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We consider the Cauchy problem for the Ostrovsky-Hunter equation 0,.(d,u— (b/ 3)85;14 -0, %u’) = au, (t, x) € R?, u(0,x) = uy(x),
x € R, where ab > 0. Define &, = (27a/b)"'*. Suppose that % is a pseudodifferential operator with a symbol K(£) such that
f(i{o) =0,ImK(¥) = 0,and |[K(§)| < C. For example, we can take K@) =& - Eé)/(fz + 1). We prove the global in time existence

and the large time asymptotic behavior of solutions.

1. Introduction

We consider the Cauchy problem for the generalized Ostrov-
sky-Hunter equation

3, (atu %o s (u)) —au, (t,x)€R%
3 (1)

u(0,x) =uy(x), xeR,

whereab > 0, f(u) = H u®. We assume that & isa pseudodif-
ferential operator with a symbol K(£) such that K(+£,) = 0
with &, = (27a/b)*. Also we suppose that Im K& =0
and |K(§)| < C. For example, we can choose K(§) = (£ -
£)/(8 + 1). Denote by A(§) = a/E + (b/3)&’ the symbol of
the linear part of (1). The constant &, = (27a/b)*isa positive
root of Q&) = AE) — 3A(E/3) = (8b/27)E 1 (E* — 27a/b) =
0. Our strategy of the proof of the main result is similar
to the one used in [1]. We translate (1) into the ordinary
differential equation by using the evolution operator related
to the linear problem; then we divide the nonlinear term
into resonance and nonresonance parts. Nonresonance part
has an oscillating term ¢*® which yields better time decay
through the integration by parts; however the factor 1/Q(&)
gives us a singularity at &y; see (37) for details. This is the

reason why we assume the additional condition K(+&,) = 0
on the symbol K().

We define the evolution group % (t) = F “1EF, where the
multiplication factor E = e HA®), AE) = a/E + (b/3)E. 1t is
well known that the operator # = %(t)x% (—t) is a useful tool
for obtaining the L™ -time decay estimates of solutions and
has been used widely for studying the asymptotic behavior of
solutions to various nonlinear dispersive equations. We have

F=UW)xU(-t) = F e M Vige™ Vg
=F ' (iog - tA' () F = x —tA' (~id,) (2)
= x —tad,’ + thd,

where A'(—iax) = aa;2 - bafc, and the antiderivative 8;1 is
defined by the Fourier transform such that

36 (E) = (57 3. 3)

Note that the commutators are true [ 7, <] = 0, [0,, Z] =
0, [.#,0,] = -1, [a;l,xax] = —a;l, where & = 0, +
A(-id,) =0, - aa;l - (b/3)ai. However, it seems that _#Z does
not work well on the nonlinear terms. In order to avoid the
derivative loss, when estimating the norm |0, Zull;» instead
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of the operators 7 we apply the modified dilation operator
defined by

P =13+ 2xd, - 2ap, @)
3 3

Note that & acts well on the nonlinear terms as the first-
order differential operator and it almost commutes with Z:
[P, L] =-ZL. Also 7 and P are related via the identity

PotP+ %jax - %af, ©)

where
F =0, -td, . (6)

Note that [.#, £] = 0. In order to get the estimate of 0, #u, we
will show the a priori estimates of , tZu, and .#u. Different
point compared to the previous works is to consider the
estimate of fu since fu contains the term ta;l with an
additional explicit time growth.

When f(u) = 4%, then (1) was introduced in [2] for
modelling the small-amplitude long waves in a rotating fluid
of finite depth. Therefore (1) with f(u) = u? is called the
Ostrovsky equation. It was studied by many authors (see,
e.g., [3-5] and references cited therein). When b = 0, (1) is
called the reduced Ostrovsky equation. Equation (1) has some
conservation quantities, when f(u) = Alul? 14,1 € R. One
of them is the zero mass conservation law which is obtained
by integrating in space

aJu(t,x)dx=0 (7)
under the restriction _[ uy(x)dx = 0. Rewrite (1) as
0,u — gaiu -0, f (u) = aD'u. (8)

Multiplying both sides of (8) by u, integrating in space, using
(7), we obtain

d J’ ) 21
— | lu(t,x)]" dx +
p

p+l _
- +1J|u(t,x)| dx=0 (9)

which is the conservation of the momentum. The same
approach as in deriving (9) will be used for the high frequency
part in order to avoid the derivative loss, when proving the
existence of solutions of (1).

Local well-posedness for the Ostrovsky equation was
shown in [5] in the case of the initial data

652 (10)

u, € H'n H ',
2

by using the parabolic regularization technique and limiting
arguments. Their method works also for the case of the
generalized nonlinearity f(u) = |u|?"'u and also generalized
reduced Ostrovsky equation (1), since the dispersive effects
were not used in the proof. Thanks to the high frequency part
Uy, the solutions to the linear equation (u, — Pu,,,),

yu obtain a smoothing property. By using this property, in
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[3], the local well-posedness for the Ostrovsky equation was
shown under the condition

- 3
uOEHsﬂHl, 5>£—}. 11)

The method of [3] depends on the linear part of the equation
and also works for the nonlinearities of a general order. In
[4, 6-8] the local well-posedness for the Ostrovsky equation
was treated by the Fourier restriction norm method of [9]
and in [4] the H™>/** local well-posedness was shown. We
note here that the Sobolev space H™>/* is considered as critical
regularity concerning the Korteweg-de Vries equation.

Global well-posedness in the energy class was obtained
for the Ostrovsky equation in [3] through the energy conser-
vation law, when the initial data

uye H'nH (12)
and ab > 0. After their work, the global well-posedness in

L’'nH, 0<s<l, (13)
was proved in [4, 6] due to the L%-conservation law. The
global well-posedness, in the negative order Sobolev space
H%'* was shown in [8] by using the I method of [10].

We now turn to the case of the reduced Ostrovsky
equation. The local well-posedness was shown in the space
H? in paper [11] and after that in H?" in [12]. Their methods
work also in the case of the general nonlinear dispersive
equations with different nonlinearities. We also refer to [13,
14] for the local well-posedness in the class

uy e " NH ' m>2. (14)

However there are few works on the global well-posedness
for the reduced Ostrovsky equation due to the lack of the
smoothing property. The global well-posedness for reduced
Ostrovsky equation (1) with b = 0 and cubic nonlinearity
fw) = u® (which is called the short pulse equation) was
obtained in [15], when the initial data

loxuollyn < 1, u € H?, (15)

whereas for the quadratic nonlinearity f(u) = u? (which
is called the reduced Ostrovsky equation or the Ostrovsky-
Hunter equation; see [16, 17]), it was shown in [18] when the
initial data

(1 - 38)2() Uy (x) <0, wuy€ H’, (16)

for all x € R. The time decay properties of solutions to the
corresponding linear problem can be studied if we assume
that the initial data decay rapidly at infinity. So the global
existence was shown in [12], for the nonlinearity f(u) = uf
with an integer p > 4, when the initial data are small and
sufficiently regular:

u, € HNH,. 17)
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In [1, 19, 20], we considered the large time asymptotics for
reduced Ostrovsky equation (1) with b = 0 and some
conditions on the order of nonlinearity.

To state our results precisely we introduce Notation and
Function Spaces. We denote the Lebesgue space by L? = {¢) €
8';Igll» < oo}, where the norm [|¢]l» = ([ [¢(x)|Pdx)"'? for
1 < p < oo and [[¢llyo = ess.sup,glPp(x)| for p = co. The
weighted Sobolev space is

HE = {p € 8% [gllye: = |0° (@.)" 9], <o} (8)

ks €e R,1 < p < 00, (x) = V1+x2 and (id,) =

1 — 02. We also use the notations H* = H’;’S, H* = H*

shortly, if they do not cause any confusion. Let C(I; B) be the
space of continuous functions from an interval I to a Banach
space B. Different positive constants might be denoted by the
same letter C. We define the free evolution group %(t) =

e 0 = FTIEF where the multiplication factor E(¢, &) =
e—itA(f)_

We are now in a position to state our main result.
Theorem 1. Assume that the initial data u, € H> n H"! are
real-valued with a sufficiently small norm |uglgzams < €

Then there exists a unique global solution u € C([0, c0); H?)
of Cauchy problem (1) satisfying the time decay estimate

e ()0 < Cet™ M2, (19)

Moreover there exists a unique modified final state W, € L™
such that the asymptotics

1 (t) = 2Ret ™2 2ita/nGe0~(b/n(x/1)) W, (n(x/1))
A" (1 (x/1))

(im0

-log t) +0 (etfl/zfé)

is valid for t — oo uniformly with respect to x € R, where
& > 0 is a small constant and

7 (x) = \/i (x + Vdab + xz). (21)

2b

2. Factorization Technique

We now introduce the factorization formulas for (1). We have
for the free evolution group %(t) = FEF, where the
multiplication factor E = e ), AE) = a/E + (b/3)E.
Denote the Heaviside function 8(§) = 1 foré > 0and 6(¢) = 0

for & < 0. Then for the real-valued function u(t) = %(t)?fﬁl(ﬁ
we find

_ L[ ieme-ae) ~
=2Re m JO e ¢ (E) dE (22)
172 [ ite-ae) -
= 2Re | D,
I _ -1/2 -1
‘ .
where the dilation operator 2,¢ = [t|"/“¢(xt™"). Note

that there is a unique stationary point in the integral

_[OOO eit(xg*A(E))(/)(E )d&, which is defined by the root & = (x) =

\/(I/Zb)(x + Vaab + x2) > 0 of the equation A'(§) = —a/&* +

bE? = x for all x € R. Thus A'(n(x)) = x and we introduce
the so-called scaling operator

1

VA" (1(x))

and the multiplication factor

(B7'9) (x) = ¢ (n () (23)

M (t,1) = "N @A) _ 2ita/n=GD1) - (24)

Note that, in the case of b = 0, then #(x) is defined by A =
—a/& = x; namely, r7(x) = va/|x| for x < 0. Hence

o) o) o

forb = 0, x < 0; see [1]. Therefore %! is the scaling operator
if the symbol A() is homogeneous.
By the definition of %", its inverse operator is defined by

(9) (n) = A" () (&' (). 26)

Then we have

_ HY2 1 e
U F ¢ = zRegzt—UE L N (£) dE

/2 fo0 .,
— 2ReD, BB |\f/|_ J N CENENO) g (5) g
2 Jo (27)

|t A" () J"O

27

= 2Re9t931M\] e "9 (&) de

0

= 2ReP, B~ MV ¢,

where the phase function S(1, &) = A(§) — A(y) - AI(TI)(f -1)
and the operator

Vd=MB 'D;'F EOp

" o (28)
_ \jltl A (77) J e*itS(r],f)(p (E) dg
0

27



4
We have |2, "¢l = Il IF "¢l = Il and
||$‘1¢||L2 = ||¢ll 2. Hence
||7¢>||Lz = "M&?,’ @ F! ”0¢“L2
(29)

< |l -

Also we decompose the inverse operator

FU (1) ¢ = EFp = —— J e G g () dx
T JR

It —it(Ex—AE)) -1
= EJRQ 9t ¢(x)dx

1/2 roo . ’
_ |f/|§ L o HEN )-AE)  [pn (,7)(,939;1¢)d;1 (30)

12 poo
= _|\t/|ﬁ L SN (B, ¢) A (n)dn

=V *MBD,"¢.
Since x = A'(n), then

jR e_it(sx—/\(f))gt_lgb (x)dx
- JR e MR G  (A () A" (1) dn
- L ¢ HEN DD\ A1 () (BD; ' $) diy (3D
_ JO eitS(‘r],f)H (939;1(/5) \/T(T])d"]

\/_

Itl“ZW M%2," ¢,

where A" (£) = 2E7%(a + bE*) > 0 and the operator

Vo= FU(~t) D,RB " M

|t|1/2 J ftS(n &) "
= — A" (n)d
o ¢ (n) VA" (n)dn.

Define the new dependent variable ¢ = F%(—t)u(t). Since
FUNL = 0, FU(-t), where & = 9, — 3.' - (1/3)0.,
applying the operator F%(-t) to (1) we get

3,9 =0, FU (~t)u = FU (~t) Lu

(32)

= FU(~1) 0, Hu® = €K () FU (-t)®  (33)
=ilK &) 7" MB~' D, ().
Then since

Ut)F ' = 2ReD, B MV ¢,
u=Ut)F '$=2ReD,B ' M7p  (34)

=2,%" (M7 +M7¢),
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we find the following representation:

0,9 =7 " MBD;" (0, Hu’) = itK (&)
7' M3, (2,57 (M7§+M7F)))
= iER ) ' MR (B (M79+ M75)) )

=K &) '™ %M (M%p + M%f

(35)
= itK (§) t_IW*MZ% (79)’ + 3R (&)t 7™
= (79) (79) + 3R O 7 W (79)
-(%p) +iER &) ' M F (7/¢)
Note that for ¢ # -1
|t| o0 itS(n,&) 4 rax "
7 ()M = —= T JO e MG () AT (1) dny
12
T Van
(36)

[ee]
. HAO-(+AE/(1+a)) J
0

eit(lﬂx)s(n,i/(lm)) ¢ (,1)

A (’1) d}7 — eit(A(E)*(l+IX)A(5/(1+06))) 11+ (X|1/2

D,V (1 +a)t) .

Thus we obtain the following equation for the new dependent
variable ¢(t,8) = FU(—t)u(t):

0, (£,€)

= \V3iER (§) ¢ "0 g, 7 (3t)ﬁ( 79)’

+3ER &) 'V (1) F (79)’ (79) (37)

L3ER ) DT () — A,, 79) (75)

+ V3iER (&) t 'O 7" (-3t) — 7 (7/<p)
where Q&) = A(&) — 3A(&/3).

Now we explain how to use (37) for estimating |((t, &)|
uniformly with respect to &. For the real-valued solution u,

we have ¢(t,&) = @(t,—&); hence it is sufficient to consider
the case £ > 0 only. From Lemmas 2 and 3, we find that
the last two terms of the right-hand side of (37) are the
remainders. We need to consider the first and the second
terms of the right-hand side of (37). Due to the oscillating
factor K(&)e"™®), integrating by parts with respect to time,
we will show that the first term of (37) is also a remainder,
since K(£)/Q(&) is bounded in view of the conditions for the
symbol K().
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We organize the rest of our paper as follows. In Section 3,
we state main estimates for the decomposition operators 7/(t)
and 77" (¢) related to the evolution group %(t). We prove a
priori estimates of solutions in Section 4. Section 5 is devoted
to the proof of Theorem 1.

3. Preliminaries

3.1. Two Kernels. Define the kernel

Aj (t, ;7) =0 (11) \]% LOO e—its(mf)gjx (&171) dz, (38)

where j = —1,0,1,2, the phase function S(,&) = A(&) -
A =N (DE-n) = (1/3)8 77> Ba+ 268 +bn’E*) € ~n)*,
A”(q) = 217_3 (a+ br/4), the cut-off function y(z) € CY(R) is
such that y(z) = 0forz < 1/3 orz > 3 and x(z) = 1 for
2/3 < z < 3/2, and the Heaviside function 8(y) = 1 forn > 0
and 6(r) = 0 for 7 < 0. We change & = #y; then we get

A;(tn) =160 ()

PEYCTEY (39)
t* A" () [ —it(ay ™y +2/3)b +(b/3)7 Y)(y-1)* |

. it(a d .

\/ po. L e (y)dy

To compute the asymptotics of the kernel A (t,#) for large ¢
we apply the stationary phase method (see [21, 22], p. 163):

J 0 f (y)dy
. 21T . "
— £90) () \j £ t/sgng” () (40)
7\ 19" (30)]
L0 ()

for t — +00, where the stationary point y, is defined by
g'(y,) = 0. By virtue of formula (40) with g(y) = —(ay '+
Q213 + b3’ y)(y = 1%, F(3) = ¥/ x(0)s yo = 1, we get

Ai(tn) = 70 (1) (e_i(”/4) +0 (t_1>) : (41)

In particular we have the estimate IIr]_j A j(t) Lo < C. Also we
define the kernel

AT (1,8)

12 rco (42)
=0() f/T_rr .[0 Sy (17«?,_1) VA" (n)dn.
We change 77 = £y; then we get
1/2
A D=0
Vg
(43)

. J 0 HaE !y QbE y+BEN -1 (
0

x(»)
7 (a+bEy*)dy.

By virtue of formula (40) with g(y) = (af’ly’2 + (2b/3)£3y+
®/3)E)y - 1%, f(y) = X(y)\/y‘3(a +bE*yh), ¥y = 1, we

obtain
A (9 =0 o). (44)

In particular we have the estimate |A*(t)||p < C.

3.2. Estimates in the Uniform Norm. In the next lemma we
estimate the operator 7" in the uniform norm. Denote y_; =
5/4, 4y =1/4, 4, =0,v_, = -5/4,v, = 1,and v, = 1/4.

Lemma 2. Let j = —1,0, 1. Then the estimates
[l ) (78 = 45O )| oo

<ct™\? |||E|” ? ¢>||Lm + O ege

12’
il > VEY oo

L

)

are valid for all t > 1.

Proof. We write
VES-A;(t.n) (1)

_ \]tA’/ (71) JOOO o 1808 ((/5 &) -¢ (’1))

21

(46)

&y (8n") dE + J —tAZH(”) Lm e "9 (&)
(1-x(&n ")) EdE=1,+1,

for 77 > 0. For the first summand I, we integrate by parts via
the identity

IS _ 1 5 (- ) 1S09) (47)

with H, = (1 - it(E — 1)0S(1,€)) ™", 0:S(m,8) = £ (a +
1911252)(52 - 112), to get

L=\ () [ (96 - 9 () (- )

<O (‘terlX (5,]—1)) 4 o 1S®) (E-7) (48)

EH x (8r7") e (6) dE.



Using the estimates

b@ -0l =or [ e ©de

1/2

<CntE=n" e, s
; L ClE—n|y’
(E-m&Hx (& )| < 1 >
| (&) L+tn3 () (§-n)
Cr]j

-n)o jl - < 4 2
(€= (Erx (&) < =

in the domain 0 < (1/3)% < & < 3y, we find
|11| < Ctl/zflj_s/z <7I>2 ||£¢E

. qu & - 5| g

amm 1+tyg3 (11)4 (&- 17)2

' an | - nl € (©)| dE
amn L+t () E-n)°

LZ

Ct'lP =2 ()’

R )

. o -] a
|l L/m Lt () (§ =)

N <J-3n (&- ’1)2 dg >1/2
Wmn (1473 ()" (€ - ’l)z)z

Changing & = 5y we have

J»317 |f - ’7|1/2 d&
W 1+t () (E- )’

< C'73/2J ly-1["dy
s Lt ) (v - 1)

<o (o ") <o ()

J3’1 (E - ’7)2 df
(1/3)n (1 + 7 ()" (& - ’7)2)2

3 [ (r-1)dy
<C .
(i Wrpmpmermmry

< C’73 <tr1_1 <’1>4>*3/2 < Ct_3/2179/2 <’1>—6.

Thus we obtain

|Il| < Ct_1/47’]j_1/4 <7l>_1 "E(/)E

3 1/2

LZ

forallt > 1, >0,and j = -1,0,1.

(49)

(50)

(51)

(52)
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To estimate the second integral I, we integrate by parts
via the identity

e—itS(x,E) — Hzag (ge—its(x,f)) (53)

with Hy = (1 - it€d:S(,8))™", 9:S(m:&) = &72n7%(a +
b’ 8)(E — 1), to get

- Cm LOO e—its(n,E)¢ ©
e (1-x (o) ) Y
LS (1 —x (577_1)) E e (§) dE.

Using the estimate

|H, (1-x (8n7)) &) + [60e (1 - x (&n7")) HaE)|
ij (55)
<
T (182 (8 + 1)

in the domain 0 < & < (2/3)n, or & > (3/2)n > 0, we obtain

L] < Ce'Py ()’

o E(|p©)]+|Eg: ©)]) e
' Jo L+ t&7 2 (1+817) (8 + 1)

< Ct1/2ﬂ—3/2 <17>2 "El/z‘/’"Lm

0 fj_l/zdf (56)
' Jo L+ t& 2 (1+872) (82 + 17)

+CE P () | e

LZ

. ( [ g )“2 |
0 (L4t (14 82) (8 4 1))’
Changing £ = #y we obtain

S £124E
jo L+ 872 (1+872) (82 + 12)
AP, (57)
i
- J * n Ty Ty ‘
0 1T+tnly (L4 42) ()
Forn<1
Jl T1j+1/2yj_1/2dy . Ct‘l,,lj+3/2 Jl yj+1/2dy
o L+t ty™ (1+7'y?) 0
< Ct—l}/]j+3/2)
(58)

Joo rlj+l/2yj—l/2dy § Ct‘l 32 J,oo yj—a/zdy
1 L+t ly (T +4y?) — 1 14y
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v_, =1l,andv, =v, =0.Fory > 1

Jl 2y,
o L+t ly ™ (1 +4%y?)

l/r]2

< Gyt J S

0

1
Ll J i-3/2 4
T )t (59)

ct gy T et ()"

- J+1/2 . j-1/2 ‘ o
J 1 7lt - y(l dil 2) < Ctflrljfs/zJ- y]—7/2dy
1 +iny\l+ny 1

<ct ().

Hence

32,02 [ EaE
" ) Jo L+t 72 (1+807) (82 + 1)
<t (g + i) ()77 ()

<} () s ety ()

(60)

In the same manner changing & = 77y we get

J‘” gdg
0 (L+ 82 (1+802) (8 + 1))
0 2j+1,2j 4
sCJ 7t yYdy _
O (1+try (L+ty?) (y))

(61)

Forn<1

Jl 1’]2j+1y2jdy
o (L+tyly™ (1+742))°

1
< Ct_2n2j+3j Yy < CFP < CF 42,
0

J o Iy dy (62)
1+t y (1+742))°

2j-2

< Ct_2q2j+3 J’°° Y 2dy < Ct—2n2j+3—2(2j—1)
(1+71'y?)

2 3-2v;

<Ct 'y

v, =1landv, =7, =0.Fory>1

Jl 7’]2j+1y2jdy
o (L+tyty ™ (1+1y2))

1
+ CrYRS J 224
], 63)
<Ct™? (11)72];3 +Ct2 (r])ZH

Joo 112j+1y2jdy

_ 2 -
U (L+tyty (1 +12))
2j- 5

<Ct” (n)

Hence

304 [ EdE

T L (14 66702 (1+ 842) (8 + 7))
<CE b ()7 ()

<O ) s o ()

(64)

for j = 1,0, 1. Thus we have

|L| < 2 ()™ (|6

T e Y

forallt > 1, >0,and j = -1,0,1.
For the case of 7 < 0 we integrate by parts using identity
(53):

cygl(/) = Cn /tAH (;7) LOO e—itS(flf;)(/) 3} gaf (Hzfj)

+e SV ElEge (£) dE.

(66)

Using the estimate
12| + g0 (1:.8)
cE (67)
< -2
L& g~ (14 &) (8 + 7)

in the domain & > 0, 77 < 0, we obtain

78] < o " ()’

N & (19 © + [ége ) a8
O Lt g (1 82 (82 4 )

<™ () €2 .




I e
0 1+tE |y (1+ E02) (8 + 1)

+CE P " ()’ el

. 1/2
_ JOO §dg
0 (1 +tE1 |?]|72 (1 + 52712) (52 + 712))2 '
(68)
Then as above we get
[7¢9]
(69)

<Pl )™ (e +

ool )

forallt > 1, < 0,and j = -1,0,1. Lemma 2 is proved. [J

By Lemma 2, we have the estimate

|778¢|
<Clyl’ ¢ ()|
w ot Ml oy (i ¢+ [eeel) 70
<cll™ |l ¢,
v o (1 o+ Jeels)-

We next consider the operator 7°*.

Lemma 3. The estimates

&Y (77— A" (£:8) ¢ (©)) | o 0.00)
o (P [

168) 7" Shm o
<t ([l + 1l

2):
)

are valid for all t > 1, where &, = (l/t\/A”)aq(l/\/A”).

(71)

-9/4

Proof. We find

f1/2

V2m
[ 6 - @) (rE) A (e

7p-AT (66 (@) =

(72)

tl/2 ')
+ ’ts(”a(/)(q 1-y A" (n)dn

Vam J-o
=I;+1,
for & > 0. In the first integral I using the identity

eitS(x,E ) _

H,9, ((n - £) ") (73)

International Journal of Differential Equations

with Hy = (1+it(n-&)S,(1,€)) ™", 0,8(1,€) = 217> (a+by") (-
£), we integrate by parts

1= G [ 79 (9 ) - @) (-8
-9, (st (nEt) A" (n)) +"59¢, () (n-8) (74)

-Hyx (") A" (n)dn.

Then using the identity

III (11)

T(;1)¢ (n) (75)

¢, (1) = A" (n) tal o (1) +

we get
g:cwquW@wmrwﬁnm—a

"0 (HaX (’7(1) m) + €S (n-2)

-1 " 3/2 itS(1,€) (76)
“Hsx (’75 ) (A (’7)) telop (n) + e
AHI .
A ¢ (n) (n=8) Hsx (n&") dn
VA" (1)
Applying the estimates
;
¢ (n) - ¢ &) = U 6,,¢d71l
n
BN A" ()
| A e yan [ 2oy
<C |7l B €|1/2 |§|9/4 <€>—3 A @)
3 (2l SO -4
(77)
],
|Hy| < C(1+6E7 (&) (&~ 17)2)_1,
l(n ~ O Hyx (€Y (A" ()"
PC ©°lh-¢
13 (E-n)
and A"(§) = OE()"), A" (&) = O(€*(§)"), and
|1=8)3, (Hox (™) /A" ()|
(78)

cE ()
1+ () ()




International Journal of Differential Equations

for (1/3)€ < i < 3¢, we find

1] < CE &7 @) Il () et

L2

+Ct2e73 (g

.rf In &' dn
/3 1+ 3 (E) (E-n)

3 (RO

_ J35 |n - & dn
/3 1+ tE3 () (E-7)

&) |l ™" () st

—oa (79)

5 +Ct'? €]

12

(n-&dny

1/2
3¢
' <J(1/3)£ (1+883 (&) - n)?) ) '

-3/4

Hence
L] < Ce [ (0 (187 ()
i ) eatag |, + o2 (8
(N gl <0 (@)

|l st + () [l

In the second integral I,, using the identity e
H4a;1(’7€its(n'a) with Hy = (1 +ityS, (1, &))" we integrate by
parts

1= e [ ety ()
0y (L (1= x (5)) VA" () o
N eitS(?],f)qsn (m)nH, (1= x (rE™)) \/r(mdn.

Then using

(80)

itS(n§)  _

n

A" (1)

mﬁb (n) (82)

¢, (1) = A" (n) tl o (1) +

we get

= ce” [ Zlo )
[y (F (1= x (7)) A" ()|

AR IC. ) [T
A" (1)

|87 )" iy (1= (nE)|

) |tﬂo¢ (’1)' dn.

Then using the estimates

|'75n (H4(1 -x (7)) WN

A/II (;1)
A" (1)

nH, (1-x (7€)

.oy (84)
L+t ()" (§+1)

|(A" ()" nH, (1= x (1))
Cr " (i)'

S 4
L+t ()" (§+1)
in the domain# > 3£ > 0 or 0 < 7 < (1/3)&, we get

00 — 2
] ce g, [T L
_ LDO
o L+t ()" (E+7)

ROREA

+Ct'” |

12 (85)
7 (n)” dn

1/2
'<L 0+m2wf@+mf> '

oy () d
L] < ct™? mj (V|
T

Therefore

-9/4

+CE I () st

L2

00 132 (N3 4 12 -1
'(L %) < (6 ¢l

w2 ™" () et

Next we consider £ < 0. Using the identity ¢S =
H,0, (7™ with H, = (1 + itS, ( ,E)7! we integrate b
40,1 4 1oy g Y
parts

7 p=Ct'? LOO " (1) o, <H4 A" (77))

+ 00, (n) nH A (n)dn.

Then using formula (82), we get
7 gl < e [ o (ol i, (Hofa" )|

AHI (11)
VA" (1)

. I(A” ()" 1,

(86)

L’

(87)

+

nH, || ()] (88)

|m[o‘/5 (’1)| dn.
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Then using the estimates

AIII (17) r]H4
VA" (1)

- CTI%/2 f’7> ) (89)
L+t72 ()" (€] + 1)

Cry 7 (n)°
L+t ()" (1€] +n)

in the domain & < 0 and 7 > 0, we get

10, H4\/A”—(17) +
b

|(A" )" nH,

<

" ()’ dn
1+ t72 ()" (€] + 1)

<’7>4 td o

7"l < o ol |,

-9/4

+Ct' i v (90)

(J‘” " (n)* dn 2>1/2.
O (L4t (n)" (|E] +n)

Therefore

00 ,1/2 —Zd
7ol <t g J n'"(n) "dny
|7 | 1l o Flen

R ([ ONER:

LZ
(2]
3/2 -3 1/2
() "dn . -
([ ) ot o o,
o (gl +n)
+CE @ Il ) et -
Lemma 3 is proved. O

3.3. Estimates for Derivatives. Denote o/ (t) = M1/t VA" )9, (1/
VA"M = o \(t)+in, A, (t) = (1/t\/A”)a,7(l/\/A")suchthat

1/2 00 L
iV (£) ¢ = %e‘”‘@ L ik ™ M (t,17) ¢ ()

. A”( )d ~ |t|1/2

. A (o8} »AI
NG J it (n)Ean

;M(t, )
0 N

dn=7" ) (t)¢.

(92)

¢ ()
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Since | 7" (1)l < ClEI"* | VA" @l (0,00) and
17" &) ¢z = | F% (1) 2,BM|»
= |2.2M¢|> = |BMS|> = ¢

then by the Riesz interpolation theorem (see [23], p. 52) we
have

17" ()], < Ce|xp .l(A/r)1/2—1/p¢ (94)

Lp/(p-1)
for 2 < p < 00. We now estimate the derivative d,7'¢.

Lemma 4. The estimate
o ) et 79, < el + |lE1 0] ©9)

is true forallt > 1, j = —1,0, wherey > 0.

Proof. Since o, = of —inand 47" = Vit we have

bl T EG = it (VE - 7 E)

tA" () [ .
- \j LY 24 L e St (£ — ) Elp (&) dE

27

for # > 0. So we need to estimate

() el T E =t () Ty (6.8 E

w0 ()

' \/M L‘” e (y (&) - v, (§,£)))

2
(97)

&g (B)dE+ 1 ()™

AII 0 ,
' \/% L e )y, () dE = 1,

+1, + I,
where &, = (a/b)"/*, and

l’]2+jfj+1
(a+brP€) (E+n)’

’72+jEj+2
(a+br?&) (§+n)

v, (&) =
(98)

v, (&n) = O

For the first summand using |7'¢ll;z < [¢ll: we have for
ji=-1,0

L7 g

1Ll = 77w (6.8 &g
< &

L2

L2’
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Consider the second summand -y, (&7 (0))' |% ((’ n (rei(ﬂ/8)5gn (E—C)))

2 © 7 2y —4y g (C: n (0))' ﬂzy <77>_4y dr
Il ey = Ct | dn A" () (o)

< CtJ e CHE=tlir (ry ™ dr
1

- j°° eI (y (&) - vy (6 8,)) e (B) lE 1
0 +Ct j e = 1 g

: JOO "5 (v (&n) — 91 (8.8)) CWdC (100) -1
0 +Ct j e CHE=tlin Ir| ™ dr < Ct(]€ -] l‘)y_1

P R ING) ”
_CL de E‘Pg(E)J-O d¢ {E-01)7.

) - (103)
"M OTh K (1,E0),

Then by the Young inequality we obtain

where

2
1E2liz000 = Ct 696

Kxaaq):tﬂxdnA”m)¢V@ﬁ4y : L(K—Chﬁ*<@—<ﬂVﬂWMk@ﬂdﬂL2 (104)

2
2’

&' &L < C ée

2
12

it . 101

VO ) - 68)) O e,
To estimate I int teb ts via identity (47

Ay G -, (GE)). o0 estimate I; we integrate by parts via identity (47)
13 — Ct1/2}1y—3/2 <rl>2—2y

Changing x = A'(r]) we get 0
| ) His ) g 98

O (E-0) 2y )\~ - (105)
K&&O=ﬂ;dm n () +CEP R )
W Ene)-w EE) 1 |00 @ (- (s () d.
(v (G () -y (8.8))). Using the estimates
e/ |(§ =) Hyy, (8.1)]
We can rotate the contour of integration x = e8¢0, 2
since we see that #(x) = Cx'"? for x - +00, n(x) = n(0) = < > ClE—nlm™E ,
(a/b)""* for x — 0, and 5(x) = Cl|x|™"/* for x — —o0, and (1t @=m) &2 (1 87) (E+ ) (1+87) (E )
(106)
hence 6= 1) (Fuys (£
|K (t)E)C)I C’72+j<|€—’7|£j+§j+l)

= (1+tE-n) &2 2 (1+802) (E+1)) (1+8072) (E+1)

< Ct J " gCHEti (& 5 (re ™/ E-DY)
—-00

we obtain

L] <ci”? J"O 0 () E - | TE [Ege ()] dE
3l s 0 (1+t(E—,7)2£—2,7_2(1+52,72)(g+,7))(1+5z,12) (E+n)

rorn [” 7 ) (JE - nl €+ ) |9 ©)]
0 (L+t(E-n)E22(1+82) (E+n)) (1+E2) (E+n)
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< Ct'/? &g

i 4-4 2 2i 1/2
<r> P )Y e - £ )
P\l (Lt e e ) E e ) (L 8R) (4 n)’
Lt ”|5|1/2 ¢ll I‘” 2 () T (€ - | E + ) £k
o (L4t (E-n) E22 (1 +802) (E+1)) (1+802) (E+n)

(107)
Since changing & = 7y
j °° P )Y | - ) EdE
2
O (1+tE-n)' e (L+82) (E+n)) L+ 80 (E+n)
_ JOO AR AR C) ly - 1|2 yHdy < CF LTI (Y Jllz y**dy
O (1t (y=1) yrt (14 ) (4 1)) (L y2) (y+ 1) o (1+yr)
2 0 i
+ Ct,72)’+4j+2 <;,l>‘4‘4l’ J3/2 |)’ - 1| dy ~+ Ct_1ﬂ2y+4j+4 <’1>4—4Y J Ldys < any_l <’1>—4Y ,
2 (14t ) (y- 1)2) 32 (1+ yn?) (108)

2 ro B () o ([E - | € 4§ g
o (L4+tE-n)’ &2 (14 8n2) (E+n)) (1+E7) (E+1)

[ g e [ 2
2 5 _ - 4
o (1+t(y-1)7y2 (140 (y+ 1)) (1+ 2% (y +1) o (1+ym)

" TRy o gy

32 (L+ yn?)’

1/2 2j+1+y —2-2y dy —1/2, 2j+2+y 22y (€ y
+CEEg T () —3 7 +CE T ()
V2 1+t () (y-1)

we get integrating by parts we get with &, = (a/b)"/*
"13 ||L2(o,oo)
/ _ - —2y— —2p—2 1
< C([Jeel. + 1l ¢ ) I sy 109) n ) T = () T

< Clegel,, +c et ..

In the case of 77 < 0, the same estimate is obtained easier than
the case of the positive line. Lemma 4 is proved. O

apa [tA" ©
_ It}’ly <TI> 2y-2 \/ (’7) J e*lts(ﬂ,f)s (77, E)
27 0

—2y-1

1 —2y-2
. dé = =¥ 4 b —n'
We need estimate of 7/,. ¢ (8)dg 21 () o-n"(n)

Lemma 5. The estimate v (1/’1 (&&) E‘ﬁz) -1 <’1>_2y_2
I o) 0,79),. < C o] + | lEl 9], w0 J

tA” () |79 6 - (6.61)

is true for all t > 1, where y > 0. 2m
Proof. Since &g () dE — 1" <’l>_2y_2
S(n.8)  (3a+2b’E+br’€) (E-n)&

(111) _ \] M Loo e—itS(n,E)y/z (E.n) ¢ (£) dE

OS(m&)  3(a+bprg)(E+n) 2m
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2

A [ s, e

p&dE=L+L+L+1,+s,

(112)
where
e = v
v2 (&) = (5= 1) g(zfz}z;;?gzi))z (113)
- e

Using the estimate |Z'¢ll;z < l¢llyz we find for the first
summand

Il <1776l < Il (114)

and for the second summand

”12 ||L2(0,oo) < "’7y <’7>_2y_2 4 (V’l (6.8) E(pf)"LZ(o,oo)
< Jvi (&8 & 2 0.y < CllE8e]

Consider the third summand
—2y-2
" () 5] e Ctj dnA" (n)
—4y—4
- ()Y

: LOO ¢ 1) (w1 (&) —vi (6,€)) E‘/’E &) dé

i (116)
) L eits(n,() (1//1 (f, ;1) - (f, fl)) Cmd(

- cj dE e Oy, (f)j d¢
MO8 (OK, (1,8,0),

where

K, (££0) —fj dn A" () ()™

NOED (g £ ) -y (88) )

() =91 (8.6)).

Changing x = A'(q), n(x) = \/(l/zb)(x + Vdab + x?), we get

K, (t,&0) —tJ dx i (x) ()™

6D (g (E (%)) - vy (E.47(0))) (118)

(1 ($n () =, (0 (0))).

13

We can rotate the contour of integration x = re/(/®%1¢=0),

since we see that 7(x) = Cx'"? for x — +00, n(x) =5(0) = ¢,
for x — 0,and (x) = Clx|™"? for x — —00, and hence

K (6,80
. ro CHELIy (g (& (rDEE0))

— 1 (E100) (v (L (r ™D E0)Y)
-y ((>’7 (0))) ’72}/ <’1>—4y—4 dr

< CtJ e O (1) iy (1)
1
1

+Ct J e St 1 gy
-1

-1
+Ct J e I 1172 gy < ot (1€-¢ 0"

{E-01)7.

Then by the Young inequality we obtain

"13”1,2(0 00) S <Ct “‘C'ﬁbf

| G- @00 g @] a2

< Ce el o™ <0, < ol

Next we estimate I,. We integrate by parts via identity (53) to
get

I, = CEP2yr 2 ()™
. L e S0 @) &0 (Hyy, (6)  (121)

N e—itS(x,f)szz &n) & (8) dé.

Using the estimates |y, (&, #)| < C(I€ — nl{n)*/( + 1)),

|Hy v, (&)
. Clg —ul (n)°
S (e R) [ - (G4 )” (22)
C 2
|§a§ (H21l12)| )

1+ 8772 (1 4+ 7282) [82 - 2]
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we obtain

1] < G2 ()

I RGIES
o 1+t (1+7282) 82 - |

+Ct1/2 Y- 3/2< >2 2y

|€ - 1| |Eex (©)| dE
21+ |82 -2 (E+ 1) (123)

o 412 y—3/2 2-2y ¢-1/2
1/2 (’1> &%dég
<C|||§| (l)" L 1+tE 1+712£2)|£2_}12|
+C ||£¢E 12

. J:O (L+ &y

. ( r" P ()Y (- ) dE )“Z
o (L+tE2 (L) B - E+n)t)

Changing & = 7y we find

JOO tl/zﬂy_3/2 <rl>2*2y 5_1/2d5
o 1+ tg—ln—z (1 + ,1252) |£2 _ ,Izl

0 A2 y1<;1>2 2y —1/2dy
_L Lttty (L4 7ty?) (y+1) |y~ 1

1/2 1/2d
<Ct gy J 2=
o (1+7%y)

3/2 d
+Ct Py () ZYJ )
12 Lt () [y -1
-3/2

+Ct”211(>22yj J dy<c
32 L+nty?

J°° > ()" (E-n) dE
0 (L+ 82 (1+ P8 [ - 2))* (E+ )

_ J o0 2 ()" (y - 1) dy
o (L+tytyt (Lenty?) (y+1) |y - 1))

G

(y+1)*

IL|<C S0 ) 18— e 8)]
S =

International Journal of Differential Equations
y (2 )
<ct' (n)* 4yj X7
o (1+r’y)
12y gyt [
+Ct T () J dy
1/2

d
+Ct~ 7’]2}’ <T]>4 w J-S/Z (1 +y’12y)4
y

<c ™ (i)™
(124)

Hence we get
||I4”L2(o,oo)

<C ("5‘/’5

I LI W] Ve O

2(0,00) (125)

< C|éee

1/2
20,00) F ¢ "m ¢||L°° '
In the last integral I, we integrate by parts via identity (47)

I = Ct' Py ()™

. JOOO e 1snd) (&-n)Hyy; (&7) ¢z (&) (126)

+¢ 08 (&) (€ - ) 0 (Hyys (&) d&.
Using the estimates |y (&, )| < C(E(n)*/(E + 7)),

|(£ - 1) Hyy; (& "I)l

< CE[& — 1| () ,
S (1t E-n) 2 (L ) (E+ ) (E+n)

|(f = 1) 0 (Hyy5 (& ’7))|

(127)

< C(n)’
S L+t (E-n) 22 (1+E2) (E+ )

we obtain

Jo (1 +1(&E- 11)2 E2 2 (1+ &%) (& + ’1)) (&+n) ’

. Joo £ )" | ()] dE
0 1+t(E-n)E22 (1+82) (E+ 1)

< C|ege

< [ 0P )" () e )1/2
AN (- e E) E ) )

1/2 y—3/2 <}1>2—2V E—l/sz

(128)

el [

o 1+t(E—n) E22 (1 +E2) (E+n)
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Since changing & = yy

[ e
O (L+tE-n)’Em2 (L +En) E+n) E+n)
[ e

O (1+t(y=17y2t (e nty?) (y+ 1) (y+1)
< L ()Y JI/Z ydy

o (1+my)

Ly [ -1)%d
+Ct? 2 (n)! 4YJ =1)dy 5
V2 (1wt () (y - 1))

e [ op ),
2 (1+172y)" 2 (129)

Joo tl/zqy—3/2 <;1>2—2y E—l/zds

0 1T+t(E-n)E22(1+80) (E+1)

r" 2 )y Py

o 1+t(y=1"y 2 (L4 y2h) (y+1)

5 1/2 3/2d
<ct Pyt (n)? zyJ L2

2
o (1+72y)

+Ct P () zyj/z il
12 Lt () (y - 1)°

—3/2
+Ct Py () zyj T <cy My,

32 (1+1Py)°

we get

1502 0,009
<C ("5‘/’5
< C|eg

o e g ) 2 oy
L2(0,00) +C |||£|1/2 ¢||L°° ’

2(0,00) (130)

In the case of 7 < 0, the same estimate is obtained easier than
the case of the positive line. Lemma 5 is proved. O

3.4. Asymptotics for the Nonlinearity. We obtain the asymp-
totic representation for the nonlinear term. Define the norm

lo1, = <" ],.. )
Lemma 6. The asymptotics
FU (- t)a % \/—lEK th 93$¢3
(132)
31§K

- ~113
+ ol @+ 0("gl;)

is true for all t > 1, & > 0, where @(t) = FU(-t)u(t).

15

Proof. In view of (37) we find for the new dependent variable
¢ =FU(-t)u(t)

FU (-t) 0, K’
1 . 1
= V3itKt e O g, 7 (31) ﬁwg
Y 7a —1%* 1 2—
+ 3iEKt (#) S ¥o¥o (133)
et 2t ! * 1 —2
+3i8Kt "D, 7" (1) A Yoo
i . 1 __
+VBiERt " O 7 (<31) F%3’
where y; = 7/(i§ )’®. By Lemma 3 we have

3K 7™ (t) — G %%

= 3iEKt A" (t) —%%

AH
. (134)
e (RO GT
. 1 ,
+CtM Fu/g% o
By Lemma 2
Yo
=419
_ _ _ R R (135)
L0 (™ )™ (167l + [80cl,))
vl < Clal ™" ()™ 9l -
Therefore
L SO I ST 2 IR 2t
| 7ve) . < Cllaly | 5 ™" ") e
3
<Clal-
Also by the Leibnitz rule
1o, 1 Yo >2 Yo
doAu%% = A”aﬂ (( VAT W) W)
,‘/’0 oy + A 1/’0%52701/’0-
Then by Lemma 4 we get
Yy 1 .
lll’7| SO tdoﬁ‘/’é% .
< Clnl" lwol ttovo . (138)

< Clal-

<C "‘?’”; ”|’7|1/4 <’1>_1/2 tl yy, L
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Hence we obtain
o1 * 1 2—
3iEKt 77 () F%%

1

= 3iRETAT (1) 1 (40 (09) A, (D
(139)
— ~113
+0( " ally)
3ifIA< 2 - 3
= AT 9" + O(f o I217)-
In the same manner
V3iERt "0 9,77 (31) %wg
V3iéK 1 . 5/4 g~
_ DK go0g) Lo 0(e7 [l).
it A
e Tr— * 1 —_— - —~
SiERE 2,77 (1) Lt =0 (e al), MO
V3iERt e O g 7 (-31) %%3
=0 (" [al)-
Hence the result of the lemma follows. O
4. A Priori Estimates
We define
Xy = {% (-)u € C([0,T];H?); Jullx, < oo},
_ 1/2 -y
I, = sup ([0 7).+ O WOk

O 0. 7u 0]z )

where # = %(t)xU(-t), p = FU(-t)u(t),and y > 0is small.
We have the local in time existence of solutions.

Theorem 7. Let the initial data u, € H*> n H"'. Then there
exists a time T, > 0 such that (1) has a unique solution u in
XT[].

To get the desired results, we prove a priori estimates of
solutions uniformly in time.

Lemma 8. Assume u, € H> N H"! and the norm |luy|gqa +
luollge < €. Then the estimate

lul, < Ce (142)
is true for all T > 1.
Proof. By continuity of the norm [ux, with respect to T,

arguing by the contradiction we can find the first time T' >
1 such that |ulx, = Ce. Consider a priori estimates of

International Journal of Differential Equations

o, ful)ly: = IIEB@IILz. To avoid the derivative loss in (1)
we apply the operator

P13, + 2x0, - ~ad, (143)
3 3

and use the commutators [P, Z] = -%Z, [P0, K] =
FIK(®F = K, where Ki(§) = (i/3)80(iEK () -
(4/3)i€a0,K(£) = O(&). Also we represent K(§) = A + K, (&)
with K, (&) = O((¢)™"); that is, # = K, + A. Then we get

LPu=(P+1)Lu=Po,Hu +0,Hu
=30, K (v’ Pu) + 0,7’ + [P, 0. K|’
(144)
=310, (uzg’u) + 30, %, (uzgju) + 0, Hu’
+ %lus.

Define the high and short frequency projectors @;¢ =

F/T_IXJ-QS, where x,(§) = 1for |£] > 1and y,(§) =0for[§] <1,
and also x,(&) = 1 — x,(&). Then we get

L0,Pu =3)0,0, (W€, Pu)

+310,@, (1@, Pu)

(145)
+30,0,%, (1’ Pu) + @0, KU’
+ O, F W
and the integral equation
Q,Pu = U (t) Q,Pu, + Lt dr (t - 7)
(146)

-(310,@, (v’ @, Pu) + 310,@, (1> @, Fu)
+30,0,H, (U’ Pu) + @0, KU’ + Q. H 1) .

Hence applying the energy method to the first equation we
find

d
D Narulls < ¢ (Juwlye + 1)

(147)
(1 Pullz + lullz) | @, Pul|,
and by the integral equation
|02 Fully:
< ” @291'{0 “L2 (148)
t
+C L (el oo + Nutlizes ) (10l 2 + ully2 ) d.
Applying the estimate of Lemma 2 we have
[78¢|
(149)

<C <’1>1/2 |}1|—1/4 (” <£>1/2 ¢I‘Lm L4 “fﬁbg"Lz)
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Hence

[0u]... < [2Re2, BM7 (i) 3.

<Ct P () 7). (150)

<o (e " o

LZ) ’
Therefore
Clazuly <co” (|©"),.

v "5(/)5 Lz) (12ullz + lullz) »

L 151
e Puly: < @l +c [ @

(™9 v)

~(12ullyz + lully2) dr

+ t_1/4'

L®

And similarly

LW
HZ
d (152)

e (|@" e+ e

o) Nl
from which it follows that

1Pullz + lullyge < e+ Ce @ty (153)

By the identity & = t< + (1/3) 70, — (4/3)a.7, we obtain

|03 = 107 uls
< ClPullyz +t | Lullz + CllFully2
(154)
< C||Puly2 + Ct ”uux“Lm [lually2
+C | Ful2 < Ce + CetY + C || Ful|p2 .
Next we estimate the norm | Ful;.. Denote K 6 =
i£9,K(£) = O(1). Applying the operator .¥ = 0, — ta;l to
(1) via the commutator [, Z] = 0, we get
PIu=ILu=I0.Hu
=310, (uzfu) + H b + 300 K, (uzju)
(155)
+3tH0, (uza;lu) —tHu’

=310, (uzfu) + Hal’ + 3K, (uzju) +N
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where N = 2t%(3uu,0;'u + u’). Using the factorization
formulas as in the derivation of (37) we find

FU (~t)N = 6tK (&) FU (-t) (un, ;' u)
+2tK, (&) FU (—t) () = 6tK (§)
V" MB D, (2,5 (My, + Myy))
(2,2 (My, + Myy))
(2,2 (My_, + My)) + 2K (£) (156)
7 ME" D, (2,5 (My, + M) )

=6K &7 FM (Myy + M) (My, + M)

(My, + My;) + 2K (§) 7 F

M (My, + My, )

where we denote y; = 7/ (i€)’. Then we get

FU(-t)N =2K( )7 M — i (3%%1//_1 +;)

+6K & 7*

N TV Y+ VOTY YT + Vi)
_ ., (157)
+6RE 7 M

) I - -
W\ (1//01//11//—1 TYoiyo oo 1//01//02)

+2KO7M (VL ).
Next using identity (36) we find

FU (~t)N = 23K (§) V5,77 (31)
: Al,, (3yoyry, + ;) + 6K () 7

1 1 - - o R
7 (Tovayes + yolhyes +voun o + o)

+6K (&) D_ 7 (1) (158)

1 317 Alr - by vy — —_—
AT (‘//0‘//1‘//—1 TYoVivo T Yo Yo 1/’0‘/’02)

+2V3K (£) "V 7 (-31)

A” (31//01!’11//— + 1//0 )

with Q(§)
7 (i) =

= A(&) — 3A(/3). Next using the relations y; =

iny;y + oy and iny; = i, — Aoy, we get
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Y1y = yo +RL YL = Yoy + Ry, and llllu/—li%z +R;,
where Ry = —y oy, + v oYy, and Ry = Yooy, +

y_, oy, Therefore we obtain

FU(~t)N

= 8V3K (§) " P2, 7" (31) %WS (159)
+8V3K (§) "W 7 (-31) %%3 +R,,
where

R, = 6V3K (§)¢“"99,7" (30) -y, + 6K (§

V= (%R Yo (R2+R2))+6R )
(160)

N 1
cDJVT(-t) — G (%R +Y, (R2 + Rz))
57a i * 1 __—
+6V3K (§) " O 7" (-31) ok
By Lemma 2 we have

|‘/’;’|

J-1/4 ; \1/4-j 12 - _ (161)
<Cll™ " ([ .+ " e

)

for j = 1,0, and then by Lemma 4 we obtain

|l &) 7

1
'Ryl < IRl < €| 57 lvol v

1
+C ”F |‘/’o‘/’—1| vy

LZ

2y—4

< C ™ ) wol | 7 1) owa 6
+C 7 ) fwowoal | o |1 ) Ao
o (e )

)

-([lé2e
Then we represent
FU(-t)N

= 8V3K (§) " 2,7 3t) %wg
(163)

+8V3K (§) "V 7 (- 3t) % +R,

=0, Y +R; + R,
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where

K(E) 1tQ(€ .
- 8\/_0(0 (9% (3t) A,,

DT (- 3t)A,, )

(164)
K (§) 100 (
=8 0, 2,77 (3t) —
4 \/_ Q(E) ( )A”
* 1 —3
LT (30 T )
We need to estimate the derivative 7;. We have
7
= —7
2t ¢ (165)

1/2 roo
L [ (1.8 9 () A )

Since S(r, ) = A(§) ~Aln) - NE-n)=1/3)E " (3a+
2b11 &+ bﬂzfz)(i 11) and also &7 ()¢ — 7 (Ding =
7 (t)d ()¢ we find for the second summand
1/2 roo |
&J ¢S ()

1/2
5z s ¢ (1) A" (n)dn = 1'”

. 0 itS(1,8) (b E a 2 2 ﬂ)
e +3 2bny” +b&E" -3
Jo 1 7 1 g

-
E=m )N (dn = 557 @nsty g 16
. * -2 2i * 2
+ia?" (0 cly ()¢ = 6T (O’ Ao (¢
+ BT () aly (09 - iaE T Oy (09,
Since 0,y =

7'\ + 7'@,, we obtain

|l 7

'R, s R4 2

1 5
F% L2

||% (3t) A[/V’Oatl//()

2
(167)
<Cct!

3
F% L2

2 2 I 3
+C|(" + 7)ol (30 S w5

1
+C N |‘//0|2 AT

Lz.
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By Lemmas 4 and 5

A" |’1| 3/4< > 3/4

1 _
|-, < cloli |

< Clglz

||(’12 + 71_2) A, (3t) %Wg . <C "71 |1//0|2 A oYol|,2

(168)

ct! ”‘7’"; |||’7|1/4 <’7>_1/2 tdl yyy 2
el
1 2
HF lvol 0o » <C

) “”IY <”l>_2y_2 tat‘//()"Lz <sCt “‘ﬁ"i

2y+2

AII |V/0| ’77]} <71>

Therefore

<ct™ |9l - (169)

Thus we get
L Fu =310, (uzfu) + Hl +3H, (uzfu)
+UOF OV +U@)F (R +R,)
(170)
=310, (uzfu) + Fl +3H, (uzfu)
+ LU F Y+ U F (R, +Ry).
Hence
ZL(Fu-U@t)F'Y)
=320, (v’ (Fu-%@t) F'V))

+320, (v (4 () F

(171)
) 4 el

+3%, (B Iu)+ U (1) F ' (Ry+R,).

Then as the above using the projectors @, and @, we find

|7u-2 0 F |, <Ce+ e’ (172)
We have
|z & 7|, <19l < Clr’ ()7 wal .
(173)
<Ce,
and then we get
[ Full. < Ce + Cet? . (174)

Therefore

9|, <5e+ ce’t. (175)

19

Next we estimate II(E)I/ZAIILDO In the domain |&] > (t)”
we get by the Sobolev imbedding theorem

& c.5]

L (1€1=(6)")

5, 5)“ (176)

<C({)”
2 Lo ([E]2(t)”)

<cty”(

§0:p

KN

it v > y, so we need to estimate the function (E)(l/z)gﬁ(t, )
in the domain [&] < (). Next by (37) for ¢ = FU(-t)ul(t),
using Lemma 6, we get

0,9 (t,%)

L) <Ce®™,

= FU(-t) 0, Hu’

_ VBiK e 1A3 3iEK
=T ¢ Dt

+0( o)

forallt > 1, |€] < (£)”. Multiplying this formula by (&)
get

B’ (77)

172 4

86905 = YK gy g, L
315K 12 (12 ~ (178)
tA” <E> | |

+o(e Jall)

in the domain [£] < (£)”. Define the cut-off function y €
C!(R), such that x(x) = 1for|x| < land x(x) = 0 for x| > 2,
and define ¢, (t,£) = X(E(t)_”)(E)l/zA(t &). Thus we get

09, = K 07 (0 09, L

3iEK .
+ ;j,, o5,
+(EPEHTT N EDOT) 1.8

+o (" |al,)

for all t > 1. The third term is estimated by Ce(t)™'™"*.
To exclude the resonant term we make a change ¢, (t,§) =
y(t,6)0(t, §), where

179)

o s)—exp< N j|<p< B —). (180)
Then we get

¥ (£,8)

WEKx(sm ") ()00 (1,62, ,,«p (181)

+ 0 (s3t7178)
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with § > 0. Integrating by parts we obtain

(68— y(L,E) = j VEiERy (€ (1)) (E) 2

Q) _3dt
e Q(f)@ (1, 5)@3 7 (P3

+0()= V3
. iEK
iQ (&)

s 8K
o L Yo

SEEy ((0)) (6) 802
(182)

~3

9 3, <x Em™)

T=

(0" 8@DP, 9" )dr+0 (&)

=O(£3).

Thus we get the estimate [¢, (§)| = |y(t,&)| < |¢1(1,§)|+O(£3)
in the domain |[£] < (t)”. Therefore we find the desired
estimate ||(£)1/ ZA”Loo < Ce. This is the desired contradiction.
Lemma 8 is proved. O

5. Proof of Theorem 1

The global existence of solution u € C([0,T7]; H?) to Cauchy
problem (1) satisfying a priori estimate

[&"9] .. + O 1@l + O o, 7u O]

<Ce

83)

follows by a standard continuation argument from Lemma 8
and local existence Theorem 7. We need only to prove
asymptotic formula (20).

We need to compute the asymptotics of the function
@(t, ). As in the proof of Lemma 8 we get

Y65 - y(s,E) = j V3ERy (€ (1)) (E)

3 dT

. ’TQ(‘E)GD(T HD, ”(p 0(835_6) =13

I CUNICRCI RS
9’ + j ﬁl;fé) 90, (x(E0)7)

(0" 8@ DP,— 9" )dr + 0 (57
—o(es?)

forany t > s > 0. Therefore there exists a unique final state
¥, € L such that

ly &) =y, e < CEE? (185)

International Journal of Differential Equations

for all £ > 0. We write

j o I = —é’ffj ol &
(186)
él;f, |y logt + @, (¢).

We study the asymptotics in time of the remainder term
D, (t). We have

0, 0-0,09 = 2 [y o - b of) &

31§K

<£> G (ly(t)| - l)’+l )logz.

By (185) we obtain ||, (t) = D, (s)ll;= < Ce®s® for anyt > s >
0. Hence there exists a unique real-valued function ®, € L™
such that

|®, (t) — @, || < CEL? (188)

for all t > 0. Representation (186) and estimate (188) yield

o= 2 bins 0.

(& 1= (189)

<ct?

for all £ > 0. Thus we get the large time asymptotics

GO IG R I EPACIC) I

(190)
=ly® -yl sct,
7,0 (1,8 -y exp( vy, logt + @, )
+ + (EY A" | +| R
<ct?.
Therefore we obtain the estimate

llX (ZOMI(RI)

N (192)

3iEK 2 -5
—~ W, exp < GYY A logt) . < Ct
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with W, = y,e®+. Using the factorization of %(t) we have

u(t)
—2Re9 %’_IMWJrexp( (W, 1o t>
t <E> A | | g Lo
<C ‘ 2,%"'M (x (E® )9 .
- 3iEK ~1/2-8
W+exp(<E> G W, | logt)) . +Ct
<ct

This completes the proof of asymptotics (20). Theorem 1 is
proved.
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