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Nonlinear boundary value problems (BVPs) are more tedious to solve than their linear counterparts. This is observed in the
extra computation required when determining the missing conditions in transforming BVPs to initial value problems. Although a
number of numerical approaches are already existent in literature to solve nonlinear BVPs, this article presents a new blockmethod
with improved accuracy to solve nonlinear BVPs. A (𝑚 + 1)th-step block method is developed using a modified Taylor series
approach to directly solve fourth-order nonlinear boundary value problems (BVPs) where𝑚 is the order of the differential equation
under consideration.The schemes obtained were combined to simultaneously produce solution to the fourth-order nonlinear BVPs
at 𝑚 + 1 points iteratively. The derived block method showed improved accuracy in comparison to previously existing authors
when solving the same problems. In addition, the suitability of the (𝑚 + 1)th-step block method was displayed in the solution for
magnetohydrodynamic squeezing flow in porous medium.

1. Introduction

Boundary value problems (BVPs) arise in several branches of
science ranging from physical sciences to engineering. There
has been commendable progress in solving problems associ-
ated with nonlinear ordinary differential equations (ODEs)
involving boundary conditions in recent years. These ODEs
are sometimes needed to fulfil certain boundary conditions
at more than one point of the independent variable which
will result in the problemknown as two-point boundary value
problem. Two-point nonlinear BVPs often cannot be solved
by analyticalmethods and thus finding approximate solutions
for these problems becomes essential.

This article considers the following special type of non-
linear boundary value problem:

𝑦𝑖V = 𝑓 (𝑥, 𝑦) , (1)

with the boundary conditions

𝑦 (𝑎) = 𝛼1,𝑦 (𝑎) = 𝛼2,𝑦 (𝑏) = 𝛽1,𝑦 (𝑏) = 𝛽2,
(2)

where𝑓 is a continuous function on [𝑎, 𝑏] and the parameters𝛼𝑖 and 𝛽𝑖 for 𝑖 = 1, 2 are constants.
A variety of methods have been introduced to solve (1)

such as shooting methods, splines methods, finite differ-
ence methods, finite element methods, differential transform
methods, and collocation methods [1–4]. Recently, the adop-
tion of various families of linear multistep method (LMM)
for numerically approximating higher order ODEs has been
proposed. However, some LMMs cannot directly solve these
higher order ODEs and thus require reduction to a system
of first-order ODEs. In some cases, the accuracy of LMMs is
low such as the case of predictor-corrector methods which
incur high computational rigour. This computational rigour

Hindawi
International Journal of Differential Equations
Volume 2017, Article ID 4925914, 9 pages
http://dx.doi.org/10.1155/2017/4925914

http://dx.doi.org/10.1155/2017/4925914


2 International Journal of Differential Equations

involves the derivation of separate predictors for each grid
point of the LMMas seen in the work of Kayode and Adeyeye
[5] andKayode andObarhua [6].These drawbacks caused for
the introduction of block methods which were first proposed
byMilne [7] as ameans to obtain starting values for predictor-
corrector methods.This concept was also further explored by
Sarafyan [8].

Block methods differ from alternate approaches such
as differential transform method and collocation method.
This is because the formulation of block methods is an
evaluation of the linear multistep method at different grid
points to generate a family of methods that can be applied
to produce approximate solutions of ODEs at each grid
point simultaneously. This advantage was mentioned by
Lambert [9] among other advantages which include being
self-starting, permitting easy change of step-length, and
being less expensive in terms of function evaluations. Block
methods also yield better accuracywhen applied to numerical
problems.

This article introduces a (𝑚 + 1)th-step block method
where 𝑚 is the order of the differential equation. The block
method is developed using amodification of the conventional
Taylor series expansions approach by Lambert [9]. This
derivation is shown in Section 2 of this article while Section 3
considers certain numerical examples and their results to
show the accuracy of the block method.

2. Methodology

Lambert [9] highlighted three main approaches for devel-
oping LMMs. These include interpolation, numerical inte-
gration, and Taylor series expansions. This article adopts
the Taylor series expansion approach for LMMs to develop
the block method. However, certain modifications were
introduced since Lambert [9] focused on first-order methods
whereas this article develops a block method for fourth-
order ODEs. Therefore, the approach was made suitable to
develop blockmethods and not LMMs alone, hence the name
modified Taylor series approach.

2.1. Derivation of the (𝑚 + 1)th-Step Block Method Using
Modified Taylor Series Approach. The algorithm described
below is used to show the steps involved in deriving the(𝑚 + 1)th-step block method using the modified Taylor
series approach where 𝑚 is the order of the differential
equation.

Algorithm 1.

Start.

Step 1. Obtain the coefficients of the initial multistep scheme:

𝑦𝑛+(𝑚+1) = 𝑚∑
𝑗=(𝑚−4)

𝛼𝑗V𝑦𝑛+𝑗 + (𝑚+1)∑
𝑗=(𝑚−4)

𝛽𝑗𝑓𝑛+𝑗, (3)

V = 1, 2, . . . , 𝑚.

Step 2. Obtain the coefficients of the additional schemes:

𝑦𝑛+𝑗𝑚+1 = 𝑚∑
𝑗=(𝑚−4)

𝛼𝑗V𝑦𝑛+𝑗 + (𝑚+1)∑
𝑗=(𝑚−4)

𝛽𝑗𝑓𝑛+𝑗,
𝑦𝑛+𝑗𝑚+2 = 𝑚∑

𝑗=(𝑚−4)

𝛼𝑗V𝑦𝑛+𝑗 + (𝑚+1)∑
𝑗=(𝑚−4)

𝛽𝑗𝑓𝑛+𝑗,
...

𝑦𝑛+𝑗𝑘 = 𝑚∑
𝑗=(𝑚−4)

𝛼𝑗V𝑦𝑛+𝑗 + (𝑚+1)∑
𝑗=(𝑚−4)

𝛽𝑗𝑓𝑛+𝑗.

(4)

Step 3. Derive the coefficients of the (1st, 2nd, . . . , (𝑚 − 1)th)
derivative schemes:

𝑦()𝑛 = 𝑚∑
𝑗=(𝑚−4)

𝛼𝑗V𝑦𝑛+𝑗 + (𝑚+1)∑
𝑗=(𝑚−4)

𝛽𝑗𝑓𝑛+𝑗,
𝑦()𝑛+1 = 𝑚∑

𝑗=(𝑚−4)

𝛼𝑗V𝑦𝑛+𝑗 + (𝑚+1)∑
𝑗=(𝑚−4)

𝛽𝑗𝑓𝑛+𝑗,
...

𝑦()𝑛+(𝑚+1) = 𝑚∑
𝑗=(𝑚−4)

𝛼𝑗V𝑦𝑛+𝑗 + (𝑚+1)∑
𝑗=(𝑚−4)

𝛽𝑗𝑓𝑛+𝑗,

(5)

where  = 1, 2, . . . , 𝑚 − 1.
Step 4. Combine schemes obtained in Steps 1, 2, and 3 above
to form a system of equations with matrix form equivalent𝐴𝑥 = 𝐵 where 𝑥 = (𝑁0, 𝑁1, 𝑁2, . . . , 𝑁𝑚−1)𝑇 and 𝑁0 =(𝑦𝑛+(𝑚−3), 𝑦𝑛+(𝑚−2), . . . , 𝑦𝑛+(𝑚+1))𝑇, 𝑁1 = (𝑦𝑛+(𝑚−3), 𝑦𝑛+(𝑚−2),. . . , 𝑦𝑛+(𝑚+1))𝑇, 𝑁2 = (𝑦𝑛+(𝑚−3), 𝑦𝑛+(𝑚−2), . . . , 𝑦𝑛+(𝑚+1))𝑇,𝑁𝑚−1 = (𝑦𝑚−1𝑛+(𝑚−3), 𝑦𝑚−1𝑛+(𝑚−2), . . . , 𝑦𝑚−1𝑛+(𝑚+1))𝑇
Step 5. Adopt matrix inverse approach to system of equations
in Step 4 to obtain the expected block method.

Stop.

In Algorithm 1, 𝑦𝑛+𝑎 = 𝑦(𝑥𝑛+𝑎) = 𝑦(𝑥𝑛 + 𝑎ℎ), 𝑓𝑛+𝑗 =𝑓(𝑥𝑛+𝑗, 𝑦𝑛+𝑗), and 𝛼𝑗V and 𝛽𝑗 are constants with V defined in
Step 1 of Algorithm 1.

Note that in Step 1 of Algorithm 1, the expected 𝛼𝑗V are𝛼𝑗1 , 𝛼𝑗2 , . . . , 𝛼𝑗𝑚 . The 𝛼𝑗V-values can take 𝑘𝐶V forms and 𝑗V-
values not chosen will be used as evaluation points when
developing the additional methods in Step 2.
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Steps 1–3 of Algorithm 1 require expanding individual
terms using Taylor Series expansion such as

𝑦𝑛 = 𝑦 (𝑥𝑛) ,
𝑦𝑛+1 = 𝑦 (𝑥𝑛 + ℎ) = 𝑦 (𝑥𝑛) + ℎ𝑦 (𝑥𝑛) + ℎ22! 𝑦 (𝑥𝑛)+ ⋅ ⋅ ⋅ , ...𝑦𝑛+(𝑘−1) = 𝑦 [𝑥𝑛 + ((𝑘 − 1) ℎ)] = 𝑦 (𝑥𝑛)
+ ((𝑘 − 1) ℎ) 𝑦 (𝑥𝑛) + ((𝑘 − 1) ℎ)22! 𝑦 (𝑥𝑛) + ⋅ ⋅ ⋅ ,

𝑦𝑛+𝑘 = 𝑦 [𝑥𝑛 + 𝑘ℎ] = 𝑦 (𝑥𝑛) + (𝑘ℎ) 𝑦 (𝑥𝑛)
+ (𝑘ℎ)22! 𝑦 (𝑥𝑛) + . . . ,

𝑓𝑛 = 𝑦(𝑚) (𝑥𝑛) ,𝑓𝑛+1 = 𝑦(𝑚) (𝑥𝑛 + ℎ) = 𝑦(𝑚) (𝑥𝑛) + ℎ𝑦(𝑚+1) (𝑥𝑛)

+ ℎ22! 𝑦(𝑚+2) (𝑥𝑛) + ⋅ ⋅ ⋅ , ...𝑓𝑛+(𝑘−1) = 𝑦(𝑚) [𝑥𝑛 + ((𝑘 − 1) ℎ)] = 𝑦(𝑚) (𝑥𝑛)
+ ((𝑘 − 1) ℎ) 𝑦(𝑚+1) (𝑥𝑛) + ((𝑘 − 1) ℎ)22! 𝑦(𝑚+2) (𝑥𝑛)+ ⋅ ⋅ ⋅ ,𝑓𝑛+𝑘 = 𝑦(𝑚) [𝑥𝑛 + 𝑘ℎ] = 𝑦(𝑚) (𝑥𝑛) + (𝑘ℎ) 𝑦(𝑚+1) (𝑥𝑛)
+ (𝑘ℎ)22! 𝑦(𝑚+2) (𝑥𝑛) + ⋅ ⋅ ⋅ .

(6)

Substituting these expansions in individual equations and
equating coefficients of 𝑦(𝑚)𝑥𝑛 presents the resulting expres-
sions in matrix form 𝐴x = B, (7)

where

𝐴 =

(((((((((((((((((((((((((((((
(

1 1 1 . . . 1 0 0 0 . . . 0
0 ℎ 2ℎ . . . (𝑘 − 1) ℎ ... ... ... . . . ...
0 (ℎ)22! (2ℎ)22! . . . ((𝑘 − 1) ℎ)22! ... ... ... . . . ...... ... ... . . . ... ... ... ... . . . ...
0 (ℎ)𝑚𝑚! (2ℎ)𝑚𝑚! . . . ((𝑘 − 1) ℎ)𝑚𝑚! 1 1 1 . . . 1
0 (ℎ)(𝑚+1)(𝑚 + 1)! (2ℎ)(𝑚+1)(𝑚 + 1)! . . . ((𝑘 − 1) ℎ)(𝑚+1)(𝑚 + 1)! 0 ℎ 2ℎ . . . 𝑘ℎ
0 . . . . . . 0 (ℎ)22! (2ℎ)22! . . . (𝑘ℎ)22!0 . . . . . . 0 . . . . . .0 . . . . . . 0 . . . . . .0 . . . . . . 0 . . . . . .
0 (ℎ)(2𝑘)(2𝑘)! (2ℎ)(2𝑘)(2𝑘)! . . . ((𝑘 − 1) ℎ)(2𝑘)(2𝑘)! 0 (ℎ)(2𝑘−𝑚)(2𝑘 − 𝑚)! (2ℎ)(2𝑘−𝑚)(2𝑘 − 𝑚)! . . . (𝑘ℎ)(2𝑘−𝑚)(2𝑘 − 𝑚)!

)))))))))))))))))))))))))))))
)

,

x = (𝛼0, 𝛼1, 𝛼2, . . . , 𝛼𝑘−1, 𝛽0, 𝛽1, 𝛽2, . . . , 𝛽𝑘)𝑇 ,
B = (1, 𝑘ℎ, (𝑘ℎ)22! , (𝑘ℎ)33! , (𝑘ℎ)44! , . . . , (𝑘ℎ)(2𝑘)(2𝑘)! )𝑇 .

(8)

Note that Algorithm 1 will not successfully obtain the
required block method if matrix 𝐴 is singular. Thus, the
nonsingularity of the resulting matrices is discussed.

2.2. Nonsingularity of Resulting Matrices. Thematrix𝐴 in (7)
is a square matrix with det(𝐴) ̸= 0 which follows from the
theorems below.
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Theorem 2. Suppose that 𝐴 is a square matrix with a row
where every entry is zero, or a columnwhere every entry is zero.
Then det(𝐴) = 0.
Theorem 3. Suppose that𝐴 is a square matrix with two equal
rows, or two equal columns. Then det(𝐴) = 0.

With respect to Theorem 2, since the matrix 𝐴 does not
have a row or column where every entry is zero, then its
inverse exists. On the other hand, matrix𝐴 has no equal rows
or columns which further affirms that its inverse exists.

Theorems 2 and 3 are sufficient conditions to show
that the inverse of the resulting matrix will always exist.
In addition, the case of linear dependency is considered as
defined in the following theorems.

Theorem 4. If matrix 𝐴 has linearly dependent columns, then
det(𝐴) = 0.
Theorem 5. The rank of a matrix 𝐴 equals the maximum
number of linearly independent column vectors. The matrix 𝐴
has the same number of linearly independent row vectors as it
has linearly independent column vectors

Thus, Theorem 5 is tested for resulting matrices obtained
in developing the (𝑚 + 1)th-step block method to show that𝐴−1 exists.
2.3. Specification of the (𝑚 + 1)th-Step Block Method. Fol-
lowing Algorithm 1, the specification of the (𝑚 + 1)th-step
block method is as follows. From Step 1, the initial multistep
scheme for the (𝑚 + 1)th-step block method in terms of𝑚 is

𝑦𝑛+𝑚+1 = 𝛼𝑚−4𝑦𝑛+𝑚−4 + 𝛼𝑚−3𝑦𝑛+𝑚−3 + 𝛼𝑚−2𝑦𝑛+𝑚−2+ 𝛼𝑚−1𝑦𝑛+𝑚−1 + 𝛼𝑚𝑦𝑛+𝑚 + 𝛽𝑚−4𝑓𝑛+𝑚−4+ 𝛽𝑚−3𝑓𝑛+𝑚−3 + 𝛽𝑚−2𝑓𝑛+𝑚−2 + 𝛽𝑚−1𝑓𝑛+𝑚−1+ 𝛽𝑚𝑓𝑛+𝑚 + 𝛽𝑚+1𝑓𝑛+𝑚+1.
(9)

Now, considering (9), the individual terms are expanded
using Taylor series expansion as defined in (6). The resulting
expansions are substituted back in (9) and rewritten inmatrix
form 𝐴x = B, where

𝐴

=

(((((((((((((((((((((((((((((((
(

1 1 1 1 1 0 0 0 0 0 0(𝑚 − 4) ℎ (𝑚 − 3) ℎ (𝑚 − 2) ℎ (𝑚 − 1) ℎ (𝑚) ℎ 0 0 0 0 0 0(𝑚 − 4) ℎ22! (𝑚 − 3) ℎ22! (𝑚 − 2) ℎ22! (𝑚 − 1) ℎ22! (𝑚) ℎ22! 0 0 0 0 0 0(𝑚 − 4) ℎ33! (𝑚 − 3) ℎ33! (𝑚 − 2) ℎ33! (𝑚 − 1) ℎ33! (𝑚) ℎ33! 0 0 0 0 0 0(𝑚 − 4) ℎ44! (𝑚 − 3) ℎ44! (𝑚 − 2) ℎ44! (𝑚 − 1) ℎ44! (𝑚) ℎ44! 1 1 1 1 1 1(𝑚 − 4) ℎ55! (𝑚 − 3) ℎ55! (𝑚 − 2) ℎ55! (𝑚 − 1) ℎ55! (𝑚) ℎ55! (𝑚 − 4) ℎ (𝑚 − 3) ℎ (𝑚 − 2) ℎ (𝑚 − 1) ℎ (𝑚) ℎ (𝑚 + 1) ℎ(𝑚 − 4) ℎ66! (𝑚 − 3) ℎ66! (𝑚 − 2) ℎ66! (𝑚 − 1) ℎ66! (𝑚) ℎ66! (𝑚 − 4) ℎ22! (𝑚 − 3) ℎ22! (𝑚 − 2) ℎ22! (𝑚 − 1) ℎ22! (𝑚) ℎ22! (𝑚 + 1) ℎ22!(𝑚 − 4) ℎ77! (𝑚 − 3) ℎ77! (𝑚 − 2) ℎ77! (𝑚 − 1) ℎ77! (𝑚) ℎ77! (𝑚 − 4) ℎ33! (𝑚 − 3) ℎ33! (𝑚 − 2) ℎ33! (𝑚 − 1) ℎ33! (𝑚) ℎ33! (𝑚 + 1) ℎ33!(𝑚 − 4) ℎ88! (𝑚 − 3) ℎ88! (𝑚 − 2) ℎ88! (𝑚 − 1) ℎ88! (𝑚) ℎ88! (𝑚 − 4) ℎ44! (𝑚 − 3) ℎ44! (𝑚 − 2) ℎ44! (𝑚 − 1) ℎ44! (𝑚) ℎ44! (𝑚 + 1) ℎ44!(𝑚 − 4) ℎ99! (𝑚 − 3) ℎ99! (𝑚 − 2) ℎ99! (𝑚 − 1) ℎ99! (𝑚) ℎ99! (𝑚 − 4) ℎ55! (𝑚 − 3) ℎ55! (𝑚 − 2) ℎ55! (𝑚 − 1) ℎ55! (𝑚) ℎ55! (𝑚 + 1) ℎ55!(𝑚 − 4) ℎ1010! (𝑚 − 3) ℎ1010! (𝑚 − 2) ℎ1010! (𝑚 − 1) ℎ1010! (𝑚) ℎ1010! (𝑚 − 4) ℎ66! (𝑚 − 3) ℎ66! (𝑚 − 2) ℎ66! (𝑚 − 1) ℎ66! (𝑚) ℎ66! (𝑚 + 1) ℎ66!

)))))))))))))))))))))))))))))))
)

,

x = (𝛼𝑚−4, 𝛼𝑚−3, 𝛼𝑚−2, 𝛼𝑚−1, 𝛼𝑚, 𝛽𝑚−4, 𝛽𝑚−3, 𝛽𝑚−2, 𝛽𝑚−1, 𝛽𝑚, 𝛽𝑚+1)𝑇 ,
B

= (1, (𝑚 + 1) ℎ, ((𝑚 + 1) ℎ)22! , ((𝑚 + 1) ℎ)33! , ((𝑚 + 1) ℎ)44! , ((𝑚 + 1) ℎ)55! , ((𝑚 + 1) ℎ)66! , ((𝑚 + 1) ℎ)77! , ((𝑚 + 1) ℎ)88! , ((𝑚 + 1) ℎ)99! , ((𝑚 + 1) ℎ)1010! )𝑇 ,

(10)

where matrix 𝐴 has rank = 11 which implies that there
are no linearly dependent columns or rows and the inverse
exists. This follows from the theorems in Section 2.2 showing
that the matrix is nonsingular. Therefore, the scheme in (9)
is obtained using matrix inverse method and substituting the
value of𝑚 as

𝑦𝑛+𝑚+1 = 𝑦𝑛+𝑚−4 − 5𝑦𝑛+𝑚−3 + 10𝑦𝑛+𝑚−2 − 10𝑦𝑛+𝑚−1
+ 5𝑦𝑛+𝑚 + ℎ4720 (𝑓𝑛+𝑚−4 − 125𝑓𝑛+𝑚−3 − 350𝑓𝑛+𝑚−2+ 350𝑓𝑛+𝑚−1 + 125𝑓𝑛+𝑚 + 𝑓𝑛+𝑚+1) .

(11)
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Following the subsequent steps of Algorithm 1, the specifica-
tion of the (𝑚 + 1)th-step block method is as follows:

1814400𝑦𝑛+𝑚−3 = 1814400(𝑦𝑛 + ℎ𝑦𝑛 + ℎ22 𝑦𝑛
+ ℎ36 𝑦𝑛 ) + ℎ4 (49126𝑓𝑛 + 49045𝑓𝑛+𝑚−3− 40160𝑓𝑛+𝑚−2 + 25430𝑓𝑛+𝑚−1 − 9310𝑓𝑛+𝑚+ 1469𝑓𝑛+𝑚+1) ,

14175𝑦𝑛+𝑚−2 = 14175(𝑦𝑛 + 2ℎ𝑦𝑛 + 2ℎ2𝑦𝑛
+ 4ℎ33 𝑦𝑛 ) + ℎ4 (4264𝑓𝑛 + 7960𝑓𝑛+𝑚−3
− 4910𝑓𝑛+𝑚−2 + 3080𝑓𝑛+𝑚−1 − 1120𝑓𝑛+𝑚+ 176𝑓𝑛+𝑚+1) ,

22400𝑦𝑛+𝑚−1 = 22400(𝑦𝑛 + 3ℎ𝑦𝑛 + 9ℎ22 𝑦𝑛
+ 9ℎ32 𝑦𝑛 ) + ℎ4 (25488𝑓𝑛 + 63315𝑓𝑛+𝑚−3
− 26460𝑓𝑛+𝑚−2 + 19170𝑓𝑛+𝑚−1 − 7020𝑓𝑛+𝑚+ 1107𝑓𝑛+𝑚+1) ,

14175𝑦𝑛+𝑚 = 14175(𝑦𝑛 + 4ℎ𝑦𝑛 + 8ℎ2𝑦𝑛
+ 32ℎ33 𝑦𝑛 ) + ℎ4 (40448𝑓𝑛 + 116480𝑓𝑛+𝑚−3
− 29440𝑓𝑛+𝑚−2 + 33280𝑓𝑛+𝑚−1 − 11360𝑓𝑛+𝑚+ 1792𝑓𝑛+𝑚+1) ,

𝑦𝑛+𝑚+1 = 𝑦𝑛 + 5ℎ𝑦𝑛 + 25ℎ22 𝑦𝑛 + 125ℎ36 𝑦𝑛
+ ℎ472576 (418250𝑓𝑛 + 1315625𝑓𝑛+𝑚−3− 175000𝑓𝑛+𝑚−2 + 418750𝑓𝑛+𝑚−1 − 106250𝑓𝑛+𝑚+ 18625𝑓𝑛+𝑚+1) ,

(12)

40320𝑦𝑛+𝑚−3 = 40320(𝑦𝑛 + ℎ𝑦𝑛 + ℎ22 𝑦𝑛 )+ ℎ3 (3929𝑓𝑛 + 4975𝑓𝑛+𝑚−3 − 3862𝑓𝑛+𝑚−2+ 2422𝑓𝑛+𝑚−1 − 883𝑓𝑛+𝑚 + 139𝑓𝑛+𝑚+1) ,630𝑦𝑛+𝑚−2 = 630 (𝑦𝑛 + 2ℎ𝑦𝑛 + 2ℎ2𝑦𝑛 ) + ℎ3 (317𝑓𝑛

+ 734𝑓𝑛+𝑚−3 − 380𝑓𝑛+𝑚−2 + 244𝑓𝑛+𝑚−1 − 89𝑓𝑛+𝑚+ 14𝑓𝑛+𝑚+1) ,
4480𝑦𝑛+𝑚−1 = 4480(𝑦𝑛 + 3ℎ𝑦𝑛 + 9ℎ22 𝑦𝑛 )
+ ℎ3 (5481𝑓𝑛 + 16119𝑓𝑛+𝑚−3 − 4374𝑓𝑛+𝑚−2+ 4230𝑓𝑛+𝑚−1 − 1539𝑓𝑛+𝑚 + 243𝑓𝑛+𝑚+1) ,315𝑦𝑛+𝑚 = 315 (𝑦𝑛 + 4ℎ𝑦𝑛 + 8ℎ2𝑦𝑛 ) + ℎ3 (712𝑓𝑛+ 2336𝑓𝑛+𝑚−3 − 224𝑓𝑛+𝑚−2 + 704𝑓𝑛+𝑚−1− 200𝑓𝑛+𝑚 + 32𝑓𝑛+𝑚+1) ,

8064𝑦𝑛+𝑚+1 = 8064(𝑦𝑛 + 5ℎ𝑦𝑛 + 25ℎ22 𝑦𝑛 )
+ ℎ3 (29125𝑓𝑛 + 101875𝑓𝑛+𝑚−3 + 1250𝑓𝑛+𝑚−2+ 38750𝑓𝑛+𝑚−1 − 4375𝑓𝑛+𝑚 + 1375𝑓𝑛+𝑚+1) ,

(13)10080𝑦𝑛+𝑚−3 = 10080 (𝑦𝑛 + ℎ𝑦𝑛 ) + ℎ2 (2462𝑓𝑛+ 4315𝑓𝑛+𝑚−3 − 3044𝑓𝑛+𝑚−2 + 1882𝑓𝑛+𝑚−1− 682𝑓𝑛+𝑚 + 107𝑓𝑛+𝑚+1) ,630𝑦𝑛+𝑚−2 = 630 (𝑦𝑛 + 2ℎ𝑦𝑛 ) + ℎ2 (355𝑓𝑛+ 1088𝑓𝑛+𝑚−3 − 370𝑓𝑛+𝑚−2 + 272𝑓𝑛+𝑚−1− 101𝑓𝑛+𝑚 + 16𝑓𝑛+𝑚+1) ,1120𝑦𝑛+𝑚−1 = 1120 (𝑦𝑛 + 3ℎ𝑦𝑛 ) + ℎ2 (984𝑓𝑛+ 3501𝑓𝑛+𝑚−3 − 72𝑓𝑛+𝑚−2 + 870𝑓𝑛+𝑚−1 − 288𝑓𝑛+𝑚+ 45𝑓𝑛+𝑚+1) ,315𝑦𝑛+𝑚 = 315 (𝑦𝑛 + 4ℎ𝑦𝑛 ) + ℎ2 (376𝑓𝑛+ 1424𝑓𝑛+𝑚−3 + 176𝑓𝑛+𝑚−2 + 608𝑓𝑛+𝑚−1 − 80𝑓𝑛+𝑚+ 16𝑓𝑛+𝑚+1) ,2016𝑦𝑛+𝑚+1 = 2016 (𝑦𝑛 + 5ℎ𝑦𝑛 ) + ℎ2 (3050𝑓𝑛+ 11875𝑓𝑛+𝑚−3 + 2500𝑓𝑛+𝑚−2 + 6250𝑓𝑛+𝑚−1+ 1250𝑓𝑛+𝑚 + 275𝑓𝑛+𝑚+1) ,

(14)

1440𝑦𝑛+1 = 1440𝑦𝑛 + ℎ (475𝑓𝑛 + 1427𝑓𝑛+𝑚−3− 798𝑓𝑛+𝑚−2 + 482𝑓𝑛+𝑚−1 − 173𝑓𝑛+𝑚 + 27𝑓𝑛+𝑚+1) ,90𝑦𝑛+2 = 90𝑦𝑛 + ℎ (28𝑓𝑛 + 129𝑓𝑛+𝑚−3 + 14𝑓𝑛+𝑚−2+ 14𝑓𝑛+𝑚−1 − 6𝑓𝑛+𝑚 + 𝑓𝑛+𝑚+1) ,
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160𝑦𝑛+3 = 160𝑦𝑛 + ℎ (51𝑓𝑛 + 219𝑓𝑛+𝑚−3+ 114𝑓𝑛+𝑚−2 + 114𝑓𝑛+𝑚−1 − 21𝑓𝑛+𝑚 + 3𝑓𝑛+𝑚+1) ,45𝑦𝑛+4 = 45𝑦𝑛 + ℎ (14𝑓𝑛 + 64𝑓𝑛+𝑚−3 + 24𝑓𝑛+𝑚−2+ 64𝑓𝑛+𝑚−1 + 14𝑓𝑛+𝑚) ,288𝑦𝑛+5 = 288𝑦𝑛 + ℎ (95𝑓𝑛 + 375𝑓𝑛+𝑚−3+ 250𝑓𝑛+𝑚−2 + 250𝑓𝑛+𝑚−1 + 375𝑓𝑛+𝑚 + 95𝑓𝑛+𝑚+1) .
(15)

2.4. Order and Stability Properties of the (𝑚 + 1)th-Step
Block Method. To ensure convergence of the block method,
its consistency and zero-stability need to be investigated.
This follows from Fatunla (1988) which states that a linear
multistep method is convergent iff it is consistent and zero-
stable.

Starting with the consistency property, a linear multistep
method is consistent if it has order 𝑝 ≥ 1. Thus, the order of
the (𝑚 + 1)th-step block method is investigated.

With reference to the definition in Lambert [9], Henrici
[11], and Butcher [12], the order and error constant of the (𝑚+1)th-step block method follow Definition 6.

Definition 6. The linear operator associated with LMM is
defined as

𝐿 [𝑦 (𝑥) ; ℎ] = 𝑘∑
𝑗=0

[𝛼𝑗𝑦𝑛+𝑗 − 𝛽𝑗𝑓𝑛+𝑗] . (16)

On expanding 𝑦𝑛+𝑗 and 𝑓𝑛+𝑗 to obtain𝐿 [𝑦 (𝑥) ; ℎ] = 𝐶0𝑦 (𝑥𝑛) + 𝐶1ℎ𝑦 (𝑥𝑛) + ⋅ ⋅ ⋅+ 𝐶𝑞ℎ𝑞𝑦(𝑞) (𝑥𝑛) + ⋅ ⋅ ⋅ , (17)

where𝐶0 = 𝛼0 + 𝛼1 + 𝛼2 + ⋅ ⋅ ⋅ + 𝛼𝑘,𝐶1 = 𝛼1 + 2𝛼2 + ⋅ ⋅ ⋅ + 𝑘𝛼𝑘, ...
𝐶𝑞 = 1𝑞! (𝛼1 + 2𝑞𝛼2 + ⋅ ⋅ ⋅ + 𝑘𝑞𝛼𝑘)
− 1(𝑞 − 𝑚)! (𝛽1 + 2𝑞−𝑚𝛽2 + ⋅ ⋅ ⋅ + 𝑘𝑞−𝑚𝛽𝑘) ,𝑞 = 2, 3, . . . ,

(18)

the method is said to be of order 𝑝 if 𝐶0 = 𝐶1 = ⋅ ⋅ ⋅ = 𝐶𝑝 =𝐶𝑝+1 = ⋅ ⋅ ⋅ = 𝐶𝑝+(𝑚−1) = 0, 𝐶𝑝+𝑚 ̸= 0 and 𝐶𝑝+𝑚 is the error
constant.

The integrators of the block method (12) are of order
six methods with the error constants, 𝐶10 obtained as2323/3628800, 137/14175, 1737/44800, 1408/14175, and29375/145152, respectively. Having order 𝑝 > 1, the
consistency of the block method is affirmed.

Moving on to the second criterion for convergence which
is the zero-stability of the block method. Note that this is the
most important stability property a good numerical method
should possess as it ensures convergence.The keyword “zero”
is based on the stability phenomenon in terms of convergence
in the limit as step-size (ℎ) tends to zero.

Therefore, to test the zero-stability of the (𝑚 + 1)th-step
block method, the integrators are normalized to give the first
characteristic polynomial 𝜌(𝑟) as𝜌 (𝑟) = det (𝑟𝐴0 − 𝐴1) = 𝑟𝑚 (𝑟 − 1) , (19)

with 𝐴0 = 5 × 5 identity matrix

𝐴1 =((
(

0 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 1
))
)

. (20)

The roots of 𝜌(𝑟) = 0 satisfy |𝑟𝑗| ≤ 1. Hence, the (𝑚+1)th-step
block method is zero-stable.

3. Results and Discussion

This section tests the (𝑚 + 1)th-step block method on some
nonlinear problems. The numerical results are shown in
Tables 1–3 and Figures 1–3.

Example 7. Consider the following nonlinear boundary value
problem [10]:𝑦𝑖V − 6 exp (−4𝑦) = −12 (1 + 𝑥)4 , (21)

with boundary conditions𝑦 (0) = 0,𝑦 (0) = 1,𝑦 (1) = ln (2) = 𝑦 (1) = 0.5. (22)

The exact solution of Example 7 is 𝑦 = ln(1+𝑥).The obtained
numerical results for this problem are presented in Table 1
with ℎ = 10−1. The maximum absolute error obtained by
the (𝑚 + 1)th-step block method is 3.84959 × 10−7 which
is more accurate than the maximum error of 1.78 × 10−3 by
Mustafa et al. [10]. The graphical comparison between exact
and computed solution is shown in Figure 1.

Example 8. Consider the followingnonlinear boundary value
problem [10]:𝑦𝑖V = 𝑦2 − 𝑥10 + −4𝑥8 − 4𝑥7 + 8𝑥6 − 4𝑥4 + 120𝑥− 48, (23)

with boundary conditions𝑦 (0) = 𝑦 (0) = 0,𝑦 (1) = 𝑦 (1) = 1. (24)
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Table 1: Comparison of the (𝑚 + 1)th-step block method with Mustafa et al. [10] for solving Example 7.𝑥 Exact solution Computed solution Error [10] Error ((𝑚 + 1)th-step block method)
0.0 0.00000000000 0.00000000000 0.000000𝑒 + 00 0.000000𝑒 + 00
0.1 0.09531017980 0.09531018728 0.0002954265 7.472134𝑒 − 09
0.2 0.18232155679 0.18232159067 0.0008719341 3.387990𝑒 − 08
0.3 0.26236426447 0.26236434273 0.0014096072 7.826736𝑒 − 08
0.4 0.33647223662 0.33647237832 0.0017352146 1.417001𝑒 − 07
0.5 0.40546510811 0.40546533420 0.0017810699 2.260955𝑒 − 07
0.6 0.47000362925 0.47000394905 0.0015577013 3.198013𝑒 − 07
0.7 0.53062825106 0.53062863602 0.0011349902 3.849590𝑒 − 07
0.8 0.58778666490 0.58778704558 0.0006286279 3.806745𝑒 − 07
0.9 0.64185388617 0.64185415218 0.0001902154 2.660067𝑒 − 07
1.0 0.69314718056 0.69314718056 0.000000𝑒 + 00 0.000000𝑒 + 00

Table 2: Comparison of the exact and computed solution of Example 8.𝑥 Exact solution Computed solution Error [10] Error ((𝑚 + 1)th-step block method)
0.0 0.00000000000 0.00000000000 0.000000𝑒 + 00 0.000000𝑒 + 00
0.1 0.01981000000 0.01981000000 0.0004095 0.000000𝑒 + 00
0.2 0.07712000000 0.07712000000 0.0025752 0.000000𝑒 + 00
0.3 0.16623000000 0.16623000000 0.0066432 0.000000𝑒 + 00
0.4 0.27904000000 0.27904000000 0.0115595 0.000000𝑒 + 00
0.5 0.40625000000 0.40625000000 0.0156708 0.000000𝑒 + 00
0.6 0.53856000000 0.53856000000 0.0173246 0.000000𝑒 + 00
0.7 0.66787000000 0.66787000000 0.0154706 0.000000𝑒 + 00
0.8 0.78848000000 0.78848000000 0.0102612 0.000000𝑒 + 00
0.9 0.89829000000 0.89829000000 0.0036517 0.000000𝑒 + 00
1.0 1.00000000000 1.00000000000 0.000000𝑒 + 00 0.000000𝑒 + 00

Table 3: Absolute errors of fifth-order HAM and (𝑚 + 1)th-step block method when 𝑅𝑚𝑝 = 0.𝑧 Exact solution Error [13] Error ((𝑚 + 1)th-step block method)
0.0 0 0 0
0.1 0.085233703438701791 7.58785506649317 × 10−10 4.032885 × 10−14
0.2 0.171320454429454980 1.39478356642186 × 10−9 2.363387 × 10−13
0.3 0.259121838110931650 1.80948145356296 × 10−9 6.848411 × 10−13
0.4 0.349516600242079760 1.94815263920844 × 10−9 1.489975 × 10−12
0.5 0.443409441985037010 1.81075676675135 × 10−9 2.768896 × 10−12
0.6 0.541740074458440520 1.45204859247627 × 10−9 4.502620 × 10−12
0.7 0.645492623682151550 9.70818092582703 × 10−10 6.029954 × 10−12
0.8 0.755705480041236500 4.90335771985428 × 10−10 6.408873 × 10−12
0.9 0.873481690845957730 1.33847599670389 × 10−10 4.708123 × 10−12
1.0 1.000000000000000000 2.22044604925031 × 10−16 0.000000 × 100
The exact solution of Example 8 is 𝑦 = 𝑥5 − 2𝑥4 + 2𝑥2. The
obtained numerical results for this problem are presented in
Table 2 with ℎ = 10−1. The (𝑚+1)th-step block method gives
precise and accurate results as the exact solution. This is far
more encouraging than the maximum error of 1.73 × 10−2 by
Mustafa et al. [10]. The graphical comparison between exact
and computed solution is also shown in Figure 2.

Examples 7 and 8 considered the solution of nonlinear
boundary value problems solved by Mustafa et al. [10]. In

their work, the authors adopted a numerical approach based
on subdivision schemes. Although their approach gave good
results, the (𝑚 + 1)th-step block method gave better results
in terms of accuracy. This superiority in accuracy of the(𝑚+1)th-step block method is resultant from its self-starting
implementation approach instead of the approach ofMustafa
et al. [10] requiring choosing different subdivision schemes
with certain adjustment of boundary conditions. The self-
starting approach of the block method requires no starting
values which could reduce the accuracy of the method
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Figure 2: Comparison of the exact and computed solution of
Example 8.

while also increasing the computational rigour. Rather, the
integrators of (𝑚 + 1)th-step block method were combined
as direct simultaneous integrators for the solution of the
nonlinear boundary value problems.

In addition, to further show the suitability of the (𝑚+1)th-
step block method, a physical problem is solved and the
results are compared to exiting solutions in literature.

3.1. (𝑚 + 1)th-Step Block Method Solution for Magnetohy-
drodynamic Squeezing Flow in Porous Medium. The study
of squeezing effect, in addition to other properties such as
magnetohydrodynamics (MHD) and porosity, has become
one of the most active topics in fluid mechanics. Ullah et
al. [13] made an effort to investigate MHD squeezing flow of
Newtonian fluid between two parallel plates passing through
porous medium by homotopy analysis method (HAM). The
authors used similarity transforms to convert the governing
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Figure 3: Comparison of solution betweenHAM [13] and (𝑚+1)th-
step block method.

partial differential equations to equivalent nonlinear bound-
ary value problems and then solved by HAM. This article
takes a step further to solve the resulting nonlinear boundary
value problems using the (𝑚 + 1)th-step block method.

The resulting differential equation is a fourth-order non-
linear boundary value problem of the form𝑑4𝑑𝑧4𝑓 (𝑧) + 𝑅𝑚𝑝𝑓 (𝑧) 𝑑3𝑑𝑧3𝑓 (𝑧) − 𝑚𝑝 𝑑2𝑑𝑧2𝑓 (𝑧)

− 𝑚ℎ 𝑑2𝑑𝑧2𝑓 (𝑧) = 0,
(25)

with boundary conditions𝑑2𝑑𝑧2𝑓 (0) = 0,𝑑𝑑𝑧𝑓 (1) = 0,𝑓 (0) = 0,𝑓 (1) = 1,
(26)

where 𝑅𝑚𝑝 is Reynold number and 𝑚ℎ, 𝑚𝑝 are Hartmann
numbers.

Due to the difficulty to compute an exact solution for
(25), Ullah et al. [13] computed varying solutions of (25) for
different HAM orders. The (𝑚 + 1)th-step block method is
likewise adopted to solve (25) and convergence is observed
to the results proposed by Ullah et al. [13] as seen in Figure 3.

In addition, a special case of (25) is studied when the
Reynold number is zero with exact solution obtained using
the boundary conditions (26) as

𝑓 (𝑧)
= 𝑒2(−√𝑀𝑥)𝑒√𝑀 − 𝑒√𝑀 + √𝑀𝑥𝑒−√𝑀𝑥 + √𝑀𝑥𝑒−√𝑀𝑥𝑒2√𝑀𝑒−√𝑀𝑥 (√𝑀𝑒2√𝑀 − 𝑒2√𝑀 + √𝑀 + 1) , (27)

where𝑀 = 𝑚ℎ + 𝑚𝑝.
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Comparison is made between the exact solution, fifth-
order HAM solution [13], and the (𝑚 + 1)th-step block
method in terms of absolute error.

From Table 3, an improved accuracy was displayed by the(𝑚 + 1)th-step block method over the homotopy analysis
method. This shows the block method is appropriate to eval-
uate the numerical solution of physical problemsmodelled as
fourth-order nonlinear boundary value problems.

4. Conclusion

This article has introduced a numerical approach based
on block methods derived using modified Taylor series
approach. The (𝑚 + 1)th-step block method was adopted
for the numerical solution of different nonlinear fourth-
order boundary value problems. The numerical results show
that the impressive accuracy of the (𝑚 + 1)th-step block
method having the same computations as the exact solution
is obtained as shown in Tables 1–3 and Figures 1–3. This
grounds the suitability of the (𝑚 + 1)th-step block method
for solving fourth-order nonlinear boundary value problems.
In addition, the suitability of the block method in application
to physical problems was also investigated by presenting a
solution to MHD squeezing flow in a porous medium. Con-
vergence in solution and improved accuracy were properties
displayed by the (𝑚 + 1)th-step block method when solving
this fluid model. Thus, the (𝑚 + 1)th-step block method
is appropriate for solving fourth-order nonlinear boundary
value problems.
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