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This paper presents a theoretical analysis and derives the amplifier output noise power spectral density result in a closed formwhen
the input to the amplifier is a band limited Gaussian noise. From the computed power spectral density the NPR is evaluated by
a simple subtraction. The method can be applied to any amplifier with known input-output characteristics. The method may be
applied to analyze various other important characteristics of the nonlinear amplifier such as spectral regrowth that refers to the
spreading of the signal bandwidth when a band limited signal is inputted to the nonlinear amplifier. The paper presents numerical
results on the NPR as a function of the noise bandwidth, depth level of the notch, and the output power back-off obtained from the
analysis presented in the paper.

1. Introduction

The power amplifier is one of the most important subsystems
of modern communication systems [1–15]. In the case of
satellite downlinks, the power efficiency of the high-power
amplifiers (HPAs) is very important as the requirements on
the power directly translate into the size, weight, and cost of
the satellite payload. As the power efficiency is relatively high
when the amplifier is operated near the saturation region, in
the case of satellite links, the HPA by necessity needs to be
operated in such a region. However, the nonlinearity of the
amplifier in the near saturation region introduces consider-
able distortion in the signal to be amplified. As the output
power back-off is reduced the signal to distortion power
ratio at the amplifier output is correspondingly reduced.
This places a serious restriction on the amount of back-
off that needs to be introduced resulting in a loss of the
available output power and equally importantly in a reduced
power conversion efficiency thus resulting in an increased
demand on the D.C. power which in case is provided by solar
panels and thus has a direct implication on the size, weight,
and cost of the satellite payload. In wireless communication
systems any reduction in the power conversion efficiency
results in a corresponding reduction in the battery life at

the user terminal. It is thus extremely important to analyze
the performance when the power amplifier is operated with
relatively small output power back-off thereby exhibiting
significant nonlinear behavior.

Among the various methods to assess the performance
of an amplifier is the evaluation of the signal to distortion
ratio at the amplifier output as a function of the amplifier
output power back-off. In case of digitally modulated signals
at the amplifier input in the digital communication systems,
one of the most important performance measures is in terms
of the bit error rate (BER) achieved in the presence of both
the distortion introduced by the amplifier and any channel
interference plus noise. However, both these measures are
functions of the detailed modulation techniques, multiple
accessing ormultiplexing techniques, and the number of user
signals at the amplifier input in addition to the amplifier
input-output characteristics and the output power back-
off. The various performance measures may be obtained
by detailed mathematical analysis, computer simulations,
and/or experimental measurements. Both the simulations
and experimental measurements are, in general, very time
consuming and expensive while the analysis methods are
generally difficult and are for more specific cases. For exam-
ple, detailed analysis has been presented by the author for
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the case of the code division multiple accessing (CDMA)
[1–3] with an approximate analysis based on the Gaussian
assumption on the nonlinear distortion appearing in earlier
literature [4–6]. An infinite series result for the output of a
nonlinear device in terms of the autocorrelation function of
an input Gaussian process is presented in [7, 8]. An analysis
for the distortion effects of the nonlinear amplifier on OFDM
signals appears in [9, 10]. Extensive relatively earlier literature
exists on the effects of the nonlinear amplifier on FDMA
signals as in [13–17] and their references.

A performance characterization of the nonlinear power
amplifiers that is independent of the specifics of the amplifier
input signal, such as the multiple accessing and modulation
techniques used, the number of users, and the relative power
level of the various user signals, is commonly used in the
practice.Thismeasure is termed the noise power ratio (NPR).
The noise power ratio is measured by inputting the amplifier
with a white noise of bandwidth equal to the specified signal
bandwidth. A notch in the input noise band is created with
the bandwidth of the notch much smaller than the noise
bandwidth. At the output of the amplifier one measures the
noise power spectral density both inside and outside the
notch with the ratio of the two by definition equal to the
amplifier NPR that is a function of the total output noise
power or the output power back-off.

While the NPRmeasurements are relatively less intensive
compared to some other performance measurements such as
the BER measurements, nevertheless these do require exten-
sive measurements as well, in which from the measurements
alone it is not possible to predict the performance for the
amplifiers other than the one involved in themeasurement; in
other words it does not provide anymeasure of the sensitivity
of the NPR to the amplifier input-output characteristics and
does not address the validation issues of the experimental
data. Thus it is of great interest to be able to evaluate the
amplifier NPR by independent analytical means. This paper
presents a theoretical analysis of the NPR for the nonlinear
amplifier that is also applicable to any other nonlinear
devices.

This paper presents a theoretical analysis and derives
the amplifier output noise power spectral density result in
a closed form when the input to the amplifier is a band
limited noise with a notch in the spectral band. From the
computed noise power spectral density (PSD) the NPR is
evaluated as the ratio of the PSDs evaluated outside and inside
of the notch. The method can be applied to any amplifier
with known input-output characteristics. The paper presents
numerical results on the NPR as a function of the noise
bandwidth, depth level of the notch, and the output power
back-off obtained from the analysis presented in the paper.

2. Amplifier Model

It is assumed in this analysis that the amplifier output𝑦(𝑡) can
be expressed in terms of its input bandpass process 𝑢(𝑡) via its
input-output characteristic function 𝐹(𝑢) as

𝑦 (𝑡) = 𝐹 (𝑢 (𝑡)) . (1)

With a power series expansion of 𝐹(𝑢) about 𝑢 = 0, the
amplifier output 𝑦(𝑡)may be expressed in the following series
form:

𝑦 (𝑡) = 𝐾1𝑢 (𝑡) + 𝐾3𝑢3 (𝑡) + 𝐾5𝑢5 (𝑡) + ⋅ ⋅ ⋅ , (2)

where the coefficients 𝐾1, 𝐾3, . . . may be obtained from the
amplifier characteristics using a Taylor series expansion or by
a finite degree polynomial approximation [1].

3. Correlation Function of the Amplifier
Output Process

The correlation function of the amplifier output process
denoted by 𝑅𝑦(𝜏)may be obtained from (2) as

𝑅𝑦 (𝜏) = 𝐸 [𝑦 (𝑡) 𝑦 (𝑡 + 𝜏)]
= 𝐸 [{𝐾1𝑢 (𝑡) + 𝐾3𝑢3 (𝑡) + ⋅ ⋅ ⋅}
⋅ {𝐾1𝑢 (𝑡 + 𝜏) + 𝐾3𝑢3 (𝑡 + 𝜏) + ⋅ ⋅ ⋅}] ,

(3)

where 𝐸 denotes the expected value operator. Carrying out
the multiplication of the two series in (3) and grouping the
terms of the same order yield

𝑅𝑦 (𝜏) = 𝐾21𝐸 [𝑢 (𝑡) 𝑢 (𝑡 + 𝜏)]
+ {𝐾1𝐾3𝐸 [𝑢 (𝑡) 𝑢3 (𝑡 + 𝜏)]
+ 𝐾1𝐾3𝐸 [𝑢3 (𝑡) 𝑢 (𝑡 + 𝜏)]}
+ {𝐾1𝐾5𝐸 [𝑢 (𝑡) 𝑢5 (𝑡 + 𝜏)]
+ 𝐾23𝐸 [𝑢3 (𝑡) 𝑢3 (𝑡 + 𝜏)]
+ 𝐾1𝐾5𝐸 [𝑢5 (𝑡) 𝑢 (𝑡 + 𝜏)]} + ⋅ ⋅ ⋅ .

(4)

Denoting by 𝜉(𝑡) the normalized process 𝑢(𝑡)/𝜎 with 𝜎2
denoting the variance of the process 𝑢(𝑡), the correlation
function 𝑅𝑦(𝜏)may be expressed as

𝑅𝑦 (𝜏)
= 𝜎2𝐾21𝐸 [𝜉𝜉𝜏] + 𝜎4 {𝐾1𝐾3𝐸 [𝜉𝜉3𝜏] + 𝐾1𝐾3𝐸 [𝜉3𝜉𝜏]}
+ 𝜎6 {𝐾1𝐾5𝐸 [𝜉𝜉5𝜏] + 𝐾23𝐸 [𝜉3𝜉3𝜏] + 𝐾1𝐾5𝐸 [𝜉5𝜉𝜏]}
+ ⋅ ⋅ ⋅ ,

(5)

where 𝜉 and 𝜉𝜏 denote 𝜉(𝑡) and 𝜉(𝑡 + 𝜏), respectively, for the
convenience of notations. Assuming that 𝑢(𝑡) is a zero mean
process, the moments 𝐸[𝜉𝑛𝜉𝑚𝜏 ] for any pair of nonnegative
integers may be obtained by the following integral:

𝐸 [𝜉𝑛𝜉𝑚𝜏 ] = ∫∞
−∞

∫∞
−∞

𝜉𝑛1𝜉𝑚2 𝑓 (𝜉1, 𝜉2) 𝑑𝜉1𝑑𝜉2. (6)

In (6) the function𝑓(𝜉1, 𝜉2) denotes the joint pdf (probability
density function) of the random variables 𝜉 and 𝜉𝜏 or by
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definition the two-dimensional pdf of the process 𝜉(𝑡). For
the case of Gaussian process assumed in this report, the joint
pdf 𝑓(𝜉1, 𝜉2) is given by

𝑓 (𝜉1, 𝜉2) = 1
2𝜋√1 − 𝜌2 exp{−

𝜉21 − 2𝜌𝜉1𝜉2 + 𝜉221 − 𝜌2 } , (7)

where 𝜌 denotes the correlation coefficient between 𝜉 and𝜉𝜏. In general 𝜌 is a function of 𝜏; however for notational
convenience the argument 𝜏 of 𝜌 has been dropped in (7).
Following the approach of [18, 19], the function 𝑓(𝜉1𝜉2) is
expressed in terms of the following series so as to evaluate
the integral in (6) in closed form:

𝑓 (𝜉1, 𝜉2) =
∞∑
𝑝=0

𝑔𝑝 (𝜉1) 𝑔𝑝 (𝜉2) 𝜌
𝑝

𝑝! . (8)

In (8) the functions 𝑔𝑝(𝑥) are given by

𝑔0 (𝑥) = 1
√2𝜋exp(−

𝑥2
2 ) ;

𝑔𝑝 (𝑥) = 𝑑𝑝𝑔0 (𝑥)𝑑𝑥𝑝 ; 𝑝 = 1, 2, . . . .
(9)

In order to obtain closed form expressions for the desired
moments, the functions 𝑔𝑝(𝑥) are related to the Hermite
polynomials. For example,

𝑑𝑛
𝑑𝑧𝑛 {exp(

𝑧2
2 )} = 𝐶𝑛 (𝑧) exp(𝑧

2

2 ) ;
𝑛 = 0, 1, 2, . . . ,

𝐶𝑛 (𝑧) = 𝑧𝐶𝑛−1 (𝑧) + (𝑛 − 1) 𝐶𝑛−2 (𝑧) ;
𝑛 = 2, 3, . . . ,

𝐶0 (𝑧) = 1;
𝐶1 (𝑧) = 𝑧.

(10)

In (10), 𝐶𝑛(𝑧) denotes the Hermite polynomial of degree 𝑛.
Substituting 𝑧 = 𝑗𝑥 with 𝑗 = √−1, one obtains

𝑑𝑛
𝑑𝑧𝑛 {exp(−

𝑥2
2 )} = 𝑗𝑛𝐶𝑛 (𝑗𝑥) exp(−𝑥

2

2 ) ;
𝑛 = 0, 1, 2, . . . ,

(11)

𝐶𝑛 (𝑗𝑥) = 𝑗𝑥𝐶𝑛−1 (𝑗𝑥)
+ (𝑛 − 1) 𝐶𝑛−2 (𝑗𝑥) ;

𝑛 = 2, 3, . . . ;
𝐶0 (𝑗𝑥) = 1;
𝐶1 (𝑧) = 𝑗𝑥.

(12)

Multiplication on both sides of (12) by 𝑗𝑛 exp(−𝑥2/2)/√2𝜋
and application of (11) result in the following desired recursive

expression for the functions 𝑔𝑝(𝑥) that are the derivatives of
the function 𝑔0(𝑥) = (1/√2𝜋)exp(−𝑥2/2);
𝑔𝑝 (𝑥) = −𝑥𝑔𝑝−1 (𝑥) − (𝑝 − 1) 𝑔𝑝−2 (𝑥) ;

𝑝 = 1, 2, . . . ;
𝑔0 (𝑥) = exp−𝑥2/2√2𝜋 .

(13)

Now from (6) and (8), one obtains

𝐸 [𝜉𝑛𝜉𝑚𝜏 ] =
∞∑
𝑖=0

𝜂𝑛,𝑖𝜂𝑚,𝑖 𝜌
𝑖 (𝜏)
𝑖! (14)

with

𝜂𝑘,𝑖 = ∫∞
−∞

𝑥𝑘𝑔𝑖 (𝑥) 𝑑𝑥; 𝑘, 𝑖 = 0, 1, 2, . . . . (15)

Multiplying both sides of (13) by 𝑥𝑘 and integration over the
interval (−∞,∞) and using (15) yield the following recursive
expression for 𝜂𝑘,𝑖:

𝜂𝑘,𝑖 = −𝜂𝑘+1,𝑖−1 − (𝑖 − 1) 𝜂𝑘,𝑖−2; 𝑖, 𝑘 = 1, 2, . . . , (16)

𝜂0,0 = 1;
𝜂0,𝑖 = 0 for 𝑖 > 0. (17)

The coefficients 𝜂𝑘,0 which are the moments of the Gaussian
distribution can be obtained by direct integration and are
given by

𝜂𝑘,0 = {{{
1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (𝑘 − 1) ; 𝑘 even; 𝑘 > 0
0; 𝑘 odd. (18)

With the initial conditions in (17) and (18), 𝜂𝑘,𝑖 for 𝑖, 𝑘 > 0may
be computed from (16). For example, from (16) 𝜂𝑘,1 = −𝜂𝑘+1,0
and in view of (17) one obtains

𝜂𝑘,1 = {{{
−1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ 𝑘; 𝑘 odd; 𝑘 > 0
0; 𝑘 odd. (19)

Similarly, from (16), (18), and (19)

𝜂𝑘,2 = −𝜂𝑘+1,1 − 𝜂𝑘,0
𝜂𝑘,2 = {1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (𝑘 + 1)} − {1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (𝑘 − 1)}

= {1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (𝑘 − 1)} {(𝑘 + 1) − 1}
= 1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (𝑘 − 1) ⋅ 𝑘; 𝑘 even; 𝑘 > 0,

𝜂𝑘,2 = 0; 𝑘 odd.

(20)

In general, 𝜂𝑘,𝑖 have the following properties which follow
from the recursion (15)–(17):

(i)

𝜂𝑘,𝑖 = 0 for 𝑖 > 𝑘. (21a)
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Table 1: Sample values of the coefficients 𝜂𝑘,𝑖.
𝑘 𝑖

0 1 2 3 4 5
0 1 0 0 0 0 0
1 0 −1 0 0 0 0
2 1 0 2 ⋅ 1 0 0 0
3 0 −3 ⋅ 1 0 −3 ⋅ 2 ⋅ 1 0 0
4 3 ⋅ 1 0 4 ⋅ 3 ⋅ 1 0 4 ⋅ 3 ⋅ 2 ⋅ 1 0
5 0 −5 ⋅ 3 ⋅ 1 0 −5 ⋅ 4 ⋅ 3 ⋅ 1 0 −5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1

(ii)

For 𝑖 ≤ 𝑘 the only nonzero elements are those

for which (𝑘 − 𝑖) is an even integer. (21b)

(iii) The nonzero elements 𝜂𝑘,𝑖 are given by

𝜂𝑘,𝑖 = (−1)𝑘 {𝑘 ⋅ (𝑘 − 1) ⋅ ⋅ ⋅ (𝑘 − 𝑖 + 1)}
⋅ {(𝑘 − 𝑖 − 1) ⋅ (𝑘 − 𝑖 − 3) ⋅ ⋅ ⋅ 1} . (21c)

In (21a)–(21c) the first bracketed term has 𝑖 factors and is
equal to 1 for 𝑖 = 0, with the second bracketed term having(𝑖 − 𝑘)/2 factors. The value of 𝜂𝑘,𝑖 can be computed using (i)–
(iii) for any integers 𝑘, 𝑖, and someof these terms are presented
in Table 1.

In view of (21a)–(21c), the expression in (14) may be
modified to that in (25)

𝐸 [𝜉𝑛𝜉𝑚𝜏 ] =
min(𝑛,𝑚)∑
𝑖=0

𝜂𝑛,𝑖𝜂𝑚,𝑖 𝜌
𝑖 (𝜏)
𝑖! . (22)

Equation (22) also shows that the expression for 𝐸[𝜉𝑛𝜉𝑚𝜏 ] is
symmetric in 𝑛 and 𝑚 as expected from the stationarity of
the process 𝜉(𝑡). For the case of 𝑛 = 𝑚, with 𝑛 being odd, the
expression for 𝐸[𝜉𝑛𝜉𝑚𝜏 ] reduces to

𝐸 [𝜉𝑛𝜉𝑛𝜏] =
𝑛∑
𝑖=1,
𝑖: odd

𝜂2𝑛,𝑖 𝜌
𝑖 (𝜏)
𝑖! . (23)

For example,

𝐸 [𝜉3𝜉3𝜏] = 𝜂23,1𝜌 (𝜏) + 𝜂23,3𝜌3 (𝜏)3! = 9𝜌 (𝜏) + 6𝜌3 (𝜏) , (24a)

𝐸 [𝜉5𝜉5𝜏] = 𝜂25,1𝜌 (𝜏) + 𝜂25,3𝜌3 (𝜏)3! + 𝜂25,5𝜌5 (𝜏)5!
= 225𝜌 (𝜏) + 600𝜌3 (𝜏) + 120𝜌5 (𝜏) .

(24b)

From (22)

𝐸 [𝜉3𝜉𝜏] = 3𝜌 (𝜏) ;
𝐸 [𝜉5𝜉𝜏] = 15𝜌 (𝜏) . (25)

Substitution of the expressions (24a)–(25) for 𝐸[𝜉𝑛𝜉𝑚𝜏 ] in (5)
yields the following expression for 𝑅𝑦(𝜏):

𝑅𝑦 (𝜏) = 𝛼1,1𝜌 (𝜏) 𝜎2 + [𝛼3,1𝜌 (𝜏) + 𝛼3,3𝜌3 (𝜏)] 𝜎4
+ [𝛼5,1𝜌 (𝜏) + 𝛼5,3𝜌3 (𝜏) + 𝛼5,5𝜌5 (𝜏)] 𝜎6
+ ⋅ ⋅ ⋅ ,

(26)

where the first few coefficients 𝛼𝑖,𝑗 are evaluated in (27) and
are given by

𝛼1,1 = 𝐾21 ,
𝛼3,1 = 6𝐾1𝐾3;
𝛼3,3 = 0,
𝛼5,1 = [30𝐾1𝐾5 + 9𝐾23] ;
𝛼5,3 = 6𝐾23 ;
𝛼5,5 = 0.

(27)

4. Power Spectral Density of the Amplifier
Output Process

The power spectral density 𝑃𝑦(𝑓) of the amplifier output
process is obtained by taking the Fourier transform on both
sides of (26) which results in

𝑃𝑦 (𝑓)
= 𝛼1,1𝑃𝜉 (𝑓) 𝜎2 + [𝛼3,1𝑃𝜉 (𝑓) + 𝛼3,33𝑃𝜉 (𝑓)] 𝜎4
+ [𝛼5,1𝑃𝜉 (𝑓) + 𝛼5,33𝑃𝜉 (𝑓) + 𝛼5,55𝑃𝜉 (𝑓)] 𝜎6
+ ⋅ ⋅ ⋅ .

(28)

In (28) 𝑘𝑃𝜉(𝑓) for any positive integer 𝑘 denotes the 𝑘 times
convolution of 𝑃𝜉(𝑓) with itself 𝑘 times. Thus

2𝑃𝜉 (𝑓) = 𝑃𝜉 (𝑓) ⊗ 𝑃𝜉 (𝑓) ;
3𝑃𝜉 (𝑓) = 𝑃𝜉 (𝑓) ⊗ 𝑃𝜉 (𝑓) ⊗ 𝑃𝜉 (𝑓) ;

...
(29)

where ⊗ denotes convolution. Direct convolution of the PSD
of the input bandpass process 𝑃𝜉(𝑓)with itself multiple times
results in spectral zones centered around frequencies that
are multiples of the input signal center frequency 𝑓𝑐. In
most applications including the NPR evaluation, only the
PSD in the fundamental zone is of interest. In this case the
convolution process can be significantly simplified using the
following approach. The correlation function of the input
bandpass process 𝜌(𝜏) is written as

𝜌 (𝜏) = 𝜌𝑏 (𝜏) cos (2𝜋𝑓𝑐𝜏) , (30)
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where 𝜌𝑏(𝜏) denotes the autocorrelation function of the
baseband process 𝜉𝑏(𝑡) corresponding to the input process𝜉(𝑡) by

𝜉 (𝑡) = √2𝜉𝑏 (𝑡) cos (2𝜋𝑓𝑐𝑡) . (31)

From (30) the PSD of 𝜉𝑏(𝑡) denoted by 𝑃𝜉𝑏(𝑓) is related to𝑃𝜉(𝑓) by
𝑃𝜉 (𝑓) = 1

2𝑃𝜉𝑏 (𝑓 − 𝑓𝑐) + 1
2𝑃𝜉𝑏 (𝑓 + 𝑓𝑐) . (32)

It is also apparent from (30) or (32) that 𝐸[𝜉2] = 𝐸[𝜉2𝑏].
It follows from (30) that

𝜌3 (𝜏) = 𝜌3𝑏 (𝜏) cos3 (2𝜋𝑓𝑐𝜏)
= 𝜌3𝑏 (𝜏) [0.75 cos (2𝜋𝑓𝑐𝜏) + 0.25 cos (6𝜋𝑓𝑐𝜏)] .

(33)

Taking Fourier transform on both sides of (33) it follows
that the one-sided fundamental zone component of the PSD
3
𝑠
𝑃𝜉(𝑓) is given by

3

𝑠
𝑃𝜉,𝑓𝑧 (𝑓) = 0.75 3𝑃𝜉𝑏 (𝑓 − 𝑓𝑐) . (34)

Thus except for the constant 0.75, the one-sided fundamental
zone component of the PSD 3

𝑠
𝑃𝜉(𝑓) is obtained by sim-

ply shifting the corresponding (two-sided) baseband PSD
3𝑃𝜉𝑏(𝑓), where

2𝑃𝜉𝑏 (𝑓) = 𝑃𝜉𝑏 (𝑓) ⊗ 𝑃𝜉𝑏 (𝑓) ;
3𝑃𝜉𝑏 (𝑓) = 𝑃𝜉𝑏 (𝑓) ⊗ 𝑃𝜉𝑏 (𝑓) ⊗ 𝑃𝜉𝑏 (𝑓) ;

...
(35)

In general the one-sided fundamental zone component of the
PSD 𝑘
𝑠
𝑃𝜉(𝑓) is obtained by simply shifting the corresponding

(two-sided) baseband PSD 𝑘𝑃𝜉𝑏(𝑓) by
𝑘

𝑠
𝑃𝜉,𝑓𝑧 (𝑓) = 𝑎𝑘,1𝑘𝑃𝜉𝑏 (𝑓 − 𝑓𝑐) ; 𝑘 = 1, 3, 5, . . . , (36)

where 𝑎𝑘,1 is the coefficient of cos(2𝜋𝑓𝑐𝑡) in the trigonometric
expansion of cos𝑘(2𝜋𝑓𝑐𝑡) in

cos𝑘 (2𝜋𝑓𝑐𝑡) = 𝑎𝑘,1 cos (2𝜋𝑓𝑐𝑡) + 𝑎𝑘,3 cos (6𝜋𝑓𝑐𝑡)
+ ⋅ ⋅ ⋅ . (37)

These coefficients 𝑎𝑘,𝑗 for any odd integer can be obtained by
the following recursion [1]:

𝑎𝑘+2,1 = 0.75𝑎𝑘,1 + 0.25𝑎𝑘,3;
𝑎𝑘+2,𝑗 = 0.5𝑎𝑘,𝑗 + 0.25𝑎𝑘,𝑗−2;

1 < 𝑗 ≤ 𝑘; 𝑗: odd;
𝑎𝑘+2,𝑘+2 = 0.25𝑎𝑘,𝑘

(38)

with 𝑎1,1 = 1 and 𝑎𝑘,𝑗 = 0 for 𝑗 > 𝑘.

In summary the PSD of the amplifier output fundamental
zone component of the bandpass power spectral density
𝑘
𝑠
𝑃𝜉(𝑓) is obtained by first obtaining the corresponding base-
band (two-sided) power spectral density 𝑃𝜉𝑏(𝑓) by shifting
the one-sided PSD 2𝑃𝜉(𝑓) to 𝑓 equal to 0, convolving 𝑃𝜉𝑏(𝑓)
with itself 𝑘 times, and scaling the result of convolution by the
constant 𝑎𝑘,1 and finally shifting the result to the input signal
center frequency𝑓𝑐.This process also results in a considerable
simplification in the actual numerical evaluation of the
result.

5. Numerical Results

This section presents some numerical results obtained by
using the analysis presented in the paper. The analytical
results have been encoded in the form of a relatively simple
MATLAB program that can provide the result for any speci-
fied amplifier input-output characteristics, notch bandwidth
and depth, and the output power back-off. The MATLAB
program then generates the desired numerical result almost
instantaneously.

The first example generates the various terms 𝑘𝑃(𝜉)
appearing in the expression for the amplifier output power
spectral density 𝑃𝑦(𝑓) in (28) for various values of the integer𝑘 for the case wherein the input is a band limited white
noise with a specified notch in the spectral band of the input
noise. Thus the result of Example 1 may be applied to any
specific nonlinear amplifier.The second example considers an
example amplifier input-output characteristics and evaluates
the noise power ratio (NPR) as a function of the output back-
off using the result of Example 1. The NPR ratio is the ratio
of the maximum PSD outside and in the vicinity of the notch
band and the PSD in the center of the notch band at the output
of the nonlinear amplifier.

Example 1. Theprocess 𝜉(𝑡) is a band limitedwhite noise with
power 𝜎2𝜉 equal to 1W and bandwidth 𝐵𝑇 equal to 100MHz
and has a notch of bandwidth 2MHz and 80 dB depth. In the
example, the power level is adjusted to 1W after the notch.
Figure 1 shows the one-sided PSD 2𝑃𝜉(𝑓) shifted to𝑓 equal to
0. The figure also plots the corresponding fundamental zone
component of the bandpass power spectral density 𝑘𝑃𝜉(𝑓) for
the order 𝑘 equal to 3, 5, and 7. All the PSDs in the figure are
the one-sided PSDs shifted to𝑓 equal to 0. Figure 2 shows the
corresponding result in dB scale over a 4MHz band around
the notch.

It may be observed from Figure 1 that there is only a small
difference in the power spectral density inside the notch and
at the border of the notch for the third-order term and a
negligible difference in the higher order terms. Figure 3 shows
the result of Figure 2 over a bandwidth of 200MHz that is two
times the input noise bandwidth. Figure 2 shows the details
of the PSD of various terms in the immediate vicinity of the
notch.

Example 2. As an example of the application of the the-
ory presented in this paper, the nonlinear amplifier is
approximated by a soft limiter model with its input-output
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Figure 1: Power spectral density (W/Hz) of various order convolu-
tion terms (𝐵𝑇 = 100MHz, 𝐵notch = 2MHz, and 𝜎2𝜉 = 1W).
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Figure 2: Power spectral density (dBW/Hz) of various order
convolution terms (𝐵𝑇 = 100MHz, 𝐵notch = 2MHz, and 𝜎2𝜉 = 1W).

characteristic described by the following nonlinear function𝐹(𝑢) given by

𝐹 (𝑢) = erf ( 𝑢
√2) ≡ √ 2

𝜋 ∫𝑢
0
exp(−𝑥22 )𝑑𝑥. (39)

Figure 4 plots the nonlinearity 𝐹(𝑢) depicting good linearity
over the input range of (–1, 1). The function 𝐹(𝑢) may be
approximated by a polynomial of sufficiently high order
such that the approximation error is negligible over the
specified range of 𝑢. When the input to the amplifier is
a sine wave of constant amplitude 𝐴, the amplifier output
contains the fundamental zone and various harmonic zones.
The fundamental zone output is just a sine wave of amplitude
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Figure 3: Power spectral density (dBW/Hz) of various order
convolution terms over a bandwidth of 200MHz (𝐵𝑇 = 100MHz,𝐵notch = 2MHz, and 𝜎2𝜉 = 1W).
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Figure 4: Soft limiter input-output characteristics.

𝑔(𝐴), which is given by the Chebyshev transform [16] of 𝐹(𝑢)
and for the specific case of (39) is given by

𝑔 (𝐴) = √ 2
𝜋𝐴 exp(−𝐴24 )[𝐼0 (𝐴

2

4 ) + 𝐼1 (𝐴
2

4 )] . (40)

In (40) 𝐼0 and 𝐼1 are the modified Bessel functions of zero
and first order, respectively. Figure 5 plots the function 𝑔(𝐴)
versus 𝐴 for the soft limiter. In addition, Figure 6 plots the
input signal power level 𝑃𝑖 equal to 𝐴2/2 versus the amplifier
output signal power equal to (𝑔(𝐴))2/2 in dB scale.

The amplifier characteristics 𝐹(𝑢) are approximated by a
polynomial of sufficiently high degree over the range of input
signal which is taken equal to 3𝜎, where 𝜎2 is the variance or
power 𝑃𝑖 of the zero mean Gaussian input noise process 𝑢(𝑡).
Figure 7 shows the power spectral density of the amplifier
output 𝑦(𝑡) computed from (28) with 𝑃𝑖 = 0 dBW. The
coefficients𝐾1, 𝐾3, . . . are obtained by a degree 9 polynomial
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Figure 5: Plot of the Chebyshev transform 𝑔(𝐴).
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Figure 6: Amplifier output versus input power level.

approximation of 𝐹(𝑢) over the interval (−3, 3) and are equal
to [0.7962 −0.1284 0.0165 −0.0013 4.12 × 10−5]. The
RMS approximation error in the polynomial approximation
is equal to 3.38 × 10−4 thus achieving very good curve fit.

Figures 8 and 9 plot the corresponding results for the
case of 𝑃𝑖 equal to −3 dBW and −4 dBW, respectively. The
amplifier coefficients 𝐾1, 𝐾3, . . . for the two cases are equal
to [0.7978 −0.1324 0.0191 −0.0019 9.26 × 10−5] and
[0.7978 −0.1327 0.0195 −0.0020 1.11 × 10−4], respective-
ly. The corresponding RMS approximation error is equal to3.38 × 10−4 and 1.76 × 10−5, respectively, for the two cases.
Figure 10 plots the corresponding result for the case of notch
bandwidth equal to 8MHz.

The NPR values obtained for the three cases shown in
Figures 7–9 are equal to 6.09, 15.38, and 18.49 dB, respectively.
Figure 10 shows the output noise power spectral density ratio
when the notch bandwidth is increased to 8MHz for the case
of𝑃𝑖 = −3 dBWdepicting anNPRof 15.96 dB. Comparing the
result of Figure 8 for the case of 𝐵notch = 2MHz shows that
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Figure 7: Amplifier output noise power spectral density with 𝑃𝑖 =
0 dBW, 𝐵notch = 2MHz, and notch depth = 80 dB.
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Figure 8: Amplifier output noise power spectral density with 𝑃𝑖 =−3 dBW, 𝐵notch = 2MHz, and notch depth = 80 dB.

the difference in the NPR values for the two cases is about
0.58 dB.

Figure 11 plots the NPR versus the input power level for
the three cases of 𝐵notch equal to 1MHz, 2MHz, and 8MHz,
respectively. There is no significant difference in the NPR
between the two cases of 1MHz and 2MHz notch bandwidth
while for the case of 8MHz bandwidth the NPR is about 1 dB
higher. As may be inferred from Figure 11, the plots of NPR
versus 𝑃𝑖 have a slope of about −3.1 dB/dB for power levels
higher than −5 dBW and a slope of about −2.16 dB/dB for
lower values of 𝑃𝑖.

Figure 12 plots the NPR versus the output power back-
off BO for the three cases of 𝐵notch equal to 1MHz, 2MHz,
and 8MHz, respectively. The output power back-off BO is
defined as the amplifier output signal power level relative
to the fundamental zone power of a hard limiter with sine
wave input which is equal to 8/𝜋2 = −0.9 dB. Figure 12 also
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Figure 9: Amplifier output noise power spectral density with 𝑃𝑖 =−4 dBW, 𝐵notch = 2MHz, and notch depth = 80 dB.
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Figure 10: Amplifier output noise power spectral density with 𝑃𝑖 =−3 dBW, 𝐵notch = 8MHz, and notch depth = 80 dB.

plots the result for the amplifier output signal to distortion
power ratio for the case of 𝑀 equal to 256CDMA signals
with QPSKmodulation obtained from the analysis in [1].The
result for CDMA is close to that of theNPR result of the paper
providing a cross-validation of the result as for relatively
higher value of 𝑀 the CDMA signal may be approximated
by a Gaussian distribution.

6. Conclusions

This paper has presented a theoretical analysis of the amplifier
output noise power spectral density result in a closed form
fromwhich theNPR is evaluated by a simple subtraction.The
method can be applied to any amplifier with known input-
output characteristics. The paper has presented numerical
results on the NPR as a function of the noise bandwidth,
depth level of the notch, and the output power back-off
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Figure 11: Plot of NPR versus the input power level.
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Figure 12: Plot of NPR versus the output power back-off BO.

obtained from the analysis presented in the paper. The
analytical results of the paper have been encoded in the
form of a MATLAB program that can provide the result
for any specified amplifier input-output characteristics, notch
bandwidth and depth, and the output power back-off. The
MATLAB program generates the desired numerical result
almost instantaneously compared to extensive efforts and
time required for obtaining experimental and simulation
results for any power amplifier.
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