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Steady flow of a couple-stress fluid in constricted tapered artery has been studied under the effects of transverse magnetic field,
moving catheter, and slip velocity. With the help of Bessel’s functions, analytic expressions for axial velocity, flow rate, impedance,
and wall shear stress have been obtained. It is of interest to note that these solutions can be used for different types of fluid flow in
tubes and not only the case of blood.The effects of various geometric parameters, the parameters arising out of the fluid considered
and the magnetic field, are discussed by considering the slip velocity, the catheter velocity, and tapering angle. The study of the
above model is very important as it has direct applications in the treatment of cardiovascular diseases.

1. Introduction

Catheters are semirigid, thin tubes made frommedical grade
materials serving a broad range of functions and can be
inserted in the body to detect and identify diseases or
perform a surgical procedure inside the heart, brain, arms,
legs, or lungs [1]. But the problem is how we can know
that the catheter is going the right way or where is it. Most
hospitals use X-ray machine, mounted above the couch to
check the catheter’s progress. Low-dose X-rays are used to
monitor the progress of the catheter tip. But if we want
to navigate the catheter’s passage in real time, some ten to
twenty X-ray images are made every second. Even though
the radiation dose involved is very low, no radiation at all is
much healthier for both the patient and themedical staff who
run the risk of being exposed to the radiation on daily basis.
Researchers developed a magnetic navigation system for
medical instruments such as catheters and guide wires. The
catheters with magnetic tips are steered within the patient,
without the need for an electrophysiologist to maneuver
the catheter or guide wire placement manually. A magnetic
sensor on the tip of the medical instrument measures an

external magnetic field and reports exactly where the tip of
the instrument is located [2].

Each year, heart disease is at the top of the list of the
country’s most serious health problems. Statistics show that
cardiovascular disease in some countries, like America, is
the first health problem and the leading cause of death
(recent statistics released by the American Heart Associ-
ation). Catheters are often used to treat stenosis (partial
occlusion of the blood vessel), aneurysm (dilation of the
blood vessel resulting in stretching of the vessel wall), and
embolism (complete occlusion of a blood vessel by a blood
clot or some other particle), Figure 1. The catheters may
contain a balloon that can be used to stretch the blood
vessel or a rinsing mechanism or laser device to remove
embolism. They are also used to measure blood pressure
in situ. Sometimes a catheter is used to deliberately create
embolism, for example, to stop the flow of blood to a tumor in
order tomortify it. An aneurysm can also be treated bymeans
of embolisation [3].

The study of blood flow through different types of arteries
is of considerable importance in many cardiovascular dis-
eases; one of them is atherosclerosis. The blood flow through
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Figure 1: Catheters are used to treat stenosis (partial occlusion of
the blood vessel), aneurysm (dilation of the blood vessel resulting in
stretching of the vessel wall), and embolism (complete occlusion of a
blood vessel by a blood clot or some other particle) (a reproduction
from Delft Outlook 2004).

an artery has drawn the attention of researchers for a long
time up to now, due to its great importance in medical
sciences. Under normal conditions, blood flow in the human
circulatory system depends upon the pumping action of the
heart and this produces a pressure gradient throughout the
arterial network.

Many researchers have studied blood flow in the artery
by considering blood as either Newtonian or non-Newtonian
fluids; since blood is a suspension of red cells in plasma, it
behaves as a non-Newtonian fluid at low shear rate. In the
stenosed condition, substantial reduction in the lumen of an
artery results in size effects (ratio of haematocrit to vessel
diameter), which influences flow characteristics significantly.
To study the size effect in the fluid flow, Stokes [4], Eringen
[5], and Cowin [6] have proposed continuum model. Micro-
continuum structure of the fluid is also referred to as couple-
stress fluid which is proposed by Stokes. The foreground
of couple-stress fluid is to introduce size dependent effects
as mentioned above that is not present in other classical
viscous fluids. Because of its mathematical simplicity, it has
been widely used by number of researchers; Chaturani and
Upadhya [7] have studied the pulsatile flow of couple-stress
fluid through circular tubes. The Poiseuille flow of couple-
stress fluid has been examined by Chaturani and Rathod [8].

The application of Magnetohydrodynamics in physiolog-
ical problems is of growing interest and it is very important
from both theoretical and practical points of view.The appli-
cation of Magnetohydrodynamics in physiological problems
is of growing interest. The flow of blood can be controlled
by applying appropriate quantity of magnetic field. Kollin [9]
has coined the idea of electromagnetic field in the medical
research for the first time in the year 1936. Korchevskii and
Marochnik [10] have discussed the possibility of regulating
the blood movement in human system by applying magnetic
field. Rao and Deshikachar [11] have investigated the effect
of transverse magnetic field in physiological type of flow,
through a uniform circular pipe. Vardanyan [12] showed
that the application of magnetic field reduces the speed of
blood flow. A mathematical model for two-layer pulsatile
flow of blood with microorganism in a uniform tube under
low Reynolds number and magnetic effect has been studied
by Rathod and Gayatri [13]. Thus, all these researchers have
reported that the effect of magnetic field reduces the velocity
of blood.

There are many treatments available for diagnosing and
treating constricted vessels. Catheterization (thin, flexible
tube) is one of them, in which balloon angioplasty is a spe-
cialized form of catheterization. These procedures are widely
used in the medical field for treating the atherosclerosis.
Insertion of the catheter in a tube creates an annular region
between inner wall of the artery and outer wall of the catheter
which influences the flow field such as pressure distribution
and shear stress at the wall. In view of its immense impor-
tance, the effect of the catheter on physiological parameters
was discussed by the researchers [14, 15].

The shapes of the stenosis in the above aforesaid studies
have been considered to be radially symmetric or asymmet-
ric. But while stenosis is maturing, it may grow up in series
manner, overlapping with each other, and it would appear
like x-shape. Riahi et al. [16] observed the pressure gradient
force, flow velocity, impedance, and wall shear stress in the
overlapping stenotic zone at the critical height and at the
throats of such stenosis. Here they considered steady nature
of flow. Srivastava andMishra [17] explored the arterial blood
flow through an overlapping stenosis by treating the blood
as a Casson fluid. They figured impedance and shear stress
for different stenosis heights. Chakravarty and Mandal [18]
discussed the effects of the overlapping stenosis under low
shear rate flow.

The presence of red cell slip at the vessel wall was
recommended theoretically by Vand [19], experimentally by
Bennett [20] and Nubar [21], Chaturani and Biswas [22], and
so forth. They used slip velocity at the wall in their analysis.
Lately, Ponalagusamy [23, 25] has developed mathematical
models for blood flow through stenosed arterial segment,
by taking a slip velocity condition at the constricted wall.
Thus, it is very appropriate to consider slip velocity at the wall
of the stenosed artery in blood flow modeling. The catheter
is actually moving into the body, so it is recommended to
consider a nonnull velocity at the catheter wall; in this paper,
we consider that the catheter is moving in the 𝑧-axis with a
fixed velocity.

In the present analysis a mathematical model for the
steady blood flow through tapered stenosed artery under the
influence of a moving catheter, slip velocity, and a magnetic
field is presented by considering blood as a couple-stress fluid
in a circular tube. It is assumed that the magnetic field along
the radius of the pipe is present, no external electric field is
imposed, and magnetic Reynolds number is very small. The
motivation for studying this problem is to understand the
blood flow in an artery under the effect of magnetic field
alongside with the catheter inserted into the blood vessel
also when the fatty plaques of cholesterol and artery clogging
blood clots are formed in the lumen of the artery.

The main aim of this work is to study these phenomena,
obtain analytic expressions for axial velocity and shear stress,
and also study the effect ofmagnetic field (Hartmann number
𝐻) and couple-stress parameter (𝛽) on the velocity and the
effects of Hartmann number on the fluid velocity. Hence, the
present mathematical model gives a simple form of velocity
expression for the blood flow so that it will help not only
people working in the field of physiological fluid dynamics
but also the medical practitioners.
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2. Problem Formulation

Let us consider a two-dimensional steady flow of blood
through a rigid tapered stenosed tube by considering blood
as an electrically conducting, incompressible, couple-stress
fluid.Themagnetic field is acting along the radius of the tube.
The magnetic Reynolds number of the flow is assumed to be
sufficiently small that the inducedmagnetic and electric fields
can be neglected [24]. The catheter is assumed to be moving
in the 𝑧-axis direction.

Mathematical model of blood flow through a tapered
stenosed arterial segment in the presence of a moving
catheter and a magnetic field is to be built to study the
impact of various geometric, Hartman, and fluid parameters
on physiological parameters. The geometry of the tapered
stenosed artery is shown in Figures 2 and 3 and is expressed
mathematically with inputs from [26] as

𝑅 (𝑧) =

{
{

{
{

{

(𝑅
0
+ 𝜁𝑧)(1 −

𝜖𝑛
𝑛/(𝑛−1)

(𝑛 − 1) 𝐿
𝑛

0

(𝐿
𝑛−1

0
(𝑧 − 𝑑) − (𝑧 − 𝑑)

𝑛
)) , 𝑑 ≤ 𝑧 ≤ 𝑑 + 𝐿

0

𝑅
0
+ 𝜁𝑧, otherwise,

(1)

where 𝑅
0
is the radius of the annular region in case of

nontapered artery in the nonconstricted domain, 𝑅
𝑐
is the

radius of the catheter, 𝐿
0
is the stenosis length, 𝑑 indicates the

location of stenosis, 𝜖 is the maximum height of the stenosis
into the lumen, and 𝜁 = tan𝜙 is the tapering parameter which
represents the slope of the tapered vessel with 𝜙 being the
tapering angle. 𝜙 < 0, 𝜙 > 0, and 𝜙 = 0 are for converging
taper, diverging taper, and no-taper, respectively.

The current density J is expressed by

J = 𝜎 (E + V × B) , (2)

where E is the electric field intensity, 𝜎 is the electrical con-
ductivity,B is themagnetic flux intensity, andV is the velocity
vector. In themomentum equation, the electromagnetic force
F
𝑚
is included and is defined as

F
𝑚
= J × B = 𝜎 (E + V × B) × B. (3)

The conservation equations which govern the couple-
stress fluid flow including a Lorentz force can be written in
the following form:

∇ ⋅ V = 0,

𝜌 (V ⋅ ∇)V = −∇𝑝 + (𝜆 + 𝜇) ∇∇ ⋅ V + 𝜂Δ∇∇ ⋅ V

− 𝜂Δ
2V + 𝜇ΔV + 𝜎 (V × B) × B + 𝜌f

+

1

2

∇ × (𝜌l) ,

(4)

where Δ is the Laplacian operator. For couple-stress fluid,
shear stress tensor is not symmetric. The force stress tensor
𝜏 and the couple-stress tensor M that arises in the theory of
couple-stress fluids are given by

𝜏 = (−𝑝 + 𝜆∇V) I + 𝜇 (∇V + (∇V)𝑇) + 1
2

I

× (∇M + 𝜌l) ,

M = 𝑚I + 2𝜂 (∇ (∇ × V)) + 2𝜂 (∇ (∇ × V))𝑇 ,

(5)

where 𝜌 is the density, V is velocity vector, 𝑝 is the pressure,
𝜆 and 𝜇 are the viscosity coefficients, and 𝜂 and 𝜂 are couple-
stress coefficients. f is a body force and l is a body couple
moment. Further, the materials constants 𝜇, 𝜆, 𝜂, and 𝜂
satisfy the following inequalities:

𝜇 ≥ 0,

3𝜆 + 2𝜇 ≥ 0,

𝜂 ≥ 0,

𝜂 ≥ 𝜂

.

(6)

As the flow is steady and incompressible, in the absence
of body force and body couple moment (4) reduce to

∇ ⋅ V = 0,

𝜌 (V ⋅ ∇)V = −∇𝑝 + 𝜇ΔV − 𝜂Δ2V + 𝜎 (V × B) × B.
(7)

The flow is considered to take place under the influence of
externally applied magnetic field in axial direction 𝑧. Under
these assumptions, the governing equations may be written
in the cylindrical coordinates system as follows.

Equation of continuity is

𝜕𝑢

𝜕𝑟

+

𝑢

𝑟

+

𝜕𝑤

𝜕𝑧

= 0. (8)

Equation of radial momentum is
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−
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𝑟
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(9)
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Figure 2: 2D view of a catheterized stenosed artery.
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Figure 3: 2D view of a tapered stenosed artery.

Equation of axial momentum is
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0
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(10)

where 𝐵
0
is the external transverse magnetic field. The

nondimensional parameters are obtained as follows:

𝑧
∗
=

𝑧

𝐿
0

,

𝑟
∗
=

𝑟

𝑅
0

,

𝑤
∗
=

𝑤

𝑤
0

,

𝜖
∗
=

𝜖

𝑅
0

,

𝜁
∗
=

𝜁𝐿
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𝑅
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,

𝑢
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=

𝐿
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𝑢
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𝑝
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𝑟
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(11)

and then the dimensionless form of geometry (1) after
dropping the stars is obtained as follows:

𝑅 (𝑧) =

{
{

{
{

{

(1 + 𝜁𝑧) (1 −

𝜁𝑛
𝑛/(𝑛−1)

(𝑛 − 1)

((𝑧 − 𝛾) − (𝑧 − 𝛾)
𝑛
)) , 𝛾 ≤ 𝑧 ≤ 𝛾 + 1

1 + 𝜁𝑧, otherwise,
(12)

where 𝛾 = 𝐿
0
/𝐿
1
and 𝑤

0
is a typical axial velocity.

Also, (8)–(10), on dropping the stars, become
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where 𝜉 = 𝑅
0
/𝐿
0
, Re = 𝜌𝑢

0
𝑅
0
/𝜇 is the Reynolds number,

𝛽
2
= 𝑅
2

0
𝜇/𝜂 is the couple-stress fluid parameter, and 𝐻2 =

𝐵
2

0
𝑅
2

0
𝜎/𝜇 is the Hartmann number.

Under the assumption of mild stenosis that is 𝜖/𝑅
0
≤

1 and further assuming that 𝜉 = 𝑅
0
/𝐿
0
≤ 1, (13) get

transformed into
𝜕𝑝

𝜕𝑟

= 0, (14)
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− 𝐻
2
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(15)

Equation (15) can be written as

𝜕𝑝

𝜕𝑧

= Δ𝑤 −

1

𝛽
2
Δ
2
𝑤 −𝐻

2
𝑤, (16)

where

Δ =

𝜕
2

𝜕𝑟
2
+

1

𝑟

𝜕

𝜕𝑟

. (17)

It can be seen that the pressure variation depends only on
the axial variable.The pressure gradient 𝜕𝑝/𝜕𝑧 is produced by
the pumping action of the heart.

The corresponding nondimensional boundary conditions
are as shown below:

𝑤 = V at 𝑟 = 𝑅 (𝑧) ,

𝑤 = 𝑔 at 𝑟 = 𝑅
𝑐
,

𝜕
2
𝑤

𝜕𝑟
2
−

𝜔

𝑟

𝜕𝑤

𝜕𝑟

= 0 at 𝑟 = 𝑅 (𝑧) , 𝑟 = 𝑅𝑐,

(18)

where V represents the slip velocity at the artery wall, 𝑔
is the velocity of the moving boundary (catheter), and
𝜔 = 𝜂


/𝜂 is the parameter associated with the couple-stress

fluid. No couple-stress effects will be present if 𝜂 = 𝜂,
which is equivalent to saying that the couple-stress tensor is
symmetric.

3. Solution of the Problem

As a solution of (16) with the pressure gradient being taken as
a constant, take

−

𝜕𝑝

𝜕𝑧

= 𝑘
𝑠
. (19)

Let 𝑛2
1
+ 𝑛
2

2
= 𝛽
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1
𝑛
2

2
= 𝛽
2
𝐻
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2

,
(20)

𝑛
2

2
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𝛽
2
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4
− 4𝛽
2
𝐻
2

2

;
(21)

then, (16) is simplified to the form

(Δ − 𝑛
2

1
) (Δ − 𝑛

2

2
)𝑤 = 𝛽

2
𝑘
𝑠
. (22)

The solution of the above equation is obtained as

𝑤 = 𝑐
1
(𝑧) 𝐼
0
(𝑛
1
𝑟) + 𝑐
2
(𝑧)𝐾
0
(𝑛
1
𝑟) + 𝑐
3
(𝑧) 𝐼
0
(𝑛
2
𝑟)

+ 𝑐
4 (𝑧)𝐾0 (𝑛2𝑟) +

1

𝐻
2
𝑘
𝑠
,

(23)

where 𝐼
0
and 𝐾

0
are modified Bessel function of order zero,

first and second kinds, respectively. 𝑐
𝑖
for 𝑖 = 1, 2, 3, 4

are calculated numerically by solving the algebraic system
obtained from the boundary conditions.

Volumetric flow rate 𝑄, in steady flow through a tube,
is obtained by integrating the velocity profile over a cross
section of the tube.The nondimensional volumetric flow rate
𝑄 across the radial distance is expressed as

𝑄 = ∫

𝑅(𝑧)

𝑅
𝑐

2𝑟𝑤𝑑𝑟 (24)

which is obtained in the form 𝑄 = −2𝑘
𝑠
𝐹(𝑅
𝑐
, 𝑅(𝑧)), where

𝐹 (𝑅
𝑐
, 𝑅 (𝑧)) =

𝑑
1

𝑛
1

(𝑅𝐼
1
(𝑛
1
𝑅) − 𝑅

𝑐
𝐼
1
(𝑛
1
𝑅
𝑐
))

+

𝑑
2

𝑛
1

(𝑅
𝑐
𝐾
1
(𝑛
1
𝑅
𝑐
) − 𝑅𝐾

1
(𝑛
1
𝑅))

+

𝑑
3

𝑛
2

(𝑅𝐼
1
(𝑛
2
𝑅) − 𝑅

𝑐
𝐼
1
(𝑛
2
𝑅
𝑐
))

+

𝑑
4

𝑛
2

(𝑅
𝑐
𝐾
1
(𝑛
2
𝑅
𝑐
) − 𝑅𝐾

1
(𝑛
2
𝑅))

+

𝑅
2
− 𝑅
2

𝑐

2𝐻
2
,

(25)

where 𝑑
𝑖
= −𝑐
𝑖
/𝑘
𝑠
, for 𝑖 = 1, 2, 3, 4. The pressure drop Δ𝑝

across the stenosis between the sections 𝑧 = 0 and 𝑧 = 𝐿 is
obtained by

Δ𝑝 =

𝑄

2

∫

𝐿

0

1

𝐹 (𝑅
𝑐
, 𝑅 (𝑧))

𝑑𝑧. (26)

The resistance to the flow (impedance) is obtained from

𝑅
𝑓
=

Δ𝑝

𝑄

=

1

2

∫

𝐿

0

1

𝐹 (𝑅
𝑐
, 𝑅 (𝑧))

𝑑𝑧

=

1

2

(∫

𝑑

0

1

𝐹 (𝑅
𝑐
, 𝑅 (𝑧))

𝑑𝑧 + ∫

𝑑+𝐿
0

𝑑

1

𝐹 (𝑅
𝑐
, 𝑅 (𝑧))

𝑑𝑧

+ ∫

𝐿

𝑑+𝐿
0

1

𝐹 (𝑅
𝑐
, 𝑅 (𝑧))

𝑑𝑧) .

(27)

The dimensionless form of (20) is

𝑅
𝑓
=

Γ

2

(∫

𝛾

0

1

𝐹 (𝑅
𝑐
, 𝑅 (𝑧))

𝑑𝑧 + ∫

𝛾+1

𝛾

1

𝐹 (𝑅
𝑐
, 𝑅 (𝑧))

𝑑𝑧

+ ∫

1/𝛾

𝛾+1

1

𝐹 (𝑅
𝑐
, 𝑅 (𝑧))

𝑑𝑧) ,

(28)

where Γ = 𝐿
0
/𝑑.
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The shear stress 𝜏
𝑟𝑧
is calculated using the expression

𝜏
𝑟𝑧
= 𝜏
𝑆

𝑟𝑧
+ 𝜏
𝐴

𝑟𝑧
, (29)

where the symmetric and skew-symmetric parts of the stress
are given by

𝜏
𝑆

𝑟𝑧
= 𝜇

𝜕𝑤

𝜕𝑟

, (30)

𝜏
𝐴

𝑟𝑧
= (

𝜕𝑚
𝑟𝜃

𝜕𝑟

+

𝑚
𝑟𝜃
+ 𝑚
𝜃𝑟

𝑟

) , (31)

respectively. Here,

𝑚
𝑟𝜃
=

1

4

(

𝜂


𝑟

𝜕𝑤

𝜕𝑟

− 𝜂

𝜕
2
𝑤

𝜕𝑟
2
) ,

𝑚
𝜃𝑟
=

1

4

(

𝜂

𝑟

𝜕𝑤

𝜕𝑟

− 𝜂
 𝜕
2
𝑤

𝜕𝑟
2
) .

(32)

Hence, the dimensionless shear stress for the artery is
given by

𝜏
𝑟𝑧

= 𝑛
1
(𝑐
1
𝐼
1
(𝑛
1
𝑟) − 𝑐
2
𝐾
1
(𝑛
1
𝑟)) (1 −

𝑛
2

1

4 (𝑛
2

1
+ 𝑛
2

2
)

)

+ 𝑛
2
(𝑐
3
𝐼
1
(𝑛
2
𝑟) − 𝑐
4
𝐾
1
(𝑛
2
𝑟)) (1 −

𝑛
2

2

4 (𝑛
2

1
+ 𝑛
2

2
)

) .

(33)

Thus, the shear stress at the wall can be computed from
(33) by taking 𝑟 = 𝑅(𝑧).

4. Results and Discussion

The study of blood flow through catheterized stenosed
tapered artery with the presence of a transverse magnetic
field involves the integration of various geometric and fluid
variables, which influences the physiological parameters such
as the fluid velocity, rate flow, and wall shear stress. Closed
form solutions are obtained in terms of modified Bessel’s
functions.The physiological dimensionless quantities such as
the fluid velocity in the stenosis region and the wall shear
stress at the maximum height of the stenosis are computed
numerically for various values of the fluid and geometric
parameters using the program MATLAB. The parameters
considered are 𝑛 (shape parameter), 𝜁 (tapered parameter),
𝑅
𝑐
(catheter radius), Γ (stenosis length), 𝛽 (couple-stress fluid

parameter),𝐻 (the Hartmann number), V (slip velocity), and
𝑔 (catheter wall velocity). The obtained results are analyzed
graphically. The results obtained in this study are in good
agreement with those reported in the literature.

Figures 4–6 illustrate the variation of axial velocity profile
for different values of 𝑛, 𝜁, and 𝛽. It is observed from Figure 4
that the velocity profile increases for increasing the shape
parameter and that actually this occurred due to the change
of the stenosis height. It is observed from Figure 5 that the
velocity increases by the increase in the tapered parameter
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Figure 4: Variation of axial velocity𝑤with respect to 𝑛when 𝜁 = 0,
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𝜁 and the same goes for the couple-stress fluid parameter 𝛽,
Figure 6. It is to be noted as𝛽 → ∞, the properties of couple-
stress in the fluid vanish and hence behave like a Newtonian
fluid. Hence it is understood that the velocity is low in couple-
stress fluid when compared to that of Newtonian fluid.

In general, from Figure 7, it can be observed that the
axial velocity is decreasing. The effect of the Hartmann
number 𝐻 on the axial velocity is shown in Figure 8. By
observing Figure 8, the fluid velocity is decreasing as the
Hartmann number is increasing. Further, as 𝐻 → 0, the
Hartmann number loses its properties and behaves like a
normal blood flow without any magnetic field applied to it.
We have concluded that the application of magnetic field
reduces the speed of blood flow and that meets the results of
Ponalagusamy and Tamil Selvi [25], also indicating that the
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wall shear stress increases when we increase the Hartmann
number. The influence of catheter radius 𝑅

𝑐
on the axial

velocity is directly proportional as shown in Figure 9. From
the above result, we understand that as the catheter radius
increases, the annular region gets narrowed, which leads to
the rise in the obstruction to the flow.

The axial velocity of the blood is high in case of high slip
velocity V or catheter velocity 𝑔; it is observed that the slip
velocity at the boundary facilitates the fluid flow and the same
goes for the moving catheter, Figures 10 and 11.

The shear stress at the wall is a significant physiological
parameter to be considered in the blood flow study. Precise
predictions of the distribution of the shear stress at the wall
are particularly useful in assimilating the effect of blood flow
in arteries in general. The shear stress at the wall is calculated
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Figure 9: Variation of axial velocity𝑤with respect to𝑅
𝑐
when 𝑛 = 5,

𝜁 = 0, 𝛽 = 5, 𝜖 = 0.2, V = 0.01, 𝑔 = 0.03, and𝐻 = 1.

at the maximum height of the stenosis. When we increase
the height of the stenosis 𝜖, the wall shear stress increases,
Figure 15. Furthermore, it is observed that the shear stress
along the wall is reaching the maximum at the throat of the
stenosis.

The effect of the Hartmann number 𝐻 on the shear
stress is shown in Figure 16. As observed from Figure 12,
the shear stress at the wall is independent of the shape
parameter 𝑛 as pointed out by Ponalagusamy and Tamil Selvi
[25]. The variation of the shear stress at the wall as the
tapered parameter increases is depicted in Figure 13.Here, the
shear stress at the wall is more significant in the untapered
artery compared with the tapered artery which is diverging.
Further, the converging tapered artery possesses higher wall
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shear stress than the untapered and tapered artery which is
diverging.

The slip velocity at the wall of the stenosed artery and
the moving catheter significantly influence the shear stress
at the wall, which is noticed from Figures 18 and 19. Here, it
is observed that gain in slip velocity (resp., moving catheter)
reduces the shear stress at the wall. The influence of catheter
radius on shear stress at the wall is shown in Figure 17. The
increasing catheter radius narrows down the lumen of the
artery thus resulting in the higher values of shear stress at
the wall. As couple-stress fluid parameter 𝛽 increases, the
shear stress at the wall decreases. This behavior is shown in
Figure 14. It is observed that the theoretical distribution of
shear stress along the wall reaches amaximum at throat of the
stenosis and then rapidly decreases in the diverging section.
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This behavior is the same in terms of the change in both the
radius of the catheter𝑅

𝑐
and the couple-stress fluid parameter

𝛽whose behavior is depicted graphically in Figures 17 and 14,
respectively.

5. Conclusion

A mathematical model has been built to discuss the flow of
blood through a catheterized asymmetric tapered stenosed
artery with slip velocity at the stenosed wall and a moving
catheter. Closed form solution is obtained and the effects of
various geometric, fluid parameters andmagnetic field on the
axial velocity of the blood and the shear stress at the wall are
studied.
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There is special importance of couple-stress fluids com-
pared to the Newtonian fluids because of their wide existence
such as oil, blood, and polymeric solutions. In view of what
is mentioned above, an analytic approach was followed to
solve themathematicalmodel of blood flow through stenosed
tapered artery under the assumption of mild stenosis. The
resultant observations are summarized as follows:

(i) As the height and the stenosis length are increasing,
the obstruction to the flow of blood is increasing.

(ii) Converging tapered artery hasmore shear stress at the
wall than the nontapered and the diverging tapered
artery.
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(iii) Diverging tapered artery has least shear stress at the
wall.

(iv) The increment in theHartmannnumber enhances the
blood velocity and wall shear stress.

(v) The axial velocity is decreasingwhile the couple-stress
fluid parameters 𝛽 and the height of the stenosis 𝜖 are
increasing.

(vi) Three different values of the slip velocity and the
velocity of the catheter at the arterial boundary and
the catheter wall are considered; they are showing a
significant influence on the shear stress at the wall and
the axial velocity.

The modeling and simulation of the above phenomena
are very realistic and are expected to be very useful in
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predicting the behavior of physiological parameters in the
diagnosis of various arterial diseases.

Symbols

B: Magnetic flux intensity
𝐵
0
: External transverse

magnetic field
𝑐
𝑖
, 𝑖 = 1, . . . , 4: Constants of integration
𝑑: Location of the stenosis
𝑑
𝑖
= −𝑐
𝑖
/𝑘
𝑠
, 𝑖 = 1, . . . , 4: Defined constants

E: Electric field intensity
f : Body force
F
𝑚
: Electromagnetic force

𝑔: Velocity of the moving
catheter

𝐻 = 𝐵√𝑅
2

0
𝜎/𝜇: Hartmann number

𝐼
0
: Modified Bessel function of

the first kind and order
zero

J: Current density
𝐾
0
: Modified Bessel function of

the second kind and order
zero

l: Body couple moment
𝐿
0
: Stenosis length

M: Couple-stress tensor

𝑛
1
= √(𝛽

2
+ √𝛽
4
− 4𝛽
2
𝐻
2
)/2: Defined constant

𝑛
2
= √(𝛽

2
− √𝛽
4
− 4𝛽
2
𝐻
2
)/2: Defined constant

𝑝: Pressure
𝑄: Volumetric flow rate
𝑅
𝑐
: Radius of the

nonconstricted region
Re = 𝜌𝑢

0
𝑅
0
/𝜇: Reynolds number

𝑅(𝑧): Radius of the tube
𝑢: Radial velocity
V: Velocity vector
V: Slip velocity
𝑤: Axial velocity
𝑤
0
: Typical axial velocity

𝛽 = 𝑅
0
√𝜇/𝜂: Couple-stress fluid

parameter
Δ = 𝜕

2
/𝜕𝑟
2
+ (1/𝑟)(𝜕/𝜕𝑟): Laplacian operator

𝜖: Maximum height of the
stenosis

𝜂, 𝜂
: Couple-stress coefficients

Γ = 𝐿
0
/𝑑: Defined constant

𝛾 = 𝐿
0
/𝐿
1
: Defined constant

𝑅
𝑓
: Resistance to the flow

𝜆, 𝜇: Viscosity coefficients
𝜔 = 𝜂


/𝜂: Parameter associated with

the couple-stress fluid
𝜙: Tapering angle
𝜌: Density of the fluid
𝜎: Electrical conductivity
𝜏: Shear stress tensor
𝜏
𝑟𝑧
: Shear stress

𝜏
𝐴

𝑟𝑧
: Skew-symmetric part of

shear stress
𝜏
𝑆

𝑟𝑧
: Symmetric part of shear

stress
𝜉 = 𝑅
0
/𝐿
0
: Defined constant

𝜁: Tapering parameter.
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