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We propose a closed-form approximation for the price of basket options under a multivariate Black-Scholes model. The method
is based on Taylor and Chebyshev expansions and involves mixed exponential-power moments of a Gaussian distribution. Our
numerical results show that both approaches are comparable in accuracy to a standard Monte Carlo method, with a lesser
computational effort.

1. Introduction

The objective of the paper is the study of the pricing of basket
options under a multivariate Black-Scholes model, using two
different polynomial approximations of a related conditional
contract.

Our main contribution consists in the proposal of an effi-
cient methodology that combines two approaches previously
considered. First, we compute the conditional expected value
of the payoff with respect to some of the underlying assets
in order to reduce the problem to one-dimensional pricing;
see [1]. Then, we use Taylor and Chebyshev polynomials to
approximate the resulting conditional price. Numerical find-
ings show that, within an equivalent accuracy, both approx-
imations considerably reduce the computational time nec-
essary to obtain the price, when compared with a standard
Monte Carlo method.

While a Taylor expansion of the second order for spread
pricing has been considered in [2], an approach based on
Chebyshev expansion remains less explored. Recently, it has
been considered in [3] for a single-asset option contract and
in a multiasset setting in [4]. The latter combines with a
Fourier series development, offering an interesting analysis
of the error in the approximation. Our method conceptually
differs from the works cited above in the way the expansion
is carried on.

In addition, our expansions are presented in a general
setting with the purpose of illustrating applications in higher

dimensions, to other contracts and models, at the expense of
somehow more complicated notations.

Basket options are multivariate extensions of univariate
European calls or puts. A call basket option takes theweighted
average of a group of 𝑑 stocks (the basket) as the underlying
asset and produces a payoff equal to themaximumof zero and
the difference between theweighted average and the strike (or
the opposite difference for the case of a put). Financial indices
such as the S&P 500 and real options based on the difference
between gas and oil prices are examples of such contracts.

In the case of European spread options, whose payoffs
are given in terms of the spread of both prices at maturity,
several approximations have been considered in the works of
[2, 5–10], among others, where different ad hoc approaches
are studied.

The approach to pricing by Taylor expansions can be
traced back to [11], where a method to the price of one-
dimensional derivatives is proposed. See also [12] for the use
of Taylor in valuation of basket and Asian options, where
the expansion is made about the characteristic function.
Furthermore, in [10] the Taylor expansion is compared with
other pricing techniques, proving to be effective and accurate
for most values in the parametric space. In our case, the
expansion is done on the function resulting from the condi-
tional price, as opposed to a development based on the con-
ditional strike price, as previously considered. Moreover, our
methodology hinges on the calculation ofmixed exponential-
powermoments of a Gaussian distribution and is extended to
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expansions about any point and order. Our point of viewmay
allow for a better control on the approximation.

Taylor expansions produce reasonable approximations in
terms of a simple closed-formula. Nonetheless, they are very
sensible to the point around which the development is done.
Moreover, as this expansion is local, it may introduce signif-
icant errors, albeit infrequent, at values far from the point
where the expansion is considered, typically the conditional
average price under the risk neutral measure. Significant
errors for out-of-the-money contracts or extreme values in
the parametric set are reported.

In order to overcome this potential problem, we study
developments in terms of Chebyshev polynomials, which
offer a uniform convergence of the conditional price on a pre-
determined closed interval. Interesting alternative approxi-
mations in terms of Fourier series can be found in [13, 14].

The organization of the paper is the following: in Sec-
tion 2, we introduce the model and main notations and
derive a Taylor approximation for 𝑑-dimensional basket
options; in Section 3, we implement Taylor method to spread
contracts while in Section 4 we study the case of a Chebyshev
approximation and the sensitivity with respect to the spot
prices; in Section 4, we discuss the numerical implementation
and results; finally, in Section 5 we conclude.

2. Basket Derivatives and Taylor Expansions

We introduce some notations. Let (Ω,F, (F
𝑡
)
𝑡≥0
,P) be a

filtered probability space. We define the filtration F𝑋
𝑡 fl

𝜎(𝑋
𝑠
, 0 ≤ 𝑠 ≤ 𝑡) ⊂ F

𝑡
as the 𝜎-algebra generated by the

random variables {𝑋
𝑠
, 0 ≤ 𝑠 ≤ 𝑡} completed in the usual way.

Denote by Q an equivalent martingale risk neutral measure
(EMM) and by 𝐸Q the expectation under Q. Quantities
𝜇
𝑎,𝑏
(𝑘), 𝑀

𝑋
(𝑢) and 𝑀

𝑋
(𝑢, 𝑎, 𝑏) represent, respectively, the

truncated 𝑘th moment and the moment generating function
(m.g.f.) truncated on [𝑎, 𝑏], while the function 𝑁(⋅) is the
cumulative distribution function (c.d.f.) of a standard normal
distribution.

The matrix 𝐴 represents the transpose of matrix 𝐴 =

(𝑎
𝑖𝑗
), while diag(𝐴) is a column vector with components

from the diagonal of the matrix 𝐴. On the other hand, 𝐴1/2

denotes amatrix such that𝐴1/2𝐴1/2 = 𝐴. For a𝑑-dimensional
vector 𝑌, denote by �̃� the same vector, excluding the first
component.

By 𝑟, we denote the (constant) interest rate or a vectorwith
components equal to 𝑟. The matrix 𝐼

𝑑
is the 𝑑 × 𝑑 identity

matrix.
For 𝑙-times differentiable function 𝑓 on R𝑑 and a vector

𝐿 = (𝑙
1
, 𝑙
2
, . . . , 𝑙

𝑑
) with 𝑙

𝑘
∈ N such that ∑𝑑

𝑘=1
𝑙
𝑘
= 𝑙, 𝐷𝐿𝑓

represents its mixed partial derivative of order 𝑙 differentiated
𝑙
𝑘
times w.r.t. 𝑦

𝑘
.

The process of spot prices is denoted by 𝑆 =

(𝑆
(1)

𝑡
, 𝑆
(2)

𝑡
, . . . , 𝑆

(𝑑)

𝑡
)
𝑡≥0

for 0 ≤ 𝑡 ≤ 𝑇, while 𝑌 = (𝑌(1)
𝑡
, 𝑌

(2)

𝑡
, . . . ,

𝑌
(𝑑)

𝑡
)
𝑡≥0

is the asset log-return process; they are related by

𝑆
(𝑗)

𝑡
= 𝑆

(𝑗)

0
exp (𝑌(𝑗)

𝑡
) for 𝑗 = 1, 2, . . . , 𝑑. (1)

The log-return process follows the dynamic

𝑑𝑌
𝑡
= (𝑟 −

1

2
diag (Σ)) 𝑑𝑡 + Σ1/2𝑑𝐵

𝑡
, (2)

where (𝐵
𝑡
)
𝑡≥0

is amultivariate standard Brownianmotion and
Σ is a positive definite symmetric matrix with components
(𝜎
𝑖𝑗
)
𝑖,𝑗=1,2,...,𝑑

, with 𝜎
𝑖𝑖
= 𝜎

2

𝑖
.

We analyze European Basket options whose payoff at
maturity 𝑇, for a strike price𝐾, is given by

ℎ (𝑆
𝑇
) = (

𝑑

∑

𝑗=1

𝑤
𝑗
𝑆
(𝑗)

𝑇
− 𝐾)

+

, (3)

where (𝑤
𝑗
)
1≤𝑗≤𝑑

are some deterministic weights and 𝑥
+
=

max(𝑥, 0).
The main examples are spread options, defined for 𝑑 = 2

by a payoff:

ℎ (𝑆
𝑇
) = (𝑆

(1)

𝑇
− 𝑆

(2)

𝑇
− 𝐾)

+
. (4)

Other related contracts are the so-called 3 : 2 : 1 crack spreads
with payoff:

ℎ (𝑆
𝑇
) = (

2

3
𝑆
(1)

𝑇
−
1

3
𝑆
(2)

𝑇
− 𝑆

(3)

𝑇
− 𝐾)

+

, (5)

where 𝑆(1)
𝑇
, 𝑆(2)

𝑇
, and 𝑆(3)

𝑇
are, respectively, the spot prices of

gasoline, heating oil, and crude oil.
Exchange options are spread options with𝐾 = 0; see [15].
We start writing the price of the basket option, denoted

by 𝐶
𝐵
, in terms of a conditional price via the following

elementary proposition.

Proposition 1. Let 𝐶
𝐵
be the price of a European Basket

contract with maturity at 𝑇, strike price 𝐾, and payoff ℎ(𝑆
𝑇
)

under the model given by (1) and (2). Then,

𝐶
𝐵
= 𝑤

1
𝐸Q [exp(−(𝑟 −

1

2
𝜎
2

𝑌
(1)

𝑇
/�̃�
𝑇

)𝑇 + 𝜇
𝑌
(1)

𝑇
/�̃�
𝑇

)

⋅ 𝐶 (�̃�
𝑇
)] ,

(6)

where, for 𝑦 ∈ R𝑑−1,

𝐶 (𝑦) fl 𝐶
𝐵𝑆
(𝑆
(1)

0
, 𝐾 (𝑦) , 𝑟, 𝜎

𝑌
(1)

𝑇
/�̃�
𝑇
=𝑦
, 𝑇) (7)

is the Black-Scholes price of a call option with maturity at 𝑇 >
0, volatility 𝜎

𝑌
(1)

𝑇
/�̃�
𝑇
=𝑦
, spot price 𝑆(1)

0
, and strike price

𝐾(𝑦) =
1

𝑤
1

exp((𝑟 − 1
2
𝜎
2

𝑌
(1)

𝑇
/�̃�
𝑇
=𝑦
)𝑇 − 𝜇

𝑌
(1)

𝑇
/�̃�
𝑇
=𝑦
)

⋅ (𝐾 −

𝑑

∑

𝑗=2

𝑤
𝑗
𝑆
(𝑗)

0
𝑒
𝑦
(𝑗)

)

(8)
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with

𝜇
𝑌
(1)

𝑇
/�̃�
𝑇

= (𝑟 −
1

2
𝜎
11
)𝑇

+ Σ
1�̃�
Σ
−1

�̃�
(�̃�

𝑇
− 𝑟 +

1

2
diag (Σ

�̃�
))𝑇,

𝜎
𝑌
(1)

𝑇
/�̃�
𝑇

= 𝜎
11
− Σ

1�̃�
Σ
−1

�̃�
Σ


1�̃�
,

(9)

where

Σ
1�̃�
= (𝜎

12
, 𝜎
13
, . . . , 𝜎

1,𝑑−1
) (10)

and Σ
�̃�
is the covariance matrix of the vector �̃�

𝑇
.

Proof. From (2),

𝑌
𝑇
= (𝑟 −

1

2
diag (Σ))𝑇 + √𝑇Σ1/2𝑍

𝑑
(11)

in law, where 𝑍
𝑑
is a random variable with a multivariate

standard normal probability distribution in R𝑑. Moreover,
independently of �̃�

𝑇
, the random variable 𝑌(1)

𝑇
has a univari-

ate normal distribution. Thus, we can write

𝑌
(1)

𝑇
= 𝜇

𝑌
(1)

𝑇
/�̃�
𝑇

+ √𝑇𝜎
𝑌
(1)

𝑇
/�̃�
𝑇

𝑍
1 (12)

in law, where𝑍
1
is independent of𝑌

𝑇
and it has, conditionally

on �̃�
𝑇
, a standard univariate normal distribution. Moreover,

it is well known (see, e.g., [16]) that 𝜇
𝑌
(1)

𝑇
/�̃�
𝑇

and 𝜎
𝑌
(1)

𝑇
/�̃�
𝑇

are,
respectively, given by (9).

Next, by the iterated property of the conditional expected
value, we have

𝐶
𝐵
fl 𝑒

−𝑟𝑇
𝐸Q (ℎ (𝑆𝑇)) = 𝑒

−𝑟𝑇
𝐸Q (𝐸Q (ℎ (𝑆𝑇) | F

�̃�
𝑇))

= 𝑤
1
𝑒
−𝑟𝑇
𝐸Q(𝐸Q

[

[

(𝑆
(1)

0
exp (𝑌(1)

𝑇
)

− (
𝐾

𝑤
1

−

𝑑

∑

𝑗=2

𝑤
𝑗

𝑤
1

𝑆
(𝑗)

0
exp (𝑌(𝑗)

𝑇
)))

+

| F
�̃�
𝑇]

]

)

= 𝑤
1
𝑒
−𝑟𝑇
𝐸Q (𝐸Q [(𝑆

(1)

0
exp (𝑌(1)

𝑇
) − 𝐾

1
(�̃�

𝑇
))
+
|

F
�̃�
𝑇]) ,

(13)

where𝐾
1
(𝑦) = 𝐾/𝑤

1
− ∑

𝑑

𝑗=2
(𝑤

𝑗
/𝑤

1
)𝑆
(𝑗)

0
𝑒
𝑦
(𝑗)

.

Moreover, substituting (12) into (13), we have

𝐶
𝐵
= 𝑤

1
𝑒
−𝑟𝑇
𝐸Q [𝐸Q ((𝑆

(1)

0

⋅ exp (𝜇
𝑌
(1)

𝑇
/�̃�
𝑇

+ 𝜎
𝑌
(1)

𝑇
/�̃�
𝑇

√𝑇𝑍
(1)
) − 𝐾


(�̃�

𝑇
))
+

|

F
�̃�
𝑇)] = 𝑤

1
𝑒
−𝑟𝑇
𝐸Q [exp (−𝑟𝑇 +

1

2
𝜎
2

𝑌
(1)

𝑇
/�̃�
𝑇

𝑇

+ 𝜇
𝑌
(1)

𝑇
/�̃�
𝑇

)𝐸Q ((𝑆
(1)

0

⋅ exp (𝑟𝑇 − 1
2
𝜎
2

𝑌
(1)

𝑇
/�̃�
𝑇

𝑇 + 𝜎
𝑌
(1)

𝑇
/�̃�
𝑇

√𝑇𝑍
(1)
)

− 𝐾
1
(�̃�

𝑇
))

+

| F
�̃�
𝑇)] ,

(14)

where

𝐶 (�̃�
𝑇
) = 𝑒

−𝑟𝑇
𝐸Q [(𝑆

(1)

0

⋅ exp ((𝑟 − 1
2
𝜎
2

𝑌
(1)

𝑇
/�̃�
𝑇

)𝑇 + 𝜎
𝑌
(1)

𝑇
/�̃�
𝑇

√𝑇𝑍
(1)
)

− 𝐾 (�̃�
𝑇
))

+

| F
�̃�
𝑇] .

(15)

Hence, we can recognize in 𝐶(�̃�
𝑇
) the expression of a Black-

Scholes price with the parameters mentioned above.

Remark 2. Notice that 𝐾(𝑦) may be negative. In this case,
𝐶(𝑦) is not the Black-Scholes price, but the formula remains
valid. Condition 𝑤

𝑗
≤ 0, 𝑗 = 2, . . . , 𝑑, guarantees its

positiveness, as it is the case of spreads and 3 : 2 : 1 crack spread
contracts defined above.

Notice that 𝐶(𝑦) is smooth enough to apply a 𝑘th-order
Taylor development around any point 𝑦∗ ∈ R𝑑−1. After
conditioning on the last 𝑑 − 1 underlying assets, it leads to
the approximated price:

𝐶
(𝑘)
(𝑦) =

𝑘

∑

𝑙=0

∑

𝑅
𝑙

𝐷
𝐿
𝐶 (𝑦

∗
)

∏
𝑑

𝑘=1
𝑙
𝑘
!

𝑑−1

∏

𝑘=1

(𝑦
(𝑘+1)

− 𝑦
∗(𝑘)

)
𝑙
𝑘

, (16)

where 𝐿 = (𝑙
1
, 𝑙
2
, . . . , 𝑙

𝑑−1
) and 𝑅

𝑙
= {𝐿 ∈ N𝑑−1/𝑙

1
+ 𝑙

2
+ ⋅ ⋅ ⋅ +

𝑙
𝑑−1

= 𝑙, 0 ≤ 𝑙
𝑘
≤ 𝑙}.

Taking into account Proposition 1, a natural 𝑘th-order
Taylor approximation around 𝑦

∗
= (𝑦

∗

2
, 𝑦
∗

3
, . . . , 𝑦

∗

𝑑−1
) of
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the price 𝐶
𝐵
of a basket option with payoff ℎ(𝑆

𝑇
), defined as

𝐶
(𝑘)

𝐵
fl 𝑒

−𝑟𝑇
𝐸Q[𝐶

(𝑘)
(�̃�
𝑇
)], is obtained by

𝐶
(𝑘)

𝐵
(𝑦
∗
) = 𝑤

1

𝑘

∑

𝑙=0

∑

𝑅
𝑙

𝐷
𝐿
𝐶 (𝑦

∗
)

𝑙
1
!𝑙
2
! ⋅ ⋅ ⋅ 𝑙

𝑑−1
!

⋅ 𝐸Q [exp(−(𝑟 −
1

2
𝜎
2

𝑌
(1)

𝑇
/�̃�
𝑇

)𝑇 + 𝜇
𝑌
(1)

𝑇
/�̃�
𝑇

)

⋅

𝑑−1

∏

𝑘=1

(𝑌
(𝑘+1)

𝑇
− 𝑦

∗(𝑘)
)
𝑙
𝑘

]

(17)

after replacing (16) into the expression for 𝐶
𝐵
in the proposi-

tion above.

Remark 3. Notice that the approximation 𝐶(𝑘)
𝐵

depends only
on the derivatives of the function 𝐶(𝑦) with respect to 𝑦,
which turns out to be the Black-Scholes price composed
with the function 𝐾(𝑦), and the mixed exponential-power
moments of a Gaussian multivariate distribution.

Remark 4. Sensitivities to the parameters can be computed by
a similar approximation, as Greeks for a Black-Scholes option
model are known. For example, the Delta with respect to the
𝑗th asset can be approximated by

Δ
(𝑗)

𝑘
= 𝑤

1

𝑘

∑

𝑙=0

∑

𝑅
𝑙

𝐷
𝐿
(𝜕𝐶 (𝑦

∗
) /𝜕𝑠

(𝑗)
)

𝑙
1
!𝑙
2
! ⋅ ⋅ ⋅ 𝑙

𝑑−1
!

𝐸Q [𝑒

⋅ exp (−(𝑟 − 1
2
𝜎
2

𝑌
(1)

𝑇
/�̃�
𝑇

)𝑇 + 𝜇
𝑌
(1)

𝑇
/�̃�
𝑇

)

⋅

𝑑

∏

𝑘=2

(𝑌
(𝑘)

𝑇
− 𝑦

∗

𝑘
)
𝑙
𝑘

] .

(18)

3. Pricing Spreads Options by
Taylor Approximations

In order to illustrate the method studied in the previous
section, we consider the case of a bidimensional spread
option under the model given by (1) and (2) with covariance
matrix:

Σ = (
𝜎
2

1
𝜌𝜎

1
𝜎
2

𝜌𝜎
1
𝜎
2

𝜎
2

2

) . (19)

Notice that, for convenience, we have slightly changed some
notations.

From (11), the conditional distribution of 𝑌(1)
𝑇

given 𝑌(2)
𝑇

is normal with mean and variance given by

𝜇 (𝑌
(2)

𝑇
) fl 𝜇

𝑌
(1)

𝑇
/�̃�
𝑇

= 𝑟(1 −
𝜎
1

𝜎
2

𝜌)𝑇 +
1

2
𝜎
1
(𝜎
2
𝜌 − 𝜎

1
) 𝑇

+
𝜎
1

𝜎
2

𝜌𝑌
(2)

𝑇
,

𝜎 fl 𝜎
𝑌
(1)

𝑇
/�̃�
𝑇

= √(1 − 𝜌2)𝜎
1
.

(20)

Thus, we can write

𝑌
(1)

𝑇
= 𝜇 (𝑌

(2)

𝑇
) + √𝑇𝜎𝑍 in law, (21)

where 𝑍 ∼ 𝑁(0, 1) independent of 𝑌
𝑇
.

The 𝑘th-order Taylor approximation in this case simpli-
fies to

𝐶
(𝑘)

𝐵
(𝑦
∗
)

=

𝑘

∑

𝑙=0

𝐷
𝑙
𝐶 (𝑦

∗
)

𝑙!
𝐸Q [exp(−(𝑟 −

1

2
𝜎
2
)𝑇 + 𝜇 (𝑌

(2)

𝑇
))

⋅ (𝑌
(2)

𝑇
− 𝑦

∗
)
𝑙

] .

(22)

Moreover,

𝐸Q [exp((−𝑟 +
1

2
𝜎
2
)𝑇 + 𝜇 (𝑌

(2)

𝑇
)) (𝑌

(2)

𝑇
− 𝑦

∗
)
𝑙

]

= 𝑒
𝐴
𝐸Q [exp(

𝜎
1

𝜎
2

𝜌𝑌
(2)

𝑇
) (𝑌

(2)

𝑇
− 𝑦

∗
)
𝑙

] ,

(23)

where

𝐴 = −(
1

2
𝜌
2
𝜎
2

1
+ 𝑟

𝜎
1

𝜎
2

𝜌 −
1

2
𝜎
1
𝜎
2
𝜌)𝑇. (24)

Now,marginals of amultivariate normal distribution are nor-
mal too. Hence, we have that 𝑌(2)

𝑇
∼ 𝑁((𝑟 − (1/2)𝜎

2

2
)𝑇, 𝑇𝜎

2

2
).

The exponential-power moments can be calculated as

𝐸Q [exp(
𝜎
1

𝜎
2

𝜌𝑌
(2)

𝑇
) (𝑌

(2)

𝑇
− 𝑦

∗
)
𝑙

]

= exp(𝜎1
𝜎
2

𝜌 (𝑟 −
1

2
𝜎
2

2
)𝑇)

⋅

𝑙

∑

𝑚=0

(
𝑙

𝑚
) (√𝑇𝜎

2
)
𝑚

𝐵 (𝑦
∗
)
𝑙−𝑚

𝐷
𝑚
𝑀
𝑍
(√𝑇𝜎

1
𝜌)

(25)

with

𝐵 (𝑦
∗
) = (𝑟 −

1

2
𝜎
2

2
)𝑇 − 𝑦

∗
. (26)
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Next, integrating by parts,

𝐷
𝑚
𝑀
𝑍
(√𝑇𝜎

1
𝜌) = exp(

𝜎
2

1
𝜌
2
𝑇

2
)

⋅

[𝑚/2]

∑

]=0
(
𝑚

2]
)(𝜎

1
𝜌√𝑇)

𝑚−2]
(2] − 1)!!,

(27)

where 𝑛!! is the double factorial defined as the product of all
odd numbers between 1 and 𝑛 including both. When the set
is empty, by convention, the product is equal to one.

As a consequence, for 𝑦∗ = 𝐸Q(𝑌
(2)

𝑇
), we have

𝐸Q [exp(
𝜎
1

𝜎
2

𝜌𝑌
(2)

𝑇
) (𝑌

(2)

𝑇
− 𝑦

∗
)
𝑙

] = 𝑇
𝑙/2
𝜎
𝑙

2

⋅ exp(𝜎1
𝜎
2

𝜌 (𝑟 −
1

2
𝜎
2

2
)𝑇) exp(

𝜎
2

1
𝜌
2
𝑇

2
)

⋅

𝑙

∑

]=0
(
𝑙

]
)(𝜎

1
𝜌√𝑇)

𝑙−]
𝐸 (𝑍

]
)

= 𝑇
𝑙/2
𝜎
𝑙

2
𝑒
−𝐴

[𝑙/2]

∑

]=0
(

𝑙

2]
)(𝜎

1
𝜌√𝑇)

𝑙−2]
(2] − 1)!!.

(28)

After gathering all pieces and substituting in (22), we have the
following result.

Proposition 5. The 𝑘th-order Taylor approximation of a
spread contract with maturity at 𝑇 and strike price 𝐾, under
the model described by (1) and (2), is given by

𝐶
(𝑘)

𝐵
(𝑦
∗
)

=

𝑘

∑

𝑙=0

𝑙

∑

𝑚=0

𝐷
𝑙
𝐶 (𝑦

∗
)

𝑙!
(
𝑙

𝑚
) (√𝑇𝜎

2
)
𝑚

𝐵 (𝑦
∗
)
𝑙−𝑚

𝐸 (𝑚)

(29)

with

𝐸 (𝑚) =

𝑚

∑

]=0
(
𝑚

]
)(𝜎

1
𝜌√𝑇)

𝑚−]
𝐸Q (𝑍

]
) (30)

for𝑚 = 1, 2, . . . , 𝑘 and 𝐸(0) = 1, where 𝐸Q𝑍
]
= (] − 1)!! if ] is

even or zero if it is odd, and

𝐾(𝑦) = 𝑒
−𝐴
(𝐾 exp(−𝜎1

𝜎
2

𝜌𝑦)

+ 𝑆
(2)

0
exp((1 − 𝜎1

𝜎
2

𝜌)𝑦)) .

(31)

We now need to compute the derivatives of the function
𝐶(𝑦)with respect to 𝑦. By a straightforward calculation from
Black-Scholes formula,

𝐷
1
𝐾(𝑦) = 𝑒

−𝐴
(−

𝜎
1

𝜎
2

𝜌𝐾 exp(−𝜎1
𝜎
2

𝜌𝑦)

+ 𝑆
(2)

0
(1 −

𝜎
1

𝜎
2

𝜌) exp((1 − 𝜎1
𝜎
2

𝜌𝑦))) ,

𝐷
2
𝐾(𝑦) = 𝑒

−𝐴
((

𝜎
1

𝜎
2

𝜌)

2

𝐾 exp(−𝜎1
𝜎
2

𝜌𝑦)

+ 𝑆
(2)

0
(1 −

𝜎
1

𝜎
2

𝜌)

2

exp((1 − 𝜎1
𝜎
2

𝜌)𝑦)) .

(32)

Also,

𝐷
1
𝐶 (𝑦)

= 𝑆
(1)

0
𝑓
𝑍
(𝑑
1
(𝐾 (𝑦)))𝐷

(1)
𝑑
1
(𝐾 (𝑦))

− 𝑒
−𝑟𝑇
𝐷
1
𝐾(𝑦)𝑁 (𝑑

2
(𝐾 (𝑦)))

− 𝑒
−𝑟𝑇
𝐾(𝑦)𝑓

𝑍
(𝑑
2
(𝐾 (𝑦)))𝐷

1
𝑑
1
(𝐾 (𝑦))

= −
𝐷
(1)
𝐾(𝑦)

𝐾 (𝑦) 𝜎√𝑇
𝐴
2
(𝑦) ,

(33)

where𝑓
𝑍
is the density function of a standard normal random

variable and
𝐴
2
(𝑦) = 𝑆

(1)

0
𝑓
𝑍
(𝑑
1
(𝐾 (𝑦)))

+ 𝜎√𝑇𝑒
−𝑟𝑇
𝐾(𝑦)𝑁 (𝑑

2
(𝐾 (𝑦)))

− 𝑒
−𝑟𝑇
𝐾(𝑦)𝑓

𝑍
(𝑑
2
(𝐾 (𝑦))) .

(34)

Similarly, the second derivative is obtained as

𝐷
2
𝐶 (𝑦)

= −
1

𝜎√𝑇

[

[

𝐴
2
(𝑦)

𝐾 (𝑦)𝐷
(2)
𝐾(𝑦) − (𝐷

1
𝐾(𝑦))

2

𝐾2 (𝑦)

+ 𝐷
(1)
𝐴
2
(𝑦)

𝐷
(1)
𝐾(𝑦)

𝐾 (𝑦)

]

]

(35)

with
𝐷
1
𝐴
2
(𝑦)

=
𝐷
1
𝐾(𝑦)

𝐾 (𝑦) 𝜎√𝑇
[𝑆
(1)

0
𝑓
𝑍
(𝑑
1
(𝐾 (𝑦))) 𝑑

1
(𝐾 (𝑦))

+ 𝜎
2
𝑇𝑒

−𝑟𝑇
𝐾(𝑦)𝑁 (𝑑

2
(𝐾 (𝑦)))

− 2𝜎√𝑇𝑒
−𝑟𝑇
𝐾(𝑦)𝑓

𝑍
(𝑑
2
(𝐾 (𝑦)))

− 𝑒
−𝑟𝑇
𝐾(𝑦)𝑓

𝑍
(𝑑
2
(𝐾 (𝑦))) 𝑑

2
(𝐾 (𝑦))

+ 𝑒
−𝑟𝑇
𝜎√𝑇𝐾

2
(𝑦) 𝑓

𝑍
(𝑑
2
(𝐾 (𝑦)))] .

(36)
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In particular, when we expand the price around the point
𝑦mean = 𝐸Q(𝑌

(2)

𝑇
) = (𝑟 − (1/2)𝜎

2

2
)𝑇 we have the first and

second approximations given, respectively, by

𝐶
(1)
(𝑦mean) = 𝐶 (𝑦mean) + 𝜎1𝜎2𝜌𝑇𝐷

1
𝐶 (𝑦mean) ,

𝐶
(2)
(𝑦mean) = �̂�1

+
1

2
[𝑇𝜎

2

2
(1 + 𝜎

2

1
𝜌
2
𝑇)]𝐷

2
𝐶 (𝑦mean) .

(37)

More generally, expanding around 𝑦
∗
∈ R, the first two

approximations denoted by �̂�
1
(𝑦
∗
) and �̂�

2
(𝑦
∗
), respectively,

are given by

𝐶
(1)

𝐵
(𝑦
∗
) = 𝐶 (𝑦

∗
) + 𝐷

1
𝐶 (𝑦

∗
)

⋅ (𝐵 (𝑦
∗
) + √𝑇𝜎

2
𝐸 (1)) = 𝐶 (𝑦

∗
) + 𝐷

1
𝐶 (𝑦

∗
)

⋅ (𝐵 (𝑦
∗
) + 𝑇𝜎

1
𝜎
2
𝜌) ,

𝐶
(2)
(𝑦
∗
) = 𝐶

(1)

𝐵
(𝑦
∗
) +

1

2
𝐷
2
𝐶 (𝑦

∗
)

⋅ [𝐵
2
(𝑦
∗
) + 2𝑇𝜎

1
𝜎
2
𝜌𝐵 (𝑦

∗
) + 𝑇𝜎

2

2
(1 + 𝑇𝜎

2

1
𝜌
2
)] .

(38)

4. Approximation by Chebyshev Polynomials

Westudy an alternative approximation of the price viaCheby-
shev polynomials. For definition and their basic properties
see, for example, [17].

Denoting by (𝑇
𝑘
(𝑦))

𝑘∈N the sequence of Chebyshev
polynomials of first type on [−1, 1], we consider the 𝑛th
approximation of the function 𝐶(𝑦) on the interval [𝑎, 𝑏]
described by equation in terms of Chebyshev polynomials,
the one given by

𝐶CH (𝑦, 𝑎, 𝑏, 𝑛) =
1

2
�̂�
0
1
[𝑎,𝑏]

(𝑦)

+

𝑛

∑

𝑘=1

�̂�
𝑘
𝑇
𝑎,𝑏

𝑘
(𝑦) 1

[𝑎,𝑏]
(𝑦) ,

(39)

where (𝑇𝑎,𝑏
𝑘
(𝑥))

𝑘∈N is the sequence of Chebyshev polynomials
of first type on [𝑎, 𝑏] defined by

𝑇
𝑎,𝑏

𝑘
(𝑦) = 𝑇

𝑘
(−1 +

2

(𝑏 − 𝑎)
(𝑦 − 𝑎)) , 𝑎 ≤ 𝑦 ≤ 𝑏, (40)

and the values (�̂�
𝑘
)
0≤𝑘≤𝑁

are estimators of the corresponding
coefficients in the Chebyshev expansion.

Chebyshev polynomials on [𝑎, 𝑏] are orthogonal with
respect to the scalar product defined as

⟨𝑓, 𝑔⟩ = ∫

𝑏

𝑎

𝑓 (𝑥) 𝑔 (𝑥)𝑤
𝑎,𝑏
(𝑥) 𝑑𝑥 (41)

with weight function𝑤
𝑎,𝑏
(𝑥) = (1−(2(𝑥−𝑎)/(𝑏−𝑎)−1)

2
)
−1/2.

Notice that


𝑇
𝑎,𝑏

𝑘



2

=

{{

{{

{

(𝑏 − 𝑎) 𝜋

4
for 𝑘 ̸= 0

(𝑏 − 𝑎) 𝜋

2
for 𝑘 = 0.

(42)

Then, for 𝑘 ̸= 0 the coefficients in the expansion can be
calculated as

𝑐
𝑘
=
⟨𝐶, 𝑇

𝑎,𝑏

𝑘
⟩


𝑇
𝑎,𝑏

𝑘



2
=

4

(𝑏 − 𝑎) 𝜋

⋅ ∫

𝑏

𝑎

𝐶 (𝑦) 𝑇
𝑎,𝑏

𝑘
(𝑦)𝑤

𝑎,𝑏
(𝑦) 𝑑𝑦 =

4

(𝑏 − 𝑎) 𝜋

⋅ ∫

𝑏

𝑎

𝐶 (𝑦) 𝑇
𝑘
(−1 +

2

(𝑏 − 𝑎)
(𝑦 − 𝑎))𝑤

𝑎,𝑏
(𝑦) 𝑑𝑦

=
2

𝜋
∫

1

−1

𝐶(𝑎 +
𝑏 − 𝑎

2
(𝑥 + 1))𝑇

𝑘
(𝑥)𝑤

−1,1
(𝑥) 𝑑𝑥

=
2

𝜋
∫

𝜋

0

𝐶(𝑎 +
𝑏 − 𝑎

2
(cos 𝜃 + 1)) cos (𝑘𝜃) 𝑑𝜃

(43)

after changes of variables 𝑥 = −1 + (2/(𝑏 − 𝑎))(𝑦 − 𝑎) and
𝑥 = cos 𝜃.

Also,

𝑐
0
=
1

𝜋
∫

𝜋

0

𝐶(𝑎 +
𝑏 − 𝑎

2
(cos 𝜃 + 1)) 𝑑𝜃. (44)

From the trapezoidal rule to approximate Riemann integrals,
the coefficients (𝑐

𝑘
)
0≤𝑘≤𝑁

can be estimated by an equidistant
partition of𝑁 points on [0, 𝜋].

Chebyshev polynomials of first type can be written in
terms of powers of the variable. From [18],

𝑇
𝑎,𝑏

𝑘
(𝑥) =

[𝑘/2]

∑

𝑙=0

𝑏
(𝑘)

𝑙
(−1 +

2

𝑏 − 𝑎
(𝑥 − 𝑎))

𝑘−2𝑙

, (45)
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where

𝑏
(𝑘)

𝑙

=

{{{{

{{{{

{

(−1)
𝑘/2 for 𝑙 = 𝑘

2
and 𝑘 even

(−1)
𝑙
2
𝑘−2𝑙−1 𝑘

𝑘 − 𝑙
(

𝑘 − 𝑙

𝑙

) for 𝑙 < 𝑘

2
.

(46)

In a similar way to the case of Taylor polynomials, define
the 𝑛th order Chebyshev approximation for the basket option
price as

𝐶CH (𝑎, 𝑏, 𝑛)

fl 𝑤
1
𝐸Q [exp (−(𝑟 −

1

2
𝜎
2
)𝑇 + 𝜇 (𝑌

(2)

𝑇
))

⋅ �̃�CH (𝑌
(2)

𝑇
, 𝑎, 𝑏, 𝑛)] .

(47)

The next theorem provides the Chebyshev approximation for
the price of a basket option.

Theorem 6. The 𝑛th order Chebyshev’s approximation of the
price𝐶

𝐵
of a European Basket option under the model given by

(1) and (2) is given by

𝐶
𝐶𝐻
(𝑎, 𝑏, 𝑛) =

𝑤
1

2

⋅ �̂�
0
[𝑁 (𝑏 − 𝜎

1
𝜌√𝑇) − 𝑁(�̃� − 𝜎

1
𝜌√𝑇)] + 𝑤

1

⋅ exp(−1
2
𝜌
2
𝜎
2

1
𝑇)

⋅

𝑛

∑

𝑘=1

[𝑘/2]

∑

𝑙=0

�̂�
𝑘
𝑏
(𝑘)

𝑙
(
2𝜎
2
√𝑇

𝑏 − 𝑎
)

𝑘−2𝑙

�̂� (𝑘 − 2𝑙) ,

(48)

where

�̂� (𝑘) =

𝑘

∑

𝑚=0

(
𝑘

𝑚
)(

2 (𝑟 − (1/2) 𝜎
2

2
) 𝑇 − 𝑎 − 𝑏

2𝜎
2
√𝑇

)

𝑚

⋅
𝑑
𝑘−𝑚

𝑀
𝑍
(𝑢, �̃�, �̃�)

𝑑𝑢𝑘−𝑚

𝑢=𝜎
1
𝜌√𝑇

(49)

for 𝑘 = 0, 1, 2, . . . , 𝑛,

𝑏 =
𝑏 − (𝑟 − (1/2) 𝜎

2

2
) 𝑇

𝜎
2
𝑇

,

�̃� =
𝑎 − (𝑟 − (1/2) 𝜎

2

2
) 𝑇

𝜎
2
𝑇

.

(50)

Proof. Notice that

𝑒
𝐴
𝐸Q [exp(

𝜎
1

𝜎
2

𝜌𝑌
(2)

𝑇
) 1

(−∞,𝑏)
(𝑌

(2)

𝑇
)] = 𝑒

𝐴

⋅ exp((𝑟 − 1
2
𝜎
2

2
)
𝜎
1

𝜎
2

𝜌𝑇)

⋅ 𝐸Q [exp (𝜎1𝜌√𝑇𝑍) 1(−∞,�̃�) (𝑍)] = 𝑒
𝐴

⋅ exp((𝑟 − 1
2
𝜎
2

2
)
𝜎
1

𝜎
2

𝜌𝑇 +
1

2
𝜎
2

1
𝜌
2
𝑇)

1

√2𝜋

⋅ ∫

�̃�−𝜎
1
𝜌√𝑇

−∞

exp(−1
2
𝑧
2
)𝑑𝑧 = 𝑁(�̃� − 𝜎

1
𝜌√𝑇) .

(51)

Hence,

𝑒
𝐴
𝐸Q [exp(

𝜎
1

𝜎
2

𝜌𝑌
(2)

𝑇
) 1

[𝑎,𝑏]
(𝑌

(2)

𝑇
)]

= 𝑁(�̃� − 𝜎
1
𝜌√𝑇) − 𝑁(�̃� − 𝜎

1
𝜌√𝑇) .

(52)

From Proposition 1, we take into account (39) and (45) to get

𝐶CH (𝑎, 𝑏, 𝑛) = 𝑤1𝑒
𝐴
𝐸Q (exp(

𝜎
1

𝜎
2

𝜌𝑌
(2)

𝑇
)

⋅ 𝐶CH (𝑌
(2)

𝑇
, 𝑎, 𝑏, 𝑛)) =

𝑤
1

2
�̂�
0
[𝑁 (𝑏 − 𝜎

1
𝜌√𝑇)

− 𝑁(�̃� − 𝜎
1
𝜌√𝑇)]

+ 𝑤
1
𝑒
𝐴

𝑛

∑

𝑘=1

�̂�
𝑘
𝐸Q [exp(

𝜎
1

𝜎
2

𝜌𝑌
(2)

𝑇
)𝑇

𝑎,𝑏

𝑘
(𝑌

(2)

𝑇
)

⋅ 1
[𝑎,𝑏]

(𝑌
(2)

𝑇
)] =

𝑤
1

2
�̂�
0
[𝑁 (𝑏 − 𝜎

1
𝜌√𝑇) − 𝑁(�̃�

− 𝜎
1
𝜌√𝑇)] + 𝑤

1
𝑒
𝐴

𝑛

∑

𝑘=1

[𝑘/2]

∑

𝑙=0

�̂�
𝑘
𝑏
(𝑘)

𝑙

(𝑏 − 𝑎)
𝑘−2𝑙

⋅ 𝐸Q [exp(
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(53)
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Now,

𝐸Q [exp(
𝜎
1

𝜎
2

𝜌𝑌
(2)

𝑇
) (2𝑌

(2)

𝑇
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𝑚
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(2)

𝑇
])
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1
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(2)

𝑇
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1
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.

(54)

Substituting the last expression into (53), we get (48).

5. Numerical Results

As a benchmark setting, we consider initial prices of 𝑆(1)
0

=

100 and 𝑆(2)
0
= 96dollars, strike price of𝐾 = 1dollar,maturity

at 𝑇 = 1 year, and an annual interest rate of 𝑟 = 3% under
a bivariate Black-Scholes model, with a negative correlation
𝜌 = −0.3 and respective volatilities equal to 𝜎

1
= 0.3 and

𝜎
2
= 0.1.
In Figure 1, we show the conditional price function on

[−1, 1] for the benchmark setting (blue line), together with
the first and secondTaylor expansions around themean value
of 𝑌(2)

𝑇
; that is, 𝐸Q(𝑌

(2)

𝑇
) = (𝑟 − (1/2)𝜎

2

2
)𝑇 (green and red

lines, resp.). While the second-order approximation offers
a reasonable local fit, significant errors may be found for
values far from the mean. These errors may impact the price
given by its conditional expected value under the risk neutral
probability when, for example, volatilities are high.

Notice that, due to the concavity of function 𝐶, the first
approximation underestimates the price. Not surprisingly,
the second approximation estimates the price fairly well for
values close to the point mean value while it is less accurate
for values far from themean. Although it seems as a drawback
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−0.8 −0.6 0.2−0.2 0 0.4 0.6−0.4 0.8 1−1

Figure 1: Approximations of the conditional price based on Taylor
polynomials using the benchmark set of parameters. The blue line
describes the conditional price on [−1, 1] while the green and red
lines show first- and second-order expansions, respectively.

of the method, it does not constitute a serious problem as
values far from themean are infrequent, and thus the error in
calculating the expected value from a Taylor approximation
is fairly small.

A more promising result is obtained when an approx-
imation of the conditional price is done via Chebyshev
polynomials. Figure 2 represents, clockwise from top left,
approximations of 4th, 10th, and 15th orders, respectively.
Expansions of the 10th and 15th orders are practically indis-
tinguishable from the original function. Coefficients in the
expansion are calculated following a trapezoidal rule with 100
points on the interval [−1.5, 1.5].

In Table 1, we show the impact of correlation on the prices
of spread contracts obtained under the benchmark parameter
set. Prices are computed by a Monte Carlo approach based
on 10 million simulations of the asset prices following a
geometric bivariate Black-Scholes model with correlated
Brownian motions (column 2). In addition, we implement
a second-order Taylor expansion and an approximation by
Chebyshev polynomials of order 𝑛 = 15. We consider
positive, negative, large, moderated, and weak correlations.
In all cases, the Chebyshev approximation shows a notable
agreement with Monte Carlo prices at a lesser computational
cost.

Notice that Chebyshev expansion requires extra quadra-
ture to compute the polynomial coefficients as opposed to
Taylor where we simply need to evaluate the corresponding
derivatives. Hence, the computational complexity in the
former multiplies by the number of points used in the
trapezoid rule.

In Table 2, we show average routine times for the price
calculation following Monte Carlo, Taylor, and Chebyshev
expansions. The average is taken upon runs for different
parameters in the parametric set. Routineswere implemented
on a standard PC using MATLAB language. Chebyshev
approximation works about 200 times faster than the stan-
dard Monte Carlo approach. Taylor approach has an even
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Table 1: Spread prices for the benchmark parameters and several values of 𝜌, usingMonte Carlo, a Taylor second-order approximation around
𝑦
∗
= 0, and a Chebyshev approximation with 15 terms, 𝑎 = −4 and 𝑏 = 0.25.

Correlation Monte Carlo Taylor second approx. Chebyshev, 𝑛 = 15
𝜌 = −0.1 14.2921 13.8709 14.2906
𝜌 = 0.1 13.56278 14.78882 13.5649
𝜌 = −0.3 14.9734 15.0065 14.9629
𝜌 = 0.3 12.8085 12.7901 12.7903
𝜌 = −0.5 15.6273 15.9238 15.6316
𝜌 = 0.5 11.9525 11.9646 11.9566
𝜌 = −0.7 16.2421 17.5217 16.2521
𝜌 = 0.7 11.0315 11.1947 11.0529
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15th-order approximation

−50
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Figure 2: Approximations of the conditional price based on Chebyshev polynomials using the benchmark set of parameters. Clockwise, from
top left are 4th, 10th, and 15th orders, respectively. The truncation interval is [−1.5, 1.5].

lesser computational time, but for large asset correlations it
is not as accurate as the former.

Due to the steepness of the function𝐶(𝑦), the Chebyshev
approximation is sensible to the truncation interval [𝑎, 𝑏]. In
our numerical computations, we have used 𝑎 = −4 and 𝑏 =
0.25. Within the range of parameter considered, most values
of 𝑌(2)

𝑇
lie on the selected interval [𝑎, 𝑏]; hence, truncation

does not affect the mixed exponential-power function by
much. Otherwise, the approximation might be improved by
taking 𝐶(𝑎) if 𝑦 < 𝑎 and by 𝐶(𝑏) if 𝑦 > 𝑏.

The selection of 𝑎 and 𝑏 is a delicate point. A priori, there
is no theoretical limit in the length of the interval. Moreover,
a large interval will result in a better approximation. On
the flip side, the effort in the estimation of coefficients 𝑐

𝑘
in
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(a) Price computed by a Monte Carlo approach
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(b) Price computed by a Chebyshev expansion
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Figure 3: Prices of a spread contract with maturity between one month and one year and strike price between 0 and 3 dollars under the
benchmark parametric set. (c) Difference between prices obtained for both methods.

Table 2: Average routine times for Monte Carlo, Taylor, and
Chebyshev approaches on a PC using MATLAB language.

Monte Carlo Taylor second
approx. Chebyshev, 𝑛 = 15

2.048 sec. 0.0076 sec. 0.012 sec.

the polynomial expansion will increase for larger intervals.
An intuitive criterion to select the truncation values might
consist in looking at points where the function 𝐶(𝑦) flattens
out.

On the other hand, if the second asset has a high volatility,
the length of the truncating interval should increase to avoid
having too many points outside the interval.

Themethod is stable for the number of points considered
in the trapezoidal rule. Also, the approximation gets close to
the actual price after a fairly moderate number of polynomi-
als. For 𝑛 = 10, the method shows a good approximation
within an error in the order of a penny. For 𝑛 = 15 and 𝑛 = 20
the approximation improves even more. For approximations
of larger orders, the gain in precision does not compensate
the increase in computational time.

Figure 3 shows prices of a spread contract based on a
Chebyshev approximation of order 𝑛 = 15. Maturity times
range fromonemonth to one year, while strike prices go from
zero (exchange option) to 3 dollars. Results are consistent
with an increase in the contract prices with higher maturity
and their decrease with the increase of the strike price.
Figure 3(c) at the bottom, conveniently scaled, shows the
difference between both prices. The average relative error is
0.0075%.

Figure 4 shows the price of the contract as a function
of volatilities of both underlying assets. For symmetry, we
only have considered 𝜎

1
≥ 𝜎

2
with volatilities ranging within

10%–50%. Again, we can observe a remarkable agreement
between prices obtained by Monte Carlo and Chebyshev
approximation. As expected, the price of the spread increases
with the increment in the volatility.The average relative error
is 0.0023%.

6. Conclusions

We compare three methods to price spreads options under
a bivariate Black-Scholes model with correlated Brownian
motions versus a standardMonte Carlo approach. Our results
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Figure 4: Prices of a spread contract with log-return volatilities between 10% and 50% under the benchmark parametric set. (c) Difference
between prices obtained for both methods. We consider, without loss of generality, the case 𝜎

1
≥ 𝜎

2
.

show that Taylor approximation does not offer a uniform
convergence, andhence a poor result when values are far from
the point around the expansion is taken. For some values in
the parameter set, it may affect the corresponding expected
value.

The approximation based on Chebyshev polynomials
seems to be appropriate in terms of the balance offered
between accuracy and computational cost. Moreover, the
method is suitable to be implemented inmore generalmodels
provided the conditional distribution is available.
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