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We consider applications of the 𝑔-Drazin inverse to some classes of abstract Cauchy problems, namely, the heat equation with
operator coefficient and delay differential equations in Banach space.

1. Introduction

In this paper we utilize the generalized Drazin inverse for
closed linear operators to obtain explicit solutions to two
types of abstract Cauchy problem. The first type is the heat
equation with operator coefficient. The second type is a delay
differential equation.

Firstly let us consider the heat equation with operator
coefficient. Let 𝐴 be a bounded linear operator in a Hilbert
space 𝑋 and 𝑔 be a holomorphic 𝑋-valued function. The
following initial value problem

𝜕𝑢 (𝑡, 𝑥)
𝜕𝑡 = 𝐴𝜕

2𝑢 (𝑡, 𝑥)
𝜕𝑥2

𝑢 (0, 𝑥) = 𝑔 (𝑥)
(1)

is studied in [1] under the assumption that 𝐴 is a Volterra
operator and its imaginary part of 𝐴 is of trace class. In
particular, it has been proved that if 𝐴 is quasinilpotent and
its imaginary part 𝐴𝐼 fl (1/2𝑖)(𝐴 − 𝐴∗) is of trace class, then
the Cauchy problem has a unique holomorphic solution in a
neighborhood of zero.

We study the above Cauchy problem for the case where
𝐴 is a positive operator, and 0 is not an accumulated spectral
point of 𝐴. Our results are extensions of [1] in the sense that
the class of 𝑔-Drazin invertible operators 𝐴 is more general
than that of quasinilpotent operators.

We will show that if 𝐴 is positive and 𝑔-Drazin invertible
then the solution to the system

𝜕𝑢 (𝑡, 𝑥)
𝜕𝑡 = 𝐴𝜕

2𝑢 (𝑡, 𝑥)
𝜕𝑥2

lim
𝑡→0+
𝑢 (𝑡, 𝑥) = 𝑔 (𝑥)

(2)

exists and is given by an explicit formula. We say a function
𝑢(𝑡, 𝑥) is a solution to the above initial value problem if it
satisfies the partial differential equation in [0, 𝑇)×R for some
𝑇 > 0, and lim𝑡→0+𝑢(0, 𝑥) = 𝑔(𝑥) with 𝑔(𝑥) being an analytic
function satisfying the bounds ‖𝑔(𝑥)‖ ≤ 𝑎𝑒𝑏𝑥2 , where 𝑎 and 𝑏
are some positive constants.

Secondly we consider the following delay differential
equation

𝑦󸀠 (𝑧) = 𝐴𝑦 (𝑧 − ℎ) + 𝑓 (𝑧) (3)

in a Banach space 𝑋, which is studied by Gefter and Stulova
in [2] under the assumption that 𝐴 is an invertible closed
linear operator with a bounded inverse in 𝑋; the delay term
ℎ is a complex constant, and 𝑓 is an 𝑋-valued holomorphic
function of zero exponential type. Recall that an entire
function𝑓 is of zero exponential type if, for every 𝜖 > 0, there
exists 𝐶𝜖 > 0 such that ‖𝑓(𝑧)‖ ≤ 𝐶𝜖𝑒𝜖|𝑧| for each 𝑧 ∈ C. We
generalize the results in [2] by replacing the invertible closed
linear operator 𝐴 with a 𝑔-Drazin invertible operator. We
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will show that if 𝐴 is 𝑔-Drazin invertible and 𝑓 is an entire
function of zero exponential type, then the delay equation
(3) has an entire solution of zero exponential type and it is
expressed by an explicit formula.

Following [3], a closed linear operator 𝐴 is 𝑔-Drazin
invertible if 0 is not an accumulated spectral point of 𝐴. By
𝜎(𝐴), 𝑅(𝐴), 𝐷(𝐴), and 𝑁 we denote the spectrum, range,
domain, and nullspace of 𝐴, respectively. A bounded linear
operator 𝐵 is called a 𝑔-Drazin inverse of 𝐴 ifR(𝐵) ⊂ D(𝐴),
R(𝐼 − 𝐴𝐵) ⊂ D(𝐴), and

𝐵𝐴 = 𝐴𝐵,
𝐵𝐴𝐵 = 𝐵,

𝜎 (𝐴 (𝐼 − 𝐴𝐵)) = {0} .
(4)

Such an operator is unique, if it exists and is denoted by 𝐴𝐷.
From [3], we have the following decomposition result.

Theorem 1. If𝐴 is a 𝑔-Drazin invertible operator in a Banach
space 𝑋, then 𝑋 =R(𝐴𝐷𝐴) ⊕ 𝑁(𝐴𝐷𝐴), 𝐴 = 𝐴1 ⊕ 𝐴2, where𝐴1 is closed and invertible, 𝐴2 is bounded and quasinilpotent
with respect to this direct sum, and

𝐴𝐷 = 𝐴−11 ⊕ 0. (5)

Moreover, if𝑃 is the spectral projection corresponding to 0, then
𝑃 = 𝐼 − 𝐴𝐴𝐷.

The above result is crucial to our analysis.

2. Solution for the Heat Equation with
Positive Operator Coefficient

In this section we obtain an analytic solution for (2) that
generalizes [1, Theorem 2] in the sense that the coefficient
operator 𝐴 is assumed to be 𝑔-Drazin invertible instead of
quasinilpotent.

Theorem 2. Let 𝐴 be a closed positive operator which is 𝑔-
Drazin invertible, and let 𝑔 be an analytic function in R that
satisfies the bound ‖𝑔(𝑥)‖ ≤ 𝑎𝑒𝑏𝑥2 for some positive constants
𝑎 and 𝑏. Then the system (2) has a unique solution given by the
formula

𝑢 (𝑡, 𝑥)

= 𝑃𝑔 (𝑥) +
∞

∑
𝑛=1

𝑡𝑛
𝑛!𝐴
𝑛𝑃𝑔(2𝑛) (𝑥)

+ (𝐴
𝐷)1/2
√4𝜋𝑡 ∫

∞

−∞
𝑒−𝐴𝐷(𝑥−𝑦)2/4𝑡 (𝐼 − 𝑃) 𝑔 (𝑦) 𝑑𝑦,

(6)

where𝑃 = 𝐼−𝐴𝐴𝐷, 𝑒−𝐴𝐷𝑠 represents the𝐶0-semigroup of linear
bounded operators generated by −𝐴𝐷, and (𝐴𝐷)1/2 denotes a
bounded operator 𝐵 such that 𝐵2(𝐼 − 𝑃) = 𝐴𝐷(𝐼 − 𝑃).
Proof. Since 𝐴 is 𝑔-Drazin invertible, by Theorem (1), 𝑋 =
R(𝐼 − 𝑃) ⊕ 𝑁(𝐼 − 𝑃), 𝐴 = 𝐴1 ⊕ 𝐴2, where 𝐴1 is closed

invertible and 𝐴2 is bounded quasinilpotent with respect to
the direct sum. Therefore Problem (2) has a unique solution
if and only if each of the following two initial value problems
has a unique solution onR(𝐼 − 𝑃) andR(𝑃), respectively.

𝜕𝑢1
𝜕𝑡 = 𝐴1

𝜕2𝑢1
𝜕𝑥2

lim
𝑡→0+
𝑢1 (0, 𝑥) = (𝐼 − 𝑃) 𝑔 (𝑥) ,

(7)

𝜕𝑢2
𝜕𝑡 = 𝐴2

𝜕2𝑢2
𝜕𝑥2

lim
𝑡→0+
𝑢2 (0, 𝑥) = 𝑃𝑔 (𝑥) .

(8)

Since the operator 𝐴 is positive, it is self-adjoint. Therefore,
𝐴2 is self-adjoint and the imaginary part of 𝐴2 is zero.
Applying [1, Theorem 2] to Problem (8),

𝑢2 (𝑡, 𝑥) = 𝑃𝑔 (𝑥) +
∞

∑
𝑛=1

𝑡𝑛
𝑛!𝐴
𝑛
2𝑃𝑔(2𝑛) (𝑥) (9)

is the unique solution of Problem (8). Next we will show that

𝑢1 (𝑡, 𝑥)

= (𝐴
−1
1 )1/2
√4𝜋𝑡 ∫

∞

−∞
𝑒−𝐴−11 (𝑥−𝑦)2/4𝑡 (𝐼 − 𝑃) 𝑔 (𝑦) 𝑑𝑦

(10)

is the unique solution of Problem (7). The operator (𝐴−11 )1/2
denotes an operator 𝐵 such that 𝐴−11 = 𝐵2. The existence of
such an operator 𝐵 is guaranteed by the positivity of 𝐴−11 .

Since 𝐴 is positive, 𝜎(𝐴) ⊂ [0,∞), which implies
𝜎(−𝐴−11 ) ⊂ (−∞, 0). Therefore, there exist constants 𝜇 > 0
and𝑀 > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
∞

−∞
𝑒−𝐴−11 (𝑥−𝑦)2/4𝑡 (𝐼 − 𝑃) 𝑔 (𝑦) 𝑑𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ ∫
∞

−∞
𝑀𝑒−𝜇(𝑥−𝑦)2/4𝑡 ‖𝐼 − 𝑃‖ 󵄩󵄩󵄩󵄩𝑔 (𝑦)󵄩󵄩󵄩󵄩 𝑑𝑦.

(11)

Observe that the above inequality reduces the analysis of the
heat equation with operator coefficient to that of the standard
heat equation with scalar coefficient

𝜕𝑢 (𝑡, 𝑥)
𝜕𝑡 = 1𝜇

𝜕2𝑢 (𝑡, 𝑥)
𝜕𝑥2

𝑢 (0, 𝑥) = 𝑔 (𝑥) .
(12)

This allows us to apply standard results of the heat equation
with scalar coefficient to Problem (7). In particular, using the
last inequality, the bounds on ‖𝑔(𝑥)‖, and the fundamental
solution to the heat equation, one can differentiate under
the integrals and verify that the integrals for 𝑢1, 𝜕𝑢1/𝜕𝑡
and 𝜕2𝑢1/𝜕𝑥2 all converge. Using the derivative of the 𝐶0-
semigroup 𝑑𝑒−𝐴−11 𝑠/𝑑𝑠 = −𝐴−11 𝑒−𝐴

−1

1
𝑠, it is straightforward

to check that 𝑢1(𝑡, 𝑥) satisfies the partial differential equa-
tion (7). Moreover, 𝑢1(𝑡, 𝑥) is the only solution if (𝑥, 𝑡) ∈ [0,
𝜇/4𝑏) ×R, and lim𝑡→0+𝑢1(𝑡, 𝑥) = (𝐼 − 𝑃)𝑔(𝑥).
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Since 𝐴𝐷(𝐼 − 𝑃) = 𝐴−11 (𝐼 − 𝑃) and 𝐴𝑛𝑃 = 𝐴𝑛2𝑃, we obtain
𝑢 (𝑡, 𝑥)

= 𝑃𝑔 (𝑥) +
∞

∑
𝑛=1

𝑡𝑛
𝑛!𝐴
𝑛𝑃𝑔(2𝑛) (𝑥)

+ (𝐴
𝐷)1/2
√4𝜋𝑡 ∫

∞

−∞
𝑒−𝐴𝐷(𝑥−𝑦)2/4𝑡 (𝐼 − 𝑃) 𝑔 (𝑦) 𝑑𝑦,

lim
𝑡→0+
𝑢 (𝑡, 𝑥) = lim

𝑡→0+
𝑢1 (𝑡, 𝑥) + lim

𝑡→0+
𝑢2 (𝑡, 𝑥)

= (𝐼 − 𝑃) 𝑔 (𝑥) + 𝑃𝑔 (𝑥) = 𝑔 (𝑥) .

(13)

An application of the above result can be illustrated by
taking

𝐴 = − 𝑑
2

𝑑𝑥2 , (14)

where

D (𝐴) = {𝑤 ∈ 𝐿2 (−𝜋, 𝜋) , 𝐴𝑤 ∈ 𝐿2 (−𝜋, 𝜋) , 𝑤 (−𝜋)
= 𝑤 (𝜋) , 𝑤󸀠 (−𝜋) = 𝑤󸀠 (−𝜋)} .

(15)

For more details about this operator we refer the reader to [4,
page 389].

3. Solution to the Delay Differential Equation

In this section we obtain a holomorphic solution to the delay
differential equation (3). The result generalizes [2, Theorem
2].
Theorem 3. Let 𝐴 be a closed linear operator which is 𝑔-
Drazin invertible, and let 𝑓 be an entire function of zero
exponential type.Then (3) has a zero exponential type solution
given by the formula

𝑦 (𝑧) = −
∞

∑
𝑛=0

(𝐴𝐷)𝑛+1 (𝐼 − 𝑃) 𝑓(𝑛) (𝑧 + (𝑛 + 1) ℎ)

+
∞

∑
𝑛=0

𝐴𝑛𝑃𝐹(𝑛+1) (𝑧 − 𝑛ℎ) ,
(16)

where 𝑃 = 𝐼 − 𝐴𝐴𝐷 and 𝐹(𝑛) is the 𝑛-th primitive of 𝑓; that is,
𝑑𝑛𝐹(𝑛)(𝑧)/𝑑𝑧𝑛 = 𝑓(𝑧).
Proof. Since𝐴 is𝑔-Drazin invertible,𝑋 =R(𝐼−𝑃)⊕𝑁(𝐼−𝑃),
𝐴 = 𝐴1 ⊕ 𝐴2, where 𝐴1 is closed and invertible and 𝐴2 is
bounded and quasinilpotent with respect to the direct sum.
Therefore (3) has a solution if and only if each of the following
two initial value problems has a solution on R(𝐼 − 𝑃) and
R(𝑃), respectively.

𝑦󸀠1 (𝑧) = 𝐴1𝑦1 (𝑧 − ℎ) + 𝑓1 (𝑧) , (17)

𝑦󸀠2 (𝑧) = 𝐴2𝑦2 (𝑧 − ℎ) + 𝑓2 (𝑧) . (18)

Since the operator 𝐴1 is closed and invertible, applying [2,
Theorem 2] to (17), we have

𝑦1 (𝑧) = −
∞

∑
𝑛=0

𝐴−(𝑛+1)1 𝑓(𝑛)1 (𝑧 + (𝑛 + 1) ℎ) (19)

being the unique solution of Problem (17). Next we will show
that

𝑦2 (𝑧) =
∞

∑
𝑛=0

𝐴𝑛2𝐹(𝑛+1)2 (𝑧 − 𝑛ℎ) (20)

is a zero exponential type solution of Problem (18). Following
[2, Lemma 1], we first show that if𝑓2(𝑧) is of zero exponential
type then so is 𝐹(𝑛)2 (𝑧). Let 𝑓2(𝑧) = ∑∞𝑛=0 𝛼𝑚𝑧𝑚 be of zero
exponential type and 𝜖 > 0. Since lim𝑚→∞(𝑚!‖𝛼𝑚‖)1/𝑚 = 0
for each 𝑚 ∈ N, ‖𝛼𝑚‖ ≤ 𝑀(𝜖𝑚/𝑚!) for some𝑀 > 0. Letting
𝑚 + 𝑛 = 𝑘, we have
󵄩󵄩󵄩󵄩󵄩𝐹(𝑛)2 (𝑧)

󵄩󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∞

∑
𝑚=0

𝛼𝑚𝑧𝑚+𝑛
(𝑚 + 1) (𝑚 + 2) ⋅ ⋅ ⋅ (𝑚 + 𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∞

∑
𝑘=𝑛

𝛼𝑘−𝑛𝑧𝑘 (𝑘 − 𝑛)!𝑘!
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤
∞

∑
𝑘=𝑛

𝑀𝜖
𝑘−𝑛

𝑘! |𝑧|
𝑘

≤ 𝑀𝜖𝑛 𝑒
𝜖|𝑧|.

(21)

Now, modifying the proof of [2, Theorem 1] with the 𝑛-
th derivative replaced by the 𝑛-th primitive 𝐹(𝑛)2 (𝑧), 𝜖𝑛 by𝜖−𝑛 and 𝑛ℎ by −𝑛ℎ, we obtain the convergence of 𝑦2(𝑧) and
its sum is an entire function of zero exponential type. It is
straightforward to check that the infinite sum is a solution of
(18). Since𝐴𝐷(𝐼−𝑃) = 𝐴−11 (𝐼−𝑃) and𝐴𝑛𝑃 = 𝐴𝑛2𝑃, we obtain

𝑦 (𝑧) = −
∞

∑
𝑛=0

(𝐴𝐷)𝑛+1 (𝐼 − 𝑃) 𝑓(𝑛) (𝑧 + (𝑛 + 1) ℎ)

+
∞

∑
𝑛=0

𝐴𝑛𝑃𝐹(𝑛+1) (𝑧 − 𝑛ℎ) .
(22)

4. Conclusion

In Section 2we have obtained the unique solution for the heat
equation with operator coefficient 𝐴, which is assumed to be
self-adjoint and positive in aHilbert space. Our result extends
[1, Theorem 2] in the sense that 𝐴 is 𝑔-Drazin invertible
instead of quasinilpotent. In Section 3 we have obtained
an explicit solution for the delay differential equation with
singular operator coefficient. Our result extends [2, Theorem
2] in the sense that 𝐴 is 𝑔-Drazin invertible instead of
invertible in the usual sense.
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