞 (𝑡𝑛) 󵄩󵄩󵄩󵄩󵄩𝑇𝑞(𝑡𝑛)
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 + 𝑞 (𝑡𝑛) 𝛾0

(38)

for all 𝑛. Since {𝑥𝑛} is bounded, the boundedness of {𝐽𝑞(𝑡𝑛)𝑥𝑛}
follows. By the compactness of𝐶, wemay assumewithout loss
of generality that𝐶𝐽𝑞(𝑡𝑛)𝑥𝑛 → 𝑔∗

0 as 𝑛 → ∞. As a result of this,
we get

0 ≥ lim sup
𝑛→∞

⟨𝑡𝑛 (𝑤∗
𝑛 + 𝐶𝐽𝑞(𝑡𝑛)𝑥𝑛) + (1 − 𝑡𝑛) 𝑢∗

𝑛 , 𝑥𝑛

− 𝑥0⟩ = lim sup
𝑛→∞

⟨𝑡𝑛𝑤∗
𝑛 + (1 − 𝑡𝑛) 𝑢∗

𝑛 , 𝑥𝑛 − 𝑥0⟩
+ lim

𝑛→∞
𝑡𝑛 ⟨𝐶𝐽𝑞(𝑡𝑛)𝑥𝑛, 𝑥𝑛 − 𝑥0⟩ = lim sup

𝑛→∞
⟨𝑡𝑛𝑤∗

𝑛

+ (1 − 𝑡𝑛) 𝑢∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ .

(39)

Let 𝑡0 ∈ (0, 1). The boundedness of {𝑤∗
𝑛 } and {𝑢∗

𝑛 } imply

lim sup
𝑛→∞

⟨𝑡0𝑤∗
𝑛 + (1 − 𝑡0) 𝑢∗

𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0. (40)

Since 𝑆1 and 𝑆2 are bounded and of type (𝑆+), it follows that𝑥𝑛 → 𝑥0 and there exist subsequences of {𝑤∗
𝑛 } and {𝑢∗

𝑛 },
denoted again by {𝑤∗

𝑛 } and {𝑢∗
𝑛 }, respectively, such that𝑤∗

𝑛 ⇀𝑤∗
0 ∈ 𝑆1𝑥0 and 𝑢∗

𝑛 ⇀ 𝑢∗
0 ∈ 𝑆2𝑥0 as 𝑛 → ∞. Moreover, by



Abstract and Applied Analysis 7

the continuity of (0,∞) × 𝑋 ∋ (𝑡, 𝑥) 󳨃→ 𝑇𝑡𝑥, it follows that𝑇𝑞(𝑡𝑛)
𝑥𝑛 → 𝑇𝑞(𝑡0)

𝑥0 as 𝑛 → ∞. From the continuity of 𝐽 and𝐶, we obtain that

𝐽𝑞(𝑡𝑛)𝑥𝑛 = 𝑥𝑛 − 𝑞 (𝑡𝑛) 𝐽−1 (𝑇𝑞(𝑡𝑛)
𝑥𝑛) 󳨀→

𝑥0 − 𝑞 (𝑡0) 𝐽−1 (𝑇𝑞(𝑡0)
𝑥0) = 𝑦0 ∈ 𝐷 (𝑇) ⊂ 𝐷 (𝐶) (41)

as 𝑛 → ∞ and 𝐶𝐽𝑞(𝑡𝑛)𝑥𝑛 → 𝐶𝑦0 = 𝑔∗
0 as 𝑛 → ∞. Thus, we

arrive at

𝑇𝑞(𝑡𝑛)
𝑥𝑛 = 1𝑞 (𝑡𝑛)𝐽 (𝑥𝑛 − 𝐽𝑞(𝑡𝑛)𝑥𝑛) 󳨀→

1𝑞 (𝑡0)𝐽 (𝑥0 − 𝑦0) = ℎ∗
0

(42)

as 𝑛 → ∞. Since 𝑇𝑞(𝑡𝑛)
𝑥𝑛 ∈ 𝑇(𝐽𝑞(𝑡𝑛)𝑥𝑛) for all 𝑛, by the

maximality of 𝑇, we conclude that 𝑦0 ∈ 𝐷(𝑇) ⊂ 𝐷(𝐶),ℎ∗
0 ∈ 𝑇𝑦0, and ⟨𝑇𝑞(𝑡𝑛)

𝑥𝑛, 𝐽𝑞(𝑡𝑛)𝑥𝑛⟩ → ⟨ℎ∗
0 , 𝑦0⟩ as 𝑛 → ∞.

Therefore, we get

𝑇𝑞(𝑡𝑛)
𝑥𝑛 + 𝑡𝑛 (𝑤∗

𝑛 + 𝐶𝐽𝑞(𝑡𝑛)𝑥𝑛) + (1 − 𝑡𝑛) 𝑢∗
𝑛

⇀ 𝑇𝑞(𝑡0)
𝑥0 + 𝑡0 (𝑤∗

0 + 𝐶𝑦0) + (1 − 𝑡0) 𝑢∗
0

(43)

as 𝑛 → ∞. The proofs of the cases 𝑡0 = 0 and 𝑡0 = 1 can be
completed in an analogous manner. The details are omitted
here. Thus the family {𝑀̃(𝑡, ⋅)}𝑡∈[0,1] is a homotopy of class(𝑆+); that is, 𝑑(𝑀̃(𝑡, ⋅), 𝐺, 0) is independent of 𝑡 ∈ [0, 1]. This
implies

𝑑 (𝑀̃ (𝑡, ⋅) .𝐺, 0) = 𝑑 (𝑀̃ (1, ⋅) , 𝐺, 0)
= 𝑑 (𝑇𝜀1

+ 𝑆1 + 𝐶𝐽𝜀1 , 𝐺, 0)
= 𝑑 (𝑀̃ (0, ⋅) , 𝐺, 0)
= 𝑑 (𝑇𝜀2

+ 𝑆2, 𝐺, 0) ∀𝑡 ∈ [0, 1] .
(44)

Consequently, by the definition of 𝑑(𝑀(𝑡, ⋅), 𝐺, 0), there exists𝜀0 > 0 such that

𝑑 (𝑀 (𝑡, ⋅) , 𝐺, 0) = 𝑑 (𝑇 + 𝑡𝑆1 + (1 − 𝑡) 𝑆2 + 𝑡𝐶, 𝐺, 0)
= 𝑑 (𝑇𝜀 + 𝑡𝑆1 + (1 − 𝑡) 𝑆2 + 𝑡𝐶𝐽𝜀, 𝐺, 0)
= 𝑑 (𝑇𝜀2

+ 𝑆2, 𝐺, 0) ∀𝑡 ∈ [0, 1] , 𝜀 ∈ (0, 𝜀0] .
(45)

This proves that 𝑑(𝑀(𝑡, ⋅), 𝐺, 0) is independent of 𝑡 ∈ [0, 1];
that is, the proof (iv) is complete.

(vi) Suppose the hypotheses in (vi) hold. Since, for each𝑡 ∈ [0, 1], 𝑡𝑇 is maximal monotone, let 𝑇𝑡
𝜀𝑥 = (𝑡𝑇)𝜀𝑥, 𝑥 ∈ 𝑋,

be Yosida approximant of 𝑡𝑇 and 𝐽𝑡
𝜀 be the Yosida resolvent

of 𝑡𝑇. Since 𝑡𝑆1 + (1 − 𝑡)𝑆2 is bounded and of type (𝑆+) and𝑡𝐶 is compact with 𝐷(𝑡𝐶) = 𝐷(𝐶) for all 𝑡 ∈ [0, 1], we shall
show that there exists 𝜀0 > 0 such that 𝑑(𝑇𝑡

𝜀 + 𝑡𝑆1 + (1 − 𝑡)𝑆2 +𝑡𝐶𝐽𝑡
𝜀, 𝐺, 0) is independent of 𝑡 ∈ [0, 1] and 𝜀 ∈ (0, 𝜀0]. Assume

that this does not hold; that is, there exist 𝜀𝑛 ↓ 0+, 𝑥𝑛 ∈ 𝐷(𝑇)∩𝜕𝐺, 𝑤∗
𝑛 ∈ 𝑆1𝑥𝑛, 𝑢∗

𝑛 ∈ 𝑆2𝑥𝑛, and 𝑡𝑛 ∈ [0, 1] such that

V∗
𝑛 + 𝑡𝑛𝑤∗

𝑛 + (1 − 𝑡𝑛) 𝑢∗
𝑛 + 𝑡𝑛𝐶𝑦𝑛 = 0 (46)

for all 𝑛, where V∗
𝑛 = 𝑇𝑡𝑛

𝜀𝑛
𝑥𝑛 ∈ 𝑡𝑛𝑇(𝑦𝑛) and 𝑦𝑛 = 𝐽𝑡𝑛

𝜀𝑛
𝑥𝑛 ∈ 𝐷(𝑇).

By using the Γ𝜏
𝜎 condition on 𝐶, we arrive at

󵄩󵄩󵄩󵄩V∗
𝑛
󵄩󵄩󵄩󵄩 ≤ 𝑡𝑛 󵄩󵄩󵄩󵄩𝑤∗

𝑛
󵄩󵄩󵄩󵄩 + (1 − 𝑡𝑛) 󵄩󵄩󵄩󵄩𝑢∗

𝑛
󵄩󵄩󵄩󵄩 + 𝑡𝑛 󵄩󵄩󵄩󵄩𝐶𝑦𝑛

󵄩󵄩󵄩󵄩
≤ 𝜅1 + 𝜏 󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩 + 𝜎 ≤ 𝜅1 + 𝜏 (󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 + 𝜀𝑛 󵄩󵄩󵄩󵄩V∗

𝑛
󵄩󵄩󵄩󵄩) + 𝜎, (47)

for all 𝑛, where 𝜅1 is an upper bound for {‖𝑤∗
𝑛 ‖ + ‖𝑢∗

𝑛 ‖}. This
gives the boundedness of {V∗

𝑛 } and {𝑦𝑛}. Since 𝑥𝑛 ⇀ 𝑥0 as𝑛 → ∞, 𝑦𝑛 = 𝑥𝑛 − 𝜀𝑛𝐽−1(V∗
𝑛 ) and {V∗

𝑛 } is bounded, it follows
that 𝑦𝑛 ⇀ 𝑥0 as 𝑛 → ∞. Assume without loss of generality
that 𝐶𝑦𝑛 → 𝑔∗

0 as 𝑛 → ∞. Since 𝑦𝑛 − 𝑥𝑛 → 0 as 𝑛 → ∞, the
quasimonotonicity of 𝑆1 and 𝑆2 implies

lim sup
𝑛→∞

⟨V∗
𝑛 , 𝑦𝑛 − 𝑥0⟩

= −lim inf
𝑛→∞

⟨𝑡𝑛𝑤∗
𝑛 + (1 − 𝑡𝑛) 𝑢∗

𝑛 + 𝑡𝑛𝐶𝑦𝑛, 𝑦𝑛 − 𝑥0⟩
≤ −lim inf

𝑛→∞
⟨𝑡𝑛𝑤∗

𝑛 + (1 − 𝑡𝑛) 𝑢∗
𝑛 , 𝑦𝑛 − 𝑥𝑛 + 𝑥𝑛 − 𝑥0⟩

− lim
𝑛→∞

⟨𝑡𝑛𝐶𝑦𝑛, 𝑦𝑛 − 𝑥0⟩
≤ −lim inf

𝑛→∞
⟨𝑡𝑛𝑤∗

𝑛 + (1 − 𝑡𝑛) 𝑢∗
𝑛 , 𝑦𝑛 − 𝑥𝑛⟩

− lim inf
𝑛→∞

⟨𝑡𝑛𝑤∗
𝑛 + (1 − 𝑡𝑛) 𝑢∗

𝑛 , 𝑥𝑛 − 𝑥0⟩
= −lim inf

𝑛→∞
⟨𝑡𝑛𝑤∗

𝑛 + (1 − 𝑡𝑛) 𝑢∗
𝑛 , 𝑥𝑛 − 𝑥0⟩

≤ −lim inf
𝑛→∞

𝑡𝑛 ⟨𝑤∗
𝑛 , 𝑥𝑛 − 𝑥0⟩

− lim inf
𝑛→∞

(1 − 𝑡𝑛) ⟨𝑢∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0.

(48)

Therefore, we get

lim sup
𝑛→∞

⟨V∗
𝑛 , 𝑦𝑛⟩ ≤ ⟨V∗

0 , 𝑥0⟩ . (49)

Since 𝐷(𝑇) = 𝑋, the result of Kobayashi and Otani [8] says
that the family {𝑡𝑇}𝑡∈[0,1] is a pseudomonotone homotopy
of maximal monotone operators. By (i) of Definition 6, we
conclude that 𝑥0 ∈ 𝐷(𝑇𝑡0 = 𝑡0𝑇), V∗

0 ∈ 𝑡0𝑇𝑥0, and ⟨V∗
𝑛 , 𝑦𝑛⟩ →⟨V∗

0 , 𝑥0⟩ as 𝑛 → ∞. Applying analogous arguments to those
of the proof of (iv) along with the (𝑆+) condition on 𝑆1 and 𝑆2,
one can easily verify that 𝑥𝑛 → 𝑥0 ∈ 𝐷(𝑇) ∩ 𝜕𝐺, 𝐶𝑦𝑛 → 𝐶𝑥0,𝑤∗

𝑛 → 𝑤∗
0 ∈ 𝑆1𝑥0, and 𝑢∗

𝑛 ⇀ 𝑢∗
0 ∈ 𝑆2𝑥0 so that V

∗
0 +𝑡0𝑤∗

0 +(1−𝑡0)𝑢∗
0+𝑡0𝐶𝑥0 = 0; that is, 0 ∈ (𝑡0(𝑇+𝑆1+𝐶)+(1−𝑡0)𝑆2)(𝐷(𝑇)∩𝜕𝐺), which is impossible by the hypotheses. In conclusion, we

have proved that 𝑑(𝑇𝑡
𝜀 + 𝑡𝑆1 + (1 − 𝑡)𝑆2 + 𝑡𝐶𝐽𝜀, 𝐺, 0) is well-

defined for all 𝑡 ∈ [0, 1] and sufficiently small 𝜀 > 0.
Finally, we shall show that 𝑑(𝑇𝑡

𝜀+𝑡𝑆1+(1−𝑡)𝑆2+𝑡𝐶𝐽𝜀, 𝐺, 0)
is independent of 𝑡 ∈ [0, 1] and 𝜀 ∈ (0, 𝜀0]. To this end, let0 < 𝜀1 < 𝜀2 ≤ 𝜀0, 𝑞(𝑡) = 𝑡𝜀1 + (1 − 𝑡)𝜀2, 0 < 𝑡1 < 𝑡2 ≤ 1,
and 𝛾𝑡 = 𝑡𝑡1 + (1 − 𝑡)𝑡2, 𝑡 ∈ [0, 1]. To complete the proof, we
consider the homotopy operator

𝑁1 (𝑡, 𝑥) = 𝑇𝛾𝑡
𝑞(𝑡)

𝑥 + 𝑡𝑆1𝑥 + (1 − 𝑡) 𝑆2𝑥 + 𝑡𝐶𝐽𝑡
𝑞(𝑡)𝑥,

(𝑡, 𝑥) ∈ [0, 1] × 𝐺. (50)

It is sufficient to show that {𝑁1(𝑡, ⋅)}𝑡∈[0,1] is a homotopy of
class (𝑆+). For each 𝑡 ∈ [0, 1], it is easy to see that 𝑁1(𝑡, ⋅) :
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𝑋 → 2𝑋∗ is bounded and of type (𝑆+). Let {𝑥𝑛} ⊂ 𝑋 be such
that 𝑥𝑛 ⇀ 𝑥0, 𝑡𝑛 → 𝑡0 as 𝑛 → ∞, 𝑤∗

𝑛 ∈ 𝑆1𝑥𝑛, and 𝑢∗
𝑛 ∈ 𝑆2𝑥𝑛

so that lim sup𝑛→∞⟨𝑇𝛾𝑡𝑛
𝑞(𝑡𝑛)

𝑥𝑛 + 𝑔∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0, where 𝑔∗

𝑛 =
𝑡𝑛𝑤∗

𝑛 + (1 − 𝑡𝑛)𝑢∗
𝑛 + 𝑡𝑛𝐶𝐽𝑡𝑛

𝑞(𝑡𝑛)
𝑥𝑛. Let

𝑧∗
𝑛 = 𝑇𝛾𝑡𝑛

𝑞(𝑡𝑛)
𝑥𝑛,

𝑧𝑛 = 𝐽𝛾𝑡𝑛
𝑞(𝑡𝑛)

𝑥𝑛

∀𝑛.
(51)

We show that {𝑧∗
𝑛 } and {𝑧𝑛} are bounded. Since 0 < 𝜀1 ≤𝑞(𝑡𝑛) ≤ 𝜀2 and 0 < 𝑡1 ≤ 𝛾𝑡 ≤ 𝑡2 for all 𝑛, we conclude from

Lemma 4 that {𝑧∗
𝑛 } is bounded. Since 𝑧𝑛 = 𝑥𝑛 − 𝑞(𝑡𝑛)𝐽−1(𝑧∗

𝑛 )
for all 𝑛 and {𝑧∗

𝑛 }, {𝑞(𝑡𝑛)} and {𝑥𝑛} are bounded, we get the
boundedness of {𝑧𝑛}. Since 𝐶 is compact, we assume without
loss of generality that 𝐶𝑧𝑛 → ℎ∗

0 as 𝑛 → ∞. By the
boundedness of {𝑥𝑛}, 𝑆1, and 𝑆2, we assume, by passing into
subsequences if necessary, that 𝑥𝑛 ⇀ 𝑥0, 𝑤∗

𝑛 ⇀ 𝑤∗
0 , and𝑢∗

𝑛 ⇀ 𝑢∗
0 as 𝑛 → ∞. On the other hand, the pseudo-

monotonicity of 𝑆1 and 𝑆2 gives

lim inf
𝑛→∞

⟨𝑔∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≥ 0. (52)

Consequently, we get

lim sup
𝑛→∞

⟨𝑧∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ lim sup

𝑛→∞
⟨𝑧∗

𝑛 + 𝑔∗
𝑛 , 𝑥𝑛 − 𝑥0⟩

− lim inf
𝑛→∞

⟨𝑔∗
𝑛 , 𝑥𝑛 − 𝑥0⟩

≤ −lim inf
𝑛→∞

⟨𝑔∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0.

(53)

Since 𝑇 is positively homogeneous of order 𝛼 > 0, it is not
difficult to see that𝑇−1 : 𝑅(𝑇) → 𝐷(𝑇) is maximal monotone
and positively homogeneous of order 𝛼−1 > 0. It also holds
that (𝜆𝑇)−1(𝑥) = 𝑇−1((1/𝜆)(𝑥)) = 𝜆−1/𝛼𝑇−1(𝑥) for all 𝑥 ∈𝑅(𝑇). In addition, we see that

𝑧∗
𝑛 = 𝑇𝛾𝑡𝑛

𝑞(𝑡𝑛)
𝑥𝑛 = (𝛾𝑡𝑛

𝑇)
𝑞(𝑡𝑛)

𝑥𝑛

= ((𝛾𝑡𝑛
𝑇)−1 + 𝑞 (𝑡𝑛) 𝐽−1)−1 𝑥𝑛

= ( 1
𝛾1/𝛼
𝑡𝑛

𝑇−1 + 𝑞 (𝑡𝑛) 𝐽−1)
−1

𝑥𝑛

= ( 1
𝛾1/𝛼
𝑡𝑛

(𝑇−1 + 𝑞 (𝑡𝑛) 𝛾1/𝛼
𝑡𝑛

𝐽−1))
−1

𝑥𝑛

= 𝛾1/𝛼
𝑡𝑛

(𝑇−1 + 𝑞 (𝑡𝑛) 𝛾1/𝛼
𝑡𝑛

𝐽−1)−1 𝑥𝑛

= 𝛾1/𝛼
𝑡𝑛

𝑇𝑞(𝑡𝑛)𝛾
1/𝛼
𝑡𝑛

(𝑥𝑛) ∀𝑛.

(54)

In fact, it is true that,𝑇𝑎
𝜀 (𝑥) = 𝑎1/𝛼𝑇𝜀𝑎1/𝛼(𝑥) for all 𝑥 ∈ 𝑋, 𝜀 > 0

and 𝑎 > 0. For each 𝑛, letting 𝜆𝑛 = 𝛾1/𝛼
𝑡𝑛

, we get

⟨𝑧∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ = ⟨𝜆𝑛𝑇𝑞(𝑡𝑛)𝜆𝑛

𝑥𝑛, 𝑥𝑛 − 𝑥0⟩
= 𝜆𝑛 ⟨𝑇𝑞(𝑡𝑛)𝜆𝑛

𝑥𝑛, 𝑥𝑛 − 𝑥0⟩
= 𝜆𝑛 ⟨𝑇𝑞(𝑡𝑛)𝜆𝑛

𝑥𝑛 − 𝑇𝑞(𝑡𝑛)𝜆𝑛
𝑥0, 𝑥𝑛 − 𝑥0⟩

+ 𝜆𝑛 ⟨𝑇𝑞(𝑡𝑛)𝜆𝑛
𝑥0, 𝑥𝑛 − 𝑥0⟩ ∀𝑛.

(55)

Since (0,∞) × 𝑋 ∋ (𝑡, 𝑥) → 𝑇𝑡𝑥 is continuous, it follows that𝑇𝑞(𝑡𝑛)𝜆𝑛
𝑥0 → 𝑇𝑞(𝑡0)𝜆0

𝑥0 as 𝑛 → ∞, where 𝜆𝑛 → 𝜆0 > 0 as𝑛 → ∞. By the monotonicity of 𝑇𝑞(𝑡𝑛)𝜆𝑛
for all 𝑛, we have

lim inf
𝑛→∞

⟨𝑧∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≥ 0; (56)

that is,

0 ≤ lim inf
𝑛→∞

⟨𝑧∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ lim sup

𝑛→∞
⟨𝑧∗

𝑛 , 𝑥𝑛 − 𝑥0⟩
≤ 0, (57)

which implies ⟨𝑧∗
𝑛 , 𝑥𝑛⟩ → ⟨𝑧∗

0 , 𝑥0⟩ as 𝑛 → ∞. Consequently,
we arrive at

lim sup
𝑛→∞

⟨𝑤∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0

or lim sup
𝑛→∞

⟨𝑢∗
𝑛 , 𝑥𝑛 − 𝑥0⟩ ≤ 0. (58)

Since both 𝑆1 and 𝑆2 are bounded and of type (𝑆+), it follows
that 𝑥𝑛 → 𝑥0 as 𝑛 → ∞. As a result of this, we get

𝑧∗
𝑛 = 𝜆𝑛𝑇𝑞(𝑡𝑛)𝜆𝑛

𝑥𝑛 󳨀→ 𝜆0𝑇𝑞(𝑡0)𝜆0
𝑥0 = 𝑧∗

0 ,
𝑧𝑛 = 𝑥𝑛 − 𝑞 (𝑡𝑛) 𝐽−1 (𝑧∗

𝑛 ) 󳨀→
𝑥0 − 𝑞 (𝑡0) 𝜆0𝐽−1 (𝑇𝑞(𝑡0)𝜆0

𝑥0) = 𝑧0 = 𝐽𝜆0
𝑞(𝑡0)

𝑥0

(59)

as 𝑛 → ∞; that is, we have lim sup𝑛→∞⟨𝑧∗
𝑛 , 𝑧𝑛⟩ ≤ ⟨𝑧∗

0 , 𝑧0⟩.
Since {𝑡𝑇}𝑡∈[0,1] is a pseudomonotone homotopy of maximal
monotone operators, it follows that 𝑧0 ∈ 𝐷(𝑡0𝑇) and 𝑧∗

0 ∈𝑡0𝑇(𝑧0). In conclusion, we obtain that 𝑥0 ∈ 𝜕𝐺, 𝑤∗
0 ∈ 𝑆1𝑥0,𝑢∗

0 ∈ 𝑆2𝑥0, 𝑧0 ∈ 𝐷(𝑇), and
𝑧∗
0 + 𝑡0𝑤∗

0 + (1 − 𝑡0) 𝑢∗
0 + 𝑡0𝐶𝑧0

∈ 𝑇𝛾𝑡0
𝑞(𝑡0)

𝑥0 + 𝑡0𝑆1𝑥0 + (1 − 𝑡0) 𝑆2𝑥0 + 𝐶𝑧0. (60)

Therefore, for any 𝑐0 ∈ (0, 1], the family {𝑁1(𝑡, ⋅)}𝑡∈[𝑐0 ,1]
is a

homotopy of class (𝑆+). Thus, 𝑑(𝑁1(𝑡, ⋅), 𝐺, 0) is independent
of 𝑡 ∈ (0, 1] and 𝜀 ∈ (0, 𝜀0]; that is,
𝑑 (𝑁1 (𝑡, ⋅) , 𝐺, 0) = 𝑑 (𝑁1 (1, ⋅) , 𝐺, 0)

= 𝑑 (𝑇𝜀1
+ 𝑆1 + 𝐶𝐽𝜀1 , 𝐺, 0)

∀𝑡 ∈ (0, 1] .
(61)
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On the other hand, by the definition of 𝑑, we have that
𝑑 (𝑁 (𝑡, ⋅) , 𝐺, 0)

= 𝑑 (𝑇𝑡
𝜀 + 𝑡𝑆1 + (1 − 𝑡) 𝑆2 + 𝐶𝐽𝑡

𝜀, 𝐺, 0) (62)

is independent of 𝑡 ∈ (0, 1] and 𝜀 ∈ (0, 𝜀0]. In particular, for𝑡 = 1, we have 𝑑(𝑁(𝑡, ⋅), 𝐺, 0) = 𝑑(𝑇𝜀 + 𝑆1 + 𝐶𝐽𝜀, 𝐺, 0) for all𝑡 ∈ (0, 1]. But, for 𝑡 = 0, we see that 𝑁(0, 𝑥) = 𝑆2𝑥 for all𝑥 ∈ 𝑋. To complete the proof, it is sufficient to show that

𝑑 (𝑇𝜀 + 𝑆1 + 𝐶𝐽𝜀, 𝐺, 0) = 𝑑 (𝑆2, 𝐺, 0) . (63)

For each 𝜀 > 0, we consider the homotopy

𝑁𝜀 (𝑡, 𝑥) = 𝑇𝜀𝑥 + 𝑡 (𝑆1𝑥 + 𝐶𝐽𝜀𝑥) + (1 − 𝑡) 𝑆2𝑥,
(𝑡, 𝑥) ∈ [0, 1] × 𝐺. (64)

Suppose that there exist 𝜀𝑛 ↓ 0+, 𝑡𝑛 ∈ [0, 1], 𝑥𝑛 ∈ 𝜕𝐺, 𝑤∗
𝑛 ∈𝑆1𝑥𝑛, and 𝑢∗

𝑛 ∈ 𝑆2𝑥𝑛 such that

𝑇𝜀𝑛
𝑥𝑛 + 𝑡𝑛 (𝑤∗

𝑛 + 𝐶𝐽𝜀𝑛𝑥𝑛) + (1 − 𝑡𝑛) 𝑢∗
𝑛 = 0 ∀𝑛. (65)

We assume without loss of generality that 𝑡𝑛 → 𝑡0 ∈ [0, 1],𝑥𝑛 ⇀ 𝑥0, 𝑤∗
𝑛 ⇀ 𝑤∗

0 , and 𝑢∗
𝑛 ⇀ 𝑢∗

0 as 𝑛 → ∞. By the Γ𝜏
𝜎

condition on 𝐶, we get
󵄩󵄩󵄩󵄩󵄩𝑇𝜀𝑛

𝑥𝑛

󵄩󵄩󵄩󵄩󵄩 ≤ 𝑡𝑛𝜏 󵄩󵄩󵄩󵄩󵄩𝐽𝜀𝑛𝑥𝑛

󵄩󵄩󵄩󵄩󵄩 + 𝜅2

≤ 𝜏 󵄩󵄩󵄩󵄩󵄩𝑥𝑛 − 𝜀𝑛𝐽−1 (𝑇𝜀𝑛
𝑥𝑛)󵄩󵄩󵄩󵄩󵄩 + 𝜅2

≤ 𝜏 󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 + 𝜏𝜀𝑛 󵄩󵄩󵄩󵄩󵄩𝑇𝜀𝑛

𝑥𝑛

󵄩󵄩󵄩󵄩󵄩 + 𝜅2 ∀𝑛,
(66)

where 𝜅2 is an upper bound for the sequence {𝜎 + ‖𝑤∗
𝑛 ‖ +‖𝑢∗

𝑛 ‖}.This shows the boundedness of {𝑇𝜀𝑛
𝑥𝑛} and {𝐽𝜀𝑛𝑥𝑛}. By

the maximality of 𝑇 along with Lemma 5, the compactness
of 𝐶, and the (𝑆+) condition on 𝑆1 and 𝑆2 and analogous
arguments to those in the proof of Theorem 9, we conclude
that 𝑥0 ∈ 𝐷(𝑇) ∩ 𝜕𝐺, V∗

0 ∈ 𝑇𝑥0, 𝑤∗
0 ∈ 𝑆1𝑥0, and 𝑢∗

0 ∈ 𝑆2𝑥0

so that V∗
0 + 𝑡0(𝑤∗

0 + 𝐶𝑥0) + (1 − 𝑡0)𝑢∗
0 = 0; that is, 0 ∈(𝑇 + 𝑡0(𝑆1 + C) + (1 − 𝑡0)𝑆2)(𝐷(𝑇) ∩ 𝜕𝐺). However, this is

impossible. In addition, the boundary condition on𝑀 in (v)
implies that {𝑁𝜀(𝑡, ⋅)}𝑡∈[0,1] is an admissible homotopy; that
is, 𝑑(𝑇𝜀 + 𝑆1 + 𝐶𝐽𝜀, 𝐺, 0) = 𝑑(𝑇𝜀 + 𝑆2, 𝐺, 0) for all 𝜀 ∈ (0, 𝜀0].
Since 0 ∈ 𝐺 and 𝑆2 satisfies the condition ⟨𝑢∗, 𝑥⟩ ≥ ‖𝑥‖2
for all 𝑥 ∈ 𝑋 and 𝑢∗ ∈ 𝑆2𝑥 and 0 ∈ 𝑇(0), it follows that0 ̸= 𝑡(𝑇𝜀 + 𝑆2𝑥) + (1 − 𝑡)𝑆2𝑥 for all 𝑥 ∈ 𝜕𝐺 and 𝑡 ∈ [0, 1]
and 𝑑(𝑡(𝑇𝜀 + 𝑆2) + (1 − 𝑡)𝑆2, 𝐺, 0) is independent of 𝑡 ∈ [0, 1].
In particular, 𝑑(𝑇𝜀 + 𝑆2, 𝐺, 0) = 𝑑(𝑆2, 𝐺, 0) for all 𝜀 ∈ (0, 𝜀0].
Therefore, we conclude that 𝑑(𝑁(𝑡, ⋅), 𝐺, 0) is independent of
all 𝑡 ∈ [0, 1]. This completes the proof.

2.3. DegreeTheory for𝑇+𝐶+𝑆with 𝑆Pseudomonotone. In this
section we present a generalization of the theory developed
in the previous section for operators of type 𝑇 +𝐶 + 𝑆, where𝑆 : 𝑋 → 2𝑋∗ is bounded pseudomonotone and 𝑇, 𝐶 satisfy
the conditions of Section 2.1. For each 𝜀 > 0, it is well-known
that 𝑆 + 𝜀𝐽 is bounded and of type (𝑆+). As a result of this,

we may apply the arguments used in the proof of Lemma 7
to show that 𝑑(𝑇 + 𝑆 + 𝐶 + 𝜀𝐽, 𝐺, 𝑓∗) is well-defined and
constant for all sufficiently small 𝜀 > 0 provided that 𝑓∗ ∉(𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝜕𝐺), where 𝑑 is given in Definition 6. We
thus give the following definition.

Definition 10. Let 𝐺 be a nonempty, bounded, and open
subset of 𝑋, 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ be maximal monotone,𝑆 : 𝑋 → 2𝑋∗ be bounded pseudomonotone, and 𝐶 : 𝐷(𝐶) →𝑋∗ be compact with𝐷(𝑇) ⊆ 𝐷(𝐶) and belonging to the classΓ𝜏
𝜎 . Assume, further, that 𝑓∗ ∉ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝜕𝐺). Then
the degree mapping 𝑑 for 𝑇 + 𝑆 + 𝐶 at 𝑓∗ ∈ 𝑋∗ with respect
to 𝐺 is defined by

𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺, 𝑓∗) = lim
𝜀↓0+

𝑑 (𝑇 + 𝐶 + 𝑆 + 𝜀𝐽, 𝐺, 𝑓∗) , (67)

where 𝑑(𝑇 + 𝐶 + 𝑆 + 𝜀𝐽, 𝐺, 𝑓∗) denotes the degree mapping
constructed in Section 2.1.

The following theorem gives some basic properties and
homotopy invariance results analogous to those of Theo-
rem 9.

Theorem 11. Let 𝐺 be a nonempty, bounded, and open subset
of 𝑋. Let 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ be maximal monotone, 𝑆 :𝑋 → 2𝑋∗ be bounded pseudomonotone, and 𝐶 : 𝑋 ⊇ 𝐷(𝐶) →𝑋∗ be compact with 𝐷(𝑇) ⊆ 𝐷(𝐶) and belonging to the classΓ𝜏
𝜎 .Then the following properties hold:

(i) (Normalization) 𝑑(𝐽, 𝐺, 0) = 1 if 0 ∈ 𝐺 and𝑑(𝐽, 𝐺, 0) = 0 if 0 ∉ 𝐺.
(ii) (Existence) if𝑓∗ ∉ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝜕𝐺) and 𝑑(𝑇+𝑆 + 𝐶, 𝐺, 𝑓∗) ̸= 0, then 𝑓∗ ∈ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝐺).

If 𝑇+𝑆 is of type (𝑆), then 𝑓∗ ∈ (𝑇+𝐶+𝑆)(𝐷(𝑇)∩𝐺).
(iii) (Decomposition) let 𝐺1 and 𝐺2 be nonempty

and disjoint open subsets of 𝐺 such that𝑓∗ ∉
(𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ (𝐺 \ (𝐺1 ∪ 𝐺2))).Then

𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺, 𝑓∗) = 𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺1, 𝑓∗)
+ 𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺2, 𝑓∗) . (68)

(iv) (Translation invariance) let𝑓∗ ∉ (𝑇+𝑆 +𝐶)(𝐷(𝑇)∩𝜕𝐺).
Then we have

𝑑 (𝑇 + 𝑆 + 𝐶 − 𝑓∗, 𝐺, 0) = 𝑑 (𝑇 + 𝑆 + 𝐶, 𝐺, 𝑓∗) . (69)

(v) Let 𝑀(𝑡, 𝑥) = 𝑇𝑥 + 𝑡(𝑆1𝑥 + 𝐶𝑥) + (1 − 𝑡)𝑆2𝑥,(𝑡, 𝑥) ∈ [0, 1] × (𝐷(𝑇) ∩ 𝐺), and 𝑆𝑖 : 𝑋 → 2𝑋∗(𝑖 =1, 2) be bounded pseudomonotone such that 0 ∉𝑀(𝑡, 𝐷(𝑇) ∩ 𝜕𝐺) for all 𝑡 ∈ [0, 1].Then𝑑(𝑀(𝑡, ⋅), 𝐺, 0)
is independent of 𝑡 ∈ [0, 1].

(vi) Let 𝑁(𝑡, 𝑥) = 𝑡(𝑇𝑥 + 𝑆1𝑥 + 𝐶𝑥) + (1 − 𝑡)𝑆2𝑥, (𝑡, 𝑥) ∈[0, 1] × (𝐷(𝑇) ∩ 𝐺), and 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 𝑋∗

be densely defined maximal monotone and positively
homogeneous of order 𝛼 > 0, 𝑆1 : 𝑋 → 2𝑋∗ be
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bounded pseudomonotone, 𝑆2 : 𝑋 → 2𝑋∗ be bounded
and of type (𝑆+), and 0 ∉ 𝑁(𝑡, 𝐷(𝑇) ∩ 𝜕𝐺) for all𝑡 ∈ [0, 1]. Assume, further, that 0 ∉ 𝑀(𝑡, 𝐷(𝑇) ∩ 𝜕𝐺)
for all 𝑡 ∈ [0, 1]. Then 𝑑(𝑁(𝑡, ⋅), 𝐺, 0) is independent of𝑡 ∈ [0, 1].

Proof. The proofs for (i) through (iv) follow as in the
analogous items in the proof of Theorem 9. We shall give
sketches of the proofs of (v) and (vi). To prove (v), for each𝜀 > 0, we consider the homotopy inclusion

𝑀𝜀 (𝑡, 𝑥) = 𝑇𝑥 + 𝑡 (𝑆1𝑥 + 𝐶𝑥) + (1 − 𝑡) 𝑆2𝑥 + 𝜀𝐽𝑥,
(𝑡, 𝑥) ∈ [0, 1] × (𝐷 (𝑇) ∩ 𝐺) . (70)

Following the arguments used in the proof of (v) of Theo-
rem 9, it can be shown that there exists 𝜀0 > 0 such that0 ∉ 𝑀𝜀(𝑡, 𝐷(𝑇) ∩ 𝜕𝐺) for all 𝑡 ∈ [0, 1] and 𝜀 ∈ (0, 𝜀0].
Otherwise, we would get 0 ∈ 𝑀(𝑡0, 𝐷(𝑇) ∩ 𝜕𝐺) for some𝑡0 ∈ [0, 1], which is impossible. On the other hand, for each𝜀 ∈ (0, 𝜀0], we see that
𝑀𝜀 (𝑡, 𝑥) = 𝑇𝑥 + 𝑡 (𝑆1𝑥 + 𝐶𝑥 + 𝜀𝐽𝑥)

+ (1 − 𝑡) (𝑆2𝑥 + 𝜀𝐽𝑥) ,
(𝑡, 𝑥) ∈ [0, 1] × (𝐷 (𝑇) ∩ 𝐺) .

(71)

Since 𝑆1 + 𝜀𝐽 and 𝑆2 + 𝜀𝐽 are bounded operators of type (𝑆+),
the proof of (v) of Theorem 9 implies that 𝑑(𝑀𝜀(𝑡, ⋅), 𝐺, 0) is
independent of 𝑡 ∈ [0, 1]; that is,

𝑑 (𝑀𝜀 (𝑡, ⋅) , 𝐺, 0) = 𝑑 (𝑇 + 𝑆1 + 𝐶 + 𝜀𝐽, 𝐺, 0)
= 𝑑 (𝑇 + 𝑆1 + 𝐶, 𝐺, 0) (72)

for all 𝑡 ∈ [0, 1] and 𝜀 ∈ (0, 𝜀0]. As a result of this, we get
𝑑 (𝑀 (𝑡, ⋅) , 𝐺, 0) = lim

𝜀↓0+
𝑑 (𝑀𝜀 (𝑡, ⋅) , 𝐺, 0)

= 𝑑 (𝑇 + 𝑆1 + 𝐶, 𝐺, 0) (73)

for all 𝑡 ∈ [0, 1]. This proves that 𝑑(𝑀(𝑡, ⋅), 𝐺, 0) is indepen-
dent of 𝑡 ∈ [0, 1] provided that 0 ∉ 𝑀(𝑡, 𝐷(𝑇) ∩ 𝜕𝐺) for all𝑡 ∈ [0, 1]. The proof of (vi) can be completed in analogous
manner. The details are omitted here.

3. An Existence Theorem

As a consequence of the degree theory developed in Section 2,
the following theorem gives a new existence result on the
solvability of operator inclusions of the type𝑇𝑢+𝑆𝑢+𝐶𝑢 ∋ 𝑓∗

in 𝐷(𝑇) provided that 𝑇 + 𝑆 is of type (𝑆) or 𝑆 is bounded of
type (𝑆+).
Theorem 12. Let𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ bemaximal monotone
with 0 ∈ 𝑇(0), 𝑆 : 𝑋 → 2𝑋∗ be bounded pseudomonotone,
and 𝐶 : 𝑋 ⊇ 𝐷(𝐶) → 𝑋∗ be compact with 𝐷(𝑇) ⊆ 𝐷(𝐶) and
belonging to the class Γ𝜏

𝜎 . Let 𝑓∗ ∈ 𝑋∗. Assume, further, that
there exists 𝑅 > 0 such that

⟨V∗ + 𝑤∗ + 𝐶𝑥 − 𝑓∗, 𝑥⟩ > 0 (74)

for all 𝑥 ∈ 𝐷(𝑇) ∩ 𝜕𝐵𝑅(0), V∗ ∈ 𝑇𝑥, and 𝑤∗ ∈ 𝑆𝑥. Then 𝑓∗ ∈(𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)). Furthermore, 𝑅(𝑇 + 𝑆 + 𝐶) = 𝑋∗

provided that 𝑇 + 𝑆 + 𝐶 is coercive.

Proof. Let 𝜀 > 0. We shall show that 0 ∉ 𝐾𝜀(𝑡, 𝐷(𝑇) ∩ 𝜕𝐵𝑅(0))
for all 𝑡 ∈ [0, 1], where
𝐾𝜀 (𝑡, 𝑥) = 𝑇𝑥 + 𝑡 (𝑆𝑥 + 𝐶𝑥 + 𝜀𝐽𝑥 − 𝑓∗)

+ (1 − 𝑡) (𝜀𝐽𝑥) ,
(𝑡, 𝑥) ∈ [0, 1] × (𝐷 (𝑇) ∩ 𝐵𝑅 (0)) .

(75)

Since 0 ∈ 𝑇(0), by using the boundary condition on𝑇+𝑆+𝐶,
we see that

⟨𝑡 (V∗ + 𝑤∗ + 𝐶𝑥 − 𝑓∗) , 𝑥⟩ + ⟨(1 − 𝑡) V∗ + 𝜀𝐽𝑥, 𝑥⟩
≥ ⟨(1 − 𝑡) V∗ + 𝜀𝐽𝑥, 𝑥⟩
= (1 − 𝑡) ⟨V∗, 𝑥⟩ + 𝜀 ⟨𝐽𝑥, 𝑥⟩ ≥ 𝜀 ‖𝑥‖2 = 𝜀𝑅2 > 0

(76)

for all 𝑡 ∈ [0, 1], 𝑥 ∈ 𝐷(𝑇) ∩ 𝜕𝐵𝑅(0), V∗ ∈ 𝑇𝑥, and 𝑤∗ ∈ 𝑆𝑥;
that is, for each 𝜀 > 0, it follows that 0 ∉ 𝐾𝜀(𝑡, 𝐷(𝑇) ∩ 𝜕𝐵𝑅(0))
for all 𝑡 ∈ [0, 1]. Since 𝜀𝐽 and 𝑆 + 𝜀𝐽 are continuous, bounded,
and of type (𝑆+), (v) of Theorem 9 implies that {𝐾𝜀(𝑡, ⋅)}𝑡∈[0,1]

is an admissible homotopy. Therefore, for each 𝜀 > 0, we
obtain

𝑑 (𝐾𝜀 (𝑡, ⋅) , 𝐵𝑅 (0) , 0) = 𝑑 (𝜀𝐽, 𝐵𝑅 (0) , 0) = 1
∀𝑡 ∈ [0, 1] ; (77)

that is, 𝑑(𝑇 + 𝑆 + 𝐶 + 𝜀𝐽, 𝐵𝑅(0), 𝑓∗) = 1. By (ii) of Theorem 9,
we conclude that 𝑓∗ ∈ (𝑇 + 𝑆 + 𝐶 + 𝜀𝐽)(𝐷(𝑇) ∩ 𝐵𝑅(0)); that
is, for each 𝜀𝑛 ↓ 0+, there exist 𝑥𝑛 ∈ 𝐷(𝑇) ∩ 𝐵𝑅(0), V∗

𝑛 ∈ 𝑇𝑥𝑛,
and 𝑤∗

𝑛 ∈ 𝑆𝑥𝑛 such that

V∗
𝑛 + 𝑤∗

𝑛 + 𝐶𝑥𝑛 + 𝜀𝑛𝐽𝑥𝑛 = 𝑓∗ ∀𝑛. (78)

Since {𝑥𝑛} is bounded, we have 𝜀𝑛𝐽𝑥𝑛 → 0 as 𝑛 → ∞, which
implies that 𝑓∗ ∈ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)). If 𝑇 + 𝑆 + 𝐶 is
coercive, then for each 𝑓∗ ∈ 𝑋∗ there exists 𝑅 = 𝑅(𝑓∗) >0 such that the boundary condition holds. This implies that𝑓∗ ∈ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)). Since 𝑓∗ ∈ 𝑋∗ is arbitrary,
we conclude that 𝑅(𝑇 + 𝑆 + 𝐶) = 𝑋∗. The proof is complete.

The arguments used in the proof of Theorem 12 gives the
following existence result on the surjectivity of 𝑇 + 𝑆 + 𝐶
provided that either 𝑆 is bounded and of type (𝑆+) or 𝑇 + 𝑆
is of type (𝑆).
Corollary 13. Let 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ be maximal
monotone with 0 ∈ 𝑇(0), 𝑆 : 𝑋 → 2𝑋∗ , and 𝐶 : 𝐷(𝐶) → 𝑋∗

be compact with 𝐷(𝑇) ⊆ 𝐷(𝐶) and belonging to the class Γ𝜏
𝜎 .

Let 𝑓∗ ∈ 𝑋∗. Assume, further, that 𝑇 + 𝑆 + 𝐶 is coercive. Then𝑇 + 𝑆 + 𝐶 is surjective provided that 𝑆 is bounded of type (𝑆+)
or 𝑇 + 𝑆 is of type (𝑆).
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Proof. Let 𝑓∗ ∈ 𝑋∗. Suppose 𝑇 + 𝑆 + 𝐶 is coercive; that is,
there exists 𝜙 : [0,∞) → (−∞,∞) and 𝜙(𝑡) → ∞ as 𝑡 → ∞
such that

⟨V∗ + 𝑤∗ + 𝐶𝑥, 𝑥⟩ ≥ 𝜙 (‖𝑥‖) ‖𝑥‖
∀𝑥 ∈ 𝐷 (𝑇) , V∗ ∈ 𝑇𝑥, 𝑤∗ ∈ 𝑆𝑥. (79)

Then, there exists 𝑅 = 𝑅(𝑓∗) > 0 such that

⟨V∗ + 𝑤∗ + 𝐶𝑥 − 𝑓∗, 𝑥⟩ > 0 (80)

for all 𝑥 ∈ 𝐷(𝑇)∩𝜕𝐵𝑅(0), V∗ ∈ 𝑇𝑥, and𝑤∗ ∈ 𝑆𝑥.Assume that𝑇 + 𝑆 is of type (𝑆). By Theorem 12, we conclude that 𝑓∗ ∈(𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)); that is, there exists 𝑥𝑛 ∈ 𝐷(𝑇) ∩𝐵𝑅(0), V∗
𝑛 ∈ 𝑇𝑥𝑛, and𝑤∗

𝑛 ∈ 𝑆𝑥𝑛 such that V
∗
𝑛 +𝑤∗

𝑛 +𝐶𝑥𝑛 → 𝑓∗

as 𝑛 → ∞. Since 𝐶 is compact, we assume without loss of
generality that 𝐶𝑥𝑛 → 𝑔∗

0 as 𝑛 → ∞; that is, V∗
𝑛 +𝑤𝑛 → 𝑓∗ −𝑔∗

0 as 𝑛 → ∞. Since𝑇+𝑆 is of type (𝑆), it follows that 𝑥𝑛 → 𝑥0

as 𝑛 → ∞. By the maximality of 𝑇 along with Lemma 5,
the continuity of𝐶 and generalized pseudomonotonicity of 𝑆,
and the arguments used in the proof of Lemma 7,we conclude
that 𝑥0 ∈ 𝐷(𝑇) ∩ 𝐵𝑅(0) and 𝑓∗ ∈ 𝑇𝑥0 + 𝑆𝑥0 + 𝐶𝑥0; that is,𝑓∗ ∈ (𝑇 + 𝑆 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)). Since 𝑓∗ ∈ 𝑋∗ is arbitrary,
we conclude that 𝑇 + 𝑆 + 𝐶 is surjective. The case when𝑆 is bounded and of type (𝑆+) can be reached by following
analogous arguments. The details are omitted here.

Theorem 12 is a new result and Corollary 13 gives a
surjectivity result for operators of the type 𝑇 + 𝑆 + 𝐶. For
further existence results involving operators of the type 𝑇 +𝑆, the reader is referred to Kenmochi [17], Le [18], and
Asfaw [19]. For various examples on pseudomonotone and
quasimonotone operators, we cite the paper due toMustonen
[20].

4. An Example

Let 𝐻 = 𝐿2(0, 𝑇; 𝑉) and 𝑉 = 𝑊1,2
0 (Ω). It is well-known that𝐻 and 𝑉 are real Hilbert spaces with duality pairing between𝑢 ∈ 𝐻 and V ∈ 𝐻 denoted by ⟨𝑢, V⟩ which is given by

⟨𝑢, V⟩ = ∫𝑇

0
⟨𝑢 (𝑡) , V (𝑡)⟩𝑉 𝑑𝑡, 𝑢 ∈ 𝐻, V ∈ 𝐻, (81)

where ⟨𝑢(𝑡), V(𝑡)⟩𝑉 denotes the duality pairing between𝑢(𝑡) ∈𝑉 and V(𝑡) ∈ 𝑉, 𝑡 ∈ [0, 𝑇]; that is, the norm of 𝑢 ∈ 𝐻 is given
by ‖𝑢‖2 = ∫𝑇

0
‖𝑢(𝑡)‖2𝑉𝑑𝑡, where ‖𝑢(𝑡)‖𝑉 denotes the norm of𝑢(𝑡) in 𝑉. We shall apply the existence theorem(s) derived

with the aid of the degree theory developed in this paper
to establish existence of weak solution(s) in 𝐻 for nonlinear
problem given by

𝜕𝑢𝜕𝑡 − 𝑁∑
𝑖=1

𝜕𝜕𝑥𝑖

𝑎𝑖 (𝑥, 𝑡, 𝑢, ∇𝑢) + 𝑔 (𝑥, 𝑡, 𝑢, ∇𝑢) = 𝑓 (𝑥, 𝑡)
(𝑥, 𝑡) ∈ 𝑄

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇)
𝑢 (𝑥, 0) = 𝑢 (𝑥, 𝑇) , 𝑢𝑡 ∈ 𝐻, 𝑥 ∈ Ω,

(82)

where 𝑄 = Ω × (0, 𝑇) and 𝑓 ∈ 𝐿2(𝑄) and the functions 𝑎𝑖

(𝑖 = 1, 2, . . . , 𝑁) and 𝑔 satisfy the followingmeasurability and
sublinearity conditions:

(𝐶1) 𝑎𝑖(𝑥, 𝑡, 𝜂, 𝜁) (𝑖 = 1, 2, . . . , 𝑁) is Carathèodory func-
tion; that is, (𝑥, 𝑡) 󳨃→ 𝑎𝑖(𝑥, 𝑡, 𝜂, 𝜁) is measurable for
almost all (𝜂, 𝜁) ∈ R𝑁 and (𝜂, 𝜁) 󳨃→ 𝑎𝑖(𝑥, 𝑡, 𝜂, 𝜁) is
continuous for almost all (𝑥, 𝑡) ∈ Ω × [0, 𝑇]. Assume,
further, that there exist 𝑐1 > 0 and 𝑘1 ∈ 𝐿2(𝑄) such
that 󵄨󵄨󵄨󵄨𝑎𝑖 (𝑥, 𝜂, 𝜁)󵄨󵄨󵄨󵄨 ≤ 𝑐1 (󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜁󵄨󵄨󵄨󵄨) + 𝑘1 (𝑥, 𝑡) (83)

for all (𝑥, 𝑡) ∈ Ω × [0, 𝑇] and 𝜉 ∈ R𝑁.
(C2) There exists 𝑐2 > 0 such that ∑𝑁

𝑖=1 𝑎𝑖(𝑥, 𝜂, 𝜁)𝜁𝑖 ≥ 𝑐2|𝜁|2
for all (𝑥, 𝑡) ∈ 𝑄, (𝜂, 𝜁) ∈ R ×R𝑁.

(C3) 𝑔 : 𝑄 × R → R is Carathèodory function and there
exist 𝑐3 ≥ 0 and 𝑘2 ∈ 𝐿2(𝑄) such that

󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑡, 𝜂, 𝜁)󵄨󵄨󵄨󵄨 ≤ 𝑐3 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 + 𝑘2 (𝑥, 𝑡) ,
𝑔 (𝑥, 𝜂, 𝜁) 𝜂 ≥ 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2

(84)

for all (𝑥, 𝑡) ∈ 𝑄, 𝜂 ∈ R and 𝜁 ∈ R𝑁.

A weak solution 𝑢 ∈ 𝐻 is understood as follows.

Definition 14. A function 𝑢 = 𝑢(𝑥, 𝑡) is a weak solution of (82)
if 𝑢 ∈ 𝐻 and 𝑢𝑡 ∈ 𝐻 such that the following are satisfied:

(i) 𝑢 (𝑥, 𝑡) = 0 ∀𝑥 ∈ Ω;
(ii) 𝑢 (𝑥, 0) = 𝑢 (𝑥, 𝑇) ∀𝑥 ∈ 𝜕Ω;
(iii) ⟨𝑢󸀠, 𝜙⟩ + 𝑁∑

𝑖=1

∫
𝑄
𝑎𝑖 (𝑥, 𝑡, 𝑢, ∇𝑢) 𝜕𝜙𝜕𝑥𝑖

𝑑𝑥 𝑑𝑡
+ ∫

𝑄
(𝑔 (𝑥, 𝑡, 𝑢, ∇𝑢) − 𝑓 (𝑥, 𝑡)) 𝜙 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 0

∀𝜙 ∈ 𝐻

(85)

where 𝑢󸀠 is understood in the sense of distributions; that is,

∫𝑇

0
𝑢󸀠 (𝑡) 𝜓 (𝑡) 𝑑𝑡 = −∫𝑇

0
𝑢 (𝑡) 𝜓󸀠 (𝑡) 𝑑𝑡 ∀𝜓

∈ C∞
0 (0,T) .

(86)

Next we give the following theorem.

Theorem 15. Let 𝑓 ∈ 𝐿2(𝑄). Assume that conditions (𝐶1)
through (𝐶3) are satisfied. Then (82) admits at least one-weak
solution.

Proof. Let 𝑆 : 𝐻 → 𝐻 be given by

⟨𝑆𝑢, V⟩ = 𝑁∑
𝑖=1

∫
𝑄
𝑎𝑖 (𝑥, 𝑡, 𝑢, ∇𝑢) 𝜕V𝜕𝑥𝑖

𝑑𝑥 𝑑𝑡,
V ∈ 𝐻, 𝑢 ∈ 𝐻.

(87)
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By using (𝐶1) and (𝐶2), it is well-known that 𝑆 is bounded
continuous of type (𝑆+). For the proof of these facts and
other relevant properties of pseudomonotone and (𝑆+) type
differential operators, the reader is referred to the papers by
Browder [21], Berkovits and Mustonen [22], Hu and Papa-
georgiou [7], Landes and Mustonen [23], and the references
therein. Let 𝐶 : 𝐻 ⊇ 𝐷(𝐶) → 𝐻 be defined by

⟨𝐶𝑢, V⟩ = ∫
𝑄
𝑔 (𝑥, 𝑡, 𝑢, ∇𝑢) V (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡, V ∈ 𝐻, (88)

where 𝑢 ∈ 𝐷(𝐶) = {𝑦 ∈ 𝐻 : 𝑦󸀠 ∈ 𝐻} and 𝐿 : 𝐻 ⊇ 𝐷(𝐿) → 𝐻
such that ⟨𝐿𝑢, V⟩ = ∫𝑇

0
⟨𝑢󸀠(𝑡), V(𝑡)⟩𝑑𝑡, V ∈ 𝐻, where 𝑢 ∈

𝐷(𝐿) = {𝑦 ∈ 𝐻 : 𝑦󸀠 ∈ 𝐻, 𝑦(0) = 𝑦(𝑇)}, that is, 𝐷(𝐿) ⊆ 𝐷(𝐶).
It is well-known that 𝐿 is a densely defined maximal mono-
tone operator. The proof of this result is due to Brèzis which
can be found in the book by Zeidler [13, Theorem 32. L, pp.
897–899]. Since 𝐷(𝐶) is compactly embedded in 𝐿2(𝑄), it is
known that 𝐶 is a completely continuous operator; that is,𝐶 is a compact operator. Further reference on operators of
the type 𝐶 and existence results for parabolic problems, the
reader is referred to the recent book due to Carl et al. [24].
Next we shall use Theorem 12 using the compact operator 𝐶,
the maximal monotone operator 𝐿, and the (𝑆+) operator 𝑆. It
remains to show that 𝐶 lies in Γ𝜏

𝜎 and for each 𝑓∗ ∈ 𝐻, there
exists 𝑅 = 𝑅(𝑓∗) > 0 such that ⟨𝐿𝑢+𝑆𝑢+𝐶𝑢−𝑓∗, 𝑢⟩ > 0 for
all 𝑢 ∈ 𝐷(𝐿)∩𝜕𝐵𝑅(0). To this end, by applying condition (𝐶3),
Hòlder’s inequality and observing that ‖𝑦(𝑡)‖𝐿2(Ω) ≤ ‖𝑦(𝑡)‖𝑉
for all 𝑦 ∈ 𝐻 and 𝑡 ∈ [0, 1], we see that

|⟨𝐶𝑢, V⟩| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑇

0
(∫

Ω
𝑔 (𝑥, 𝑡, 𝑢, ∇𝑢) V (𝑥, 𝑡) 𝑑𝑥) 𝑑𝑡󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫𝑇

0
(∫

Ω

󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑡, 𝑢, ∇𝑢)󵄨󵄨󵄨󵄨 |V (𝑥, 𝑡)| 𝑑𝑥) 𝑑𝑡
≤ 𝑐3 ∫𝑇

0
(∫

Ω
(|𝑢 (𝑡)| + |∇𝑢 (𝑡)|) |V (𝑥, 𝑡)| 𝑑𝑥) 𝑑𝑡

+ ∫
𝑄

󵄨󵄨󵄨󵄨𝑘2 (𝑥, 𝑡)󵄨󵄨󵄨󵄨 |V (𝑥, 𝑡)| 𝑑𝑥 𝑑𝑡
≤ 𝑐3 (∫𝑇

0
‖𝑢 (𝑡)‖𝐿2(Ω) ‖V (𝑡)‖𝐿2(Ω) 𝑑𝑡)

+ 𝑐3 (∫𝑇

0
‖∇𝑢 (𝑡)‖𝐿2(Ω) ‖V (𝑡)‖𝐿2(Ω) 𝑑𝑡)

+ ∫𝑇

0

󵄩󵄩󵄩󵄩𝑘2 (𝑡)󵄩󵄩󵄩󵄩𝐿2(Ω) ‖V (𝑡)‖𝐿2(Ω) 𝑑𝑡
≤ 𝑐3 (∫𝑇

0
‖𝑢 (𝑡)‖𝑉 ‖V (𝑡)‖𝑉 𝑑𝑡)

+ 𝑐3 (∫𝑇

0
‖∇𝑢 (𝑡)‖𝑉 ‖V (𝑡)‖𝑉 𝑑𝑡)

+ ∫𝑇

0

󵄩󵄩󵄩󵄩𝑘2 (𝑡)󵄩󵄩󵄩󵄩𝐿2(Ω) ‖V (𝑡)‖𝑉 𝑑𝑡
≤ 2𝑐3 ‖𝑢‖ ‖V‖ + 󵄩󵄩󵄩󵄩𝑘2

󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖V‖ ∀𝑢 ∈ 𝐻, V ∈ 𝐻;

(89)

that is, we get that
⟨𝐶𝑢, V⟩ ≤ 2𝑐3 ‖𝑢‖ ‖V‖ + 󵄩󵄩󵄩󵄩𝑘2

󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖V‖ (90)
for all 𝑢 ∈ 𝐻 and V ∈ 𝐻. Consequently, taking supremum
overall V ∈ 𝐻with ‖V‖ ≤ 1, we conclude that ‖𝐶𝑢‖ ≤ 𝜏‖𝑢‖+𝜎
for all 𝑢 ∈ 𝐻, where 𝜏 = 2𝑐3 and 𝜎 = ‖𝑘2‖𝐿2(𝑄); that is,𝐶 belongs to Γ𝜏

𝜎 . Next we show the boundary condition in
Theorem 12. To this end, by using conditions (𝐶1) through(𝐶3) and monotonicity of 𝐿 (⟨𝐿𝑢, 𝑢⟩ ≥ 0 for all 𝑢 ∈ 𝐷(𝐿)), we
get

⟨𝐿𝑢 + 𝑆𝑢 + 𝐶𝑢, 𝑢⟩
≥ 𝑁∑

𝑖=1

∫
𝑄
𝑎𝑖 (𝑥, 𝑡, 𝑢, ∇𝑢 (𝑥, 𝑡)) 𝜕𝑢𝜕𝑥𝑖

𝑑𝑥 𝑑𝑡
+ ∫

𝑄
𝑔 (𝑥, 𝑢, ∇𝑢) 𝑢 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

≥ ∫
𝑄
|∇𝑢 (𝑥, 𝑡)|2 𝑑𝑥 𝑑𝑡 + ∫

𝑄
|𝑢 (𝑥, 𝑡)|2 𝑑𝑥 𝑑𝑡

= ∫𝑇

0
(∫

Ω
(|∇𝑢 (𝑥, 𝑡)|2 + |𝑢 (𝑥, 𝑡)|2) 𝑑𝑥) 𝑑𝑡

= ∫𝑇

0
‖𝑢 (𝑡)‖2𝑉 𝑑𝑡 = ‖𝑢‖2

(91)

for all 𝑢 ∈ 𝐻. Since the right side of the above inequality
approaches ∞ as ‖𝑢‖ → ∞, for each 𝑓 ∈ 𝐿2(𝑄) there exists𝑅 = 𝑅(𝑓) > 0 such that

⟨𝐿𝑢 + 𝑆𝑢 + 𝐶𝑢 − 𝑓, 𝑢⟩ > 0 (92)
for all 𝑢 ∈ 𝐷(𝐿) ∩ 𝜕𝐵𝑅(0). By applying Theorem 12, we
conclude that the equation 𝐿𝑢 + 𝑆𝑢 + 𝐶𝑢 = 𝑓 is solvable in𝐷(𝐿); that is, (82) admits at least one-weak solution.

In conclusion, we like to notice that the function 𝑔
depends on both 𝑢 and∇𝑢, sublinear, and possibly nonmono-
tone with respect to 𝑢. Consequently, Theorem 15 improves
those analogous results under monotonicity condition on𝑔 with respect to 𝑢. Existence results in elliptic as well as
parabolic problems under monotone nonlinearities indepen-
dent of ∇𝑢; the reader is referred to [7, 9, 17, 20, 21, 25–28]
and the references therein.
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[25] H. Brèzis and L. Nirenberg, “Characterizations of the ranges of
some nonlinear operators and applications to boundary value
problems,” Annali Della Scuola Normale Superiore Di Pisa, vol.
5, no. 2, pp. 225–326, 1978.
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