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We study the one-dimensional forced harmonic oscillator with relativistic effects. Under some conditions of the parameters, the
existence of a unique stable periodic solution is proved which is of twist type.The results depend on a TwistTheorem for nonlinear
Hill’s equations which is established and proved here.

1. Introduction and Main Results

In this paper, we study the existence of a stable periodic
solution (periodic response) in the one-dimensional forced
harmonic oscillator with relativistic effects:

( 𝑚𝑥
√1 − 𝑥2/𝑐2)



+ 𝑘𝑥 = −𝐹
0
cos𝜔𝑡, (1)

where 𝑚 > 0 is the mass at rest, 𝑐 > 0 is the speed of
light in the vacuum, 𝑘 > 0 is the spring stiffness coefficient,
and 𝐹

0
, 𝜔 are the amplitude and frequency of the external

force. Physically, we are assuming a basic principle of special
relativity: the mass of a moving object is not constant but
depends on its velocity.This equation can be derived from an
appropriate Lagrangian or Hamiltonian formulation [1]. The
Hamiltonian association of this system is

𝐻(𝑥, 𝑦) = √𝑦2𝑐2 + 𝑚2𝑐4 + 1
2𝑘𝑥2 + 𝑥𝐹0 cos𝜔𝑡. (2)

The existence of chaotic behavior in the relativistic
harmonic oscillator has been investigated numerically in
[2]. More generally, the existence of chaotic dynamics of
relativistic particles (relativistic chaos) has been reported in
many different contexts [3–6].

From amore mathematical perspective, (1) can be seen as
a singular 𝜙-Laplacian oscillator [7], then Landesman-Lazer
condition holds, and there exists a periodic solution for all the

values of the parameters. In other words, relativistic effects
kill the classical linear resonance phenomenon.

Chu et al. have proven in [8] the stability of the equilib-
rium 𝑥 ≡ 0 of the relativistic pendulum with variable length.
We use a similar approach in order to prove the stability
of a periodic solution for (1) obtained via lower and upper
solutions in the reversed order (see Section 2).

On the other hand, in recent years some results about
similar oscillators with relativistic effects, like the relativistic
forced pendulum [9–11], have been published. There the
authors have proven the existence andmultiplicity of periodic
solutions in the relativistic forced pendulum by variational
and topological methods.

Our aim is to study the existence and stability of periodic
solutions for the relativistic harmonic oscillator (1) with
period 𝑇 = 2𝜋/𝜔. We search 𝑇-periodic solutions so-called
of twist type, meaning that its Floquet multipliers are not real
and are not 𝑛th-root of the unity for 𝑛 = 1, 2, 3, 4, and its
first Birkhoff ’s coefficient is different to zero (see Section 4
for definitions).

It is a well known fact that the appearance of 𝑇-periodic
solution, of twist type, typically exhibits a KAM scenario
around it, that is, existence of 𝑛𝑇-periodic solutions for𝑛 being arbitrary large in all neighborhood of it, some of
which will be elliptic and the others will be hyperbolic. The
hyperbolic solutions have generically transversal intersec-
tions between their associated stable and unstable manifolds
[12, 13].
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The genericity is understood relative to certain topology
constructed via jets of functions [13]. So, close enough to
those intersections, certain invariant compact sets for the
Poincaré transformation almost always (generically speak-
ing) appear, called Smale’s Horseshoe. A popular result in the
theory of dynamical systems is that the dynamic on Smale’s
Horseshoe presents dense periodic orbits and sensitivity with
respect to initial conditions and random itineraries (chaotic
behavior).

According to this, the proof of the existence of periodic
solutions of twist type is a first step in the comprehension of
the chaotic behavior numerically evidenced in [2].

Theorem 1 is the main result of this paper.

Theorem 1. Assume that the parameters𝑚, 𝑘,𝜔, and𝐹
0
satisfy

the following conditions:

(H1) 𝑘/𝑚 < 𝜔2/16,
(H2) 𝐹

0
< (1/4)𝑚𝑐𝜔,

(H3) ((𝑚𝑐𝜔)19[(𝑚𝑐𝜔)2 − 16𝐹2
0
]/120𝜋𝐹2

0
(𝑐2𝑚2𝜔2 +

4𝐹2
0
)19/2) sin(6𝜋𝜔1/2𝑚𝑐3/2𝑘1/2/(𝑐2𝑚2𝜔2 + 4𝐹

0

2)3/4) >1,
and then the driven relativistic harmonic oscillator (1) has
unique 2𝜋/𝜔-periodic solution which is of twist type and
therefore Lyapunov stable.

Hypothesis (H3) may look rather weird; however, it gives
some interesting corollaries in a direct way.

Corollary 2. With fixed𝜔, 𝑘,𝐹
0
, and 𝑐 in (1), there exists𝑀

0
≡𝑀

0
(𝜔, 𝑘, 𝐹

0
, 𝑐) > 0 such that if 𝑚 > 𝑀

0
then the conclusion of

Theorem 1 holds.

Corollary 3. With fixed 𝑚, 𝑘, 𝐹
0
, and 𝑐 in (1), there exists a

critical frequency 𝜔
0
≡ 𝜔
0
(𝑚, 𝑘, 𝐹

0
, 𝑐) such that if 𝜔 > 𝜔

0
then

the conclusion of Theorem 1 holds.

Both corollaries follow easily by passing to the limit in the
conditions ofTheorem 1.Moreover, the critical values𝑀

0
,𝑤
0

can be numerically computed. For instance, 𝑀
0
(1, 1, 1, 1) ≃41.65497 and 𝜔

0
(1, 1, 1, 1) ≃ 24.35658.

The rest of the paper is organized as follows. Section 2 is
devoted to analyze the existence of a periodic solution. As it is
commented before, such existence is direct from the results of
[7], althoughwe present an alternativemethodwhich gives us
some bounds for the solution.The key idea is the reduction of
(1) to an equivalent Newtonian nonlinear oscillator.Then, the
use of upper and lower solutions provides the existence aswell
as some bounds which are necessary in the sequel. Section 3
analyzes the uniqueness and linear stability of the periodic
solution. Finally, in Section 4 a new Twist Theorem in the
line of those presented in [14–16] is proved, which is applied
in Section 5 in order to prove Theorem 1. Notice that it is
not possible to apply directlyTheorem 3.2 in [16] because the
estimate (3.39) is not correct.The right estimate is established
andproved in Lemma 8, and thiswill be fundamental in order
to establish the twist criteria (Theorem 7).

2. Existence of Periodic Solutions

As we mentioned in Introduction and Main Results, the
existence of a periodic solution for (1) is a direct consequence
of the results contained in [7]. We use here an alternative
approach based on upper and lower solutions because it
provides explicit bounds for the solutionwhichwill be crucial
later.

For the Hamiltonian (2), we get Hamilton’s equations

𝑥 = 𝑐2𝑦
√𝑦2𝑐2 + 𝑚2𝑐4 ,

𝑦 = −𝑘𝑥 − 𝐹
0
cos𝜔𝑡.

(3)

By deriving in the second equation, this system is equivalent
to the second-order equation

𝑦 + 𝑓 (𝑦) = 𝜔𝐹
0
sin𝜔𝑡, (4)

with

𝑓 (𝑦) = 𝑘𝑐2𝑦
√𝑦2𝑐2 + 𝑚2𝑐4 . (5)

More precisely, notice that the associated first-order system
for (4) with state variables 𝑢 = 𝑦 and V = 𝑦 can be obtained
from (3) by means of the following symplectic changes of
variables with multiplier:

𝑢 = 𝑦,
V = −𝑘𝑥 − 𝐹

0
cos (𝜔𝑡) . (6)

Thus, it is clear that the study of stability in both systems is
equivalent, because the Poincaré mappings are conjugated.
Therefore, the dynamics of a driven relativistic harmonic
oscillator are equivalent to those of a driven nonrelativistic
oscillator with the potential 𝑉(𝑦) = 𝑘√𝑦2𝑐2 + 𝑚2𝑐4. This
Newtonian equation has minimal period 𝑇 = 2𝜋/𝜔 and
we are interested in some key dynamical aspects like the
existence of periodic solutions and its stability properties.The
following result ensures us that (4) (as well as therefore (1))
has at least a 𝑇-periodic solution.
Proposition 4. Let one assume that 4𝑘 < 𝑚𝜔2. Then, (4) has
a 𝑇-periodic solution 𝜑 such that

−𝐹0𝜔 (1 + sin𝜔𝑡) < 𝜑 (𝑡) < 𝐹
0𝜔 (1 − sin𝜔𝑡) (7)

for all 𝑡.
Proof. It follows from the classical theory of upper and lower
solutions [17, Theorem 4.1]. It is easy to verify that 𝛼(𝑡) =(𝐹
0
/𝜔)(1 − sin𝜔𝑡) is a lower solution and 𝛽(𝑡) = −(𝐹

0
/𝜔)(1 +

sin𝜔𝑡) is an upper solution such that 𝛽(𝑡) < 𝛼(𝑡) for all 𝑡.
Moreover, note that |𝑓(𝑠)| ≤ 𝑘/𝑚 < (𝜋/𝑇)2, which is the
condition for existence of a solution between the upper and
the lower solution on the reversed order.
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Of course, the periodic solution 𝜑 of (4) provides a
periodic solution to the original equation (1) given by 𝑥(𝑡) =−(𝜑(𝑡) + 𝐹

0
cos𝜔𝑡)/𝑘.

3. Uniqueness and Linear Stability

In this section, we study the stability of the periodic solution
found in the previous section in the linear sense. Let us
fix a 𝑇-periodic solution 𝜑 of (4), which always exists by
Proposition 4, and we translate it to the origin making the
canonical changes of variables 𝑥 = 𝑦 − 𝜑(𝑡).Thus, we lead to
the equivalent equation

𝑥 + 𝑓 (𝑥 + 𝜑 (𝑡)) − 𝑓 (𝜑 (𝑡)) = 0. (8)

Now the equilibrium 𝑥 ≡ 0 is a solution. The linearization of𝑥 = 0 is Hill’s equation
𝑥 + 𝑎 (𝑡) 𝑥 = 0, (9)

where

𝑎 (𝑡) = 𝑘𝑐3𝑚2
(𝜑2 (𝑡) + 𝑚2𝑐2)3/2 . (10)

By definition, 𝜑 is said to be elliptic if the Floquet multipliers
ofHill’s equation (9) are complex conjugate numbers different
from ±1. An elliptic solution is in particular linearly stable.

The following bounds over 𝑎(𝑡) are easily deduced:
𝜎2
1
≤ 𝑎 (𝑡) ≤ 𝜎2

2
, (11)

with

𝜎2
1
= 𝑘
𝑚 (1 + ( 2𝐹

0𝑐𝑚𝜔)
2)
−3/2

,

𝜎2
2
= 𝑘
𝑚.

(12)

Now we can formulate and prove the following result.

Proposition 5. Assume that

4𝑘 < 𝑚𝜔2. (13)

Then, (4) has a unique 𝑇-periodic solution 𝜑 which is elliptic.

Proof of Proposition 5. From (13) and (11)-(12), we deduce that

0 < 𝑎 (𝑡) < (𝜋𝑇)
2 , ∀𝑡 ∈ R. (14)

Then, one application of the classical Lyapunov-Zukovskii
stability criterion (see [18, 19]) implies the ellipticity of (9).

For the uniqueness, suppose that 𝜓(𝑡) is another periodic
solution. Then, 𝜙 − 𝜓 is a 𝑇-periodic solution to Hill’s
equation:

𝑥 + ℎ (𝑡) 𝑥 = 0, (15)

where

ℎ (𝑡) =
{{{{{{{

𝑓 (𝜑 (𝑡)) − 𝑓 (𝜓 (𝑡))
𝜑 (𝑡) − 𝜓 (𝑡) if 𝜑 (𝑡) ̸= 𝜓 (𝑡)

𝑓 (𝜑 (𝑡)) otherwise.
(16)

By applying the mean value theorem and taking into account
that 0 < 𝑓 < 𝑘/𝑚, we get

0 < ℎ (𝑡) < 𝑘
𝑚 < (𝜋𝑇)

2

(17)

for all 𝑡. Again, it follows that (15) is elliptic; therefore, the only𝑇-periodic solution is the trivial one, so 𝜑 = 𝜓. This proves
the uniqueness.

4. Nonlinear Lyapunov’s Stability

The system under study is conservative, so the stability in
the sense of Lyapunov can not be directly derived from
the first approximation because of the possible synchronized
influence of higher terms leading to resonance. After the
works of Siegel and Moser [12], it is well known that the
stability in the nonlinear sense depends generically on the
third approximation of the periodic solution. So, we will
focus on the third approximation for the reduced problem (4)
around the periodic solution 𝜑.

From the point of view of KAM theory ([12, 20, 21]),
the nonlinear terms of Taylor’s expansion around a given
periodic solution are taken into account to decide the kind
of dynamic rising around such a solution. The basic idea
consists in expressing the system in suitable geometrical
coordinates as a perturbation of a canonical system which
is integrable and therefore possesses invariant tori near to
the periodic solution. These invariant tori are persistent
under perturbations and produce jails or barriers for the
flux trapping the orbits inside. As a by-product, it obtained
the typical KAM scenario around the periodic solution (see
[12, 22]). The effective existence of a homoclinic transversal
point for the Poincaré mapping P (which generates Smale’s
Horseshoe dynamics) is an interesting open question for this
model. However, it is known that this property is generic for
area preserving mappings [13, 22].

More recently, these ideas have taken a renewal interest
starting from some Ortega’s works [14, 23, 24] that provide us
with some stability criteria based on the third approximation.
Some related references are [15, 16, 25–29]. We follow this
approach and give a new stability criterion in line with those
presented in [15, Theorem 2.2] and [16, Theorems 3.1 and3.2].

Notice that the estimate (3.39) in [16] and, as a conse-
quence, the condition (3.49) in Theorem 3.2 of that paper
must be carefully reviewed. The right estimate is stated
and proved in this section (Lemma 8). All these facts have
motivated the rewriting of a clean criterion that works at least
in the so-called first stability zone.

We consider the nonlinear Hill equation:

𝑥 + 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) 𝑥2 + 𝑐 (𝑡) 𝑥3 + 𝑅 (𝑡, 𝑥) = 0, (18)
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where the functions 𝑎, 𝑏, 𝑐 : R/𝑇Z → R are continuous, 𝑏
and 𝑐 are not both identically zero, and the remainder 𝑅 ∈𝐶0,∞(R/𝑇Z) × (−𝜖, 𝜖), 𝜖 > 0, satisfies

𝜕𝑘𝑅
𝜕𝑥𝑘 (𝑡, 0) = 0, 𝑘 = 0, 1, 2, 3, ∀𝑡 ∈ R. (19)

The solution 𝑥 ≡ 0 is an equilibrium of (18).
The linearization of (18) at 𝑥 = 0 is Hill’s equation:

𝑥 + 𝑎 (𝑡) 𝑥 = 0. (20)

Let𝑀 be the monodromymatrix of (20).The eigenvalues𝜆
1,2

of𝑀 are called theFloquetmultipliers of (20).TheFloquet
multipliers of (20) satisfy

𝜆
1
𝜆
2
= 1. (21)

In a classical terminology, it is said that (20) (or 𝑥 = 0) is
elliptic if 𝜆

2
= 𝜆
1
∈ C1 \ {±1}, parabolic if 𝜆

1,2
= ±1, and

hyperbolic if |𝜆
1,2
| ̸= 1, respectively. In the hyperbolic case,

not only is the linear equation unstable but also 𝑥 = 0 like
solution to (18).

Given 𝑛 ∈ N, we say that the equilibrium 𝑥 = 0 of (18)
is 𝑛-resonant if it is elliptic and the Floquet multipliers satisfy𝜆𝑛
𝑖
= 1.We say that𝑥 = 0 is strongly resonant if it is 𝑛-resonant

for 𝑛 = 3 or 4.
The Poincarémapping associatedwith (18) is defined near

the origin by

P (𝑥, 𝑦) = 𝜑 (𝑇; 𝑥, 𝑦) , (22)

where 𝜑(𝑡; 𝑥, 𝑦) is the unique solution to (18) such that

𝜑 (0; 𝑥, 𝑦) = 𝑥,
𝜑 (0; 𝑥, 𝑦) = 𝑦. (23)

Note that P(0, 0) = (0, 0) and then the stability of𝑥 ≡ 0 (like the 𝑇-periodic solution to (18)) is equivalent
to the stability of (0, 0) as fixed point of P. The other
elementary property of the Poincaré map states thatP(0, 0)
is a monodromy matrix for (20), and then its eigenvalues
are the Floquet multipliers of (20). If (20) is elliptic and not
strongly resonant, by Birkhoff Normal Form Theorem there
exists a canonical change of variables 𝑧 = Φ(𝜉) and 𝑧 = (𝑥, 𝑦),
such that P adopts in the new coordinates the following
form:

P
∗ (𝜉) = (Φ−1 ∘P ∘ Φ) (𝜉) = 𝑅 [𝜃 + 𝛽 𝜉2] (𝜉) + 𝑂4, (24)

where 𝑅[𝛿] denotes the rotation of angle 𝛿, 𝜆 = 𝑒±𝑖𝜃 are the
Floquet multipliers, and 𝑂

4
indicates a term that is 𝑂(|𝜉|4)

when 𝜉 → 0. The coefficient 𝛽 is called the first twist
coefficient and plays a central role in the stability. From the
TwistTheorem it follows that if 𝛽 ̸= 0 then (0, 0) is stable (see
[12, chapter 3]).

Definition 6. We say that the equilibrium 𝑥 ≡ 0 of (18) is of
twist type if it is elliptic and not strongly resonant and the
associated first twist coefficient 𝛽 ̸= 0.

Notice that, according to this definition, all equilibrium
of twist type is Lyapunov stable. Also, it is known, from the
general theory, that an equilibriumof twist type exhibitsKAM
dynamics around it as was mentioned in Introduction and
Main Results.

The twist coefficient 𝛽 has an explicit formula and it is
proportional to the integral quantity (see [14, 16])

𝛽∗ = −38 ∫
𝑇

0

𝑟 (𝑡)4 𝑐 (𝑡) 𝑑𝑡 +∬
[0,𝑇]
2

𝑏 (𝑡) 𝑏 (𝑠) 𝑟3 (𝑡)
⋅ 𝑟3 (𝑠) 𝜒

2
(𝜙 (𝑡) − 𝜙 (𝑠)) 𝑑𝑡 𝑑𝑠,

(25)

where 𝑟(𝑡) is the unique positive 𝑇-periodic solution to the
Emarkov-Pinney equation ([16, Lemma 3.3]):

𝑦 + 𝑎 (𝑡) 𝑦 = 1
𝑦3 , (26)

the function𝜙 is any primitive of 1/𝑟2, and the kernel function𝜒
2
is defined by

𝜒
2
(𝑥) = 2cos3 (𝑥 − 𝜃/2) + 3 cos 𝜃 cos (𝑥 − 𝜃/2)

8 sin (3𝜃/2) ,
𝑥 ∈ ]0, 𝜃] .

(27)

The main result of this section is as follows.

Theorem 7. Assume that for (18) the third coefficient 𝑐(𝑡) < 0,∀𝑡 ∈ R. Choose 𝑐
∗
> 0 and 𝑏∗ > 0 such that

(i) −𝑐(𝑡) > 𝑐
∗
> 0, ∀𝑡 ∈ R,

(ii) |𝑏(𝑡)| ≤ 𝑏∗, ∀𝑡 ∈ R.

Assume that the following conditions hold:

0 < 𝜎2
1
≤ 𝑎 (𝑡) ≤ 𝜎

2

2 < ( 𝜋
2𝑇)
2 , ∀𝑡 ∈ R, (28)

𝑐
∗
> 10𝑇𝜎

2

7

3 sin ((3𝑇/2) 𝜎
1
) 𝜎8
1

𝑏∗2. (29)

Then, the equilibrium 𝑥 ≡ 0 of (18) is of twist type.
Lemma 8. Assume that the condition (28) ofTheorem 7 holds.
Then,

𝜎1/2
1𝜎
2

≤ 𝑟 (𝑡) ≤ 𝜎1/2
2𝜎
1

, ∀𝑡 ∈ R. (30)

Proof. The function 𝑟(𝑡) can be obtained by the following
relation ([16, Section 3.2]):

𝑟 (𝑡) = 𝛼𝑟∗ (𝑡 − 𝑡0𝛼2 ) , (31)

for certain time scaling 𝜏 = (𝑡−𝑡
0
)/𝛼2 which transformsHill’s

equation 𝑥 + 𝑎(𝑡) = 0 into another one:
𝑥 + 𝑎∗ (𝜏) 𝑥 = 0, 𝑎∗ (𝜏) = 𝛼4𝑎 (𝑡

0
+ 𝛼2𝜏) (32)
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with new period 𝑇∗ = 𝑇/𝛼2 such that it is 𝑅-elliptic; that
is, the associated monodromy matrix is a rigid rotation (see
[14, Propositon 7]). The function 𝑟∗ is defined as 𝑟∗ = |Ψ|,
whereΨ is the complex solution to (32)with initial conditionsΨ(0) = 1 and Ψ(0) = 𝑖. Clearly, 𝑎∗ satisfies the same
condition (28) of Theorem 7 with new constants 𝜎∗

𝑖
= 𝛼2𝜎

𝑖
,𝑖 = 1, 2. So, 𝑎∗ holds the conditions of Lemmas 4.2 and 4.3(ii)

of [15]. Combining these lemmas, we obtain

1
𝛼2𝜎
2

≤ 𝑟∗ ≤ 1
𝛼2𝜎
1

. (33)

So, finally from the relation (31) we obtain the following
uniform bounds on 𝑟:

1
𝛼𝜎
2

≤ 𝑟 ≤ 1
𝛼𝜎
1

. (34)

From Lemma 4.3(ii), we know that 𝜎−1/2
2

≤ 𝛼 ≤ 𝜎−1/2
1

, so
finally we arrive from (34) to the required inequality.

Proof of Theorem 7. The proof ofTheorem 7 follows basically
the lines of [16]. For a function 𝑓(𝑡), let 𝑓+ = max{𝑓, 0} and𝑓− = max{−𝑓, 0} denote the positive and negative part of 𝑓.
So, we can write 𝑓 = 𝑓+ − 𝑓−.

Condition (28) implies (see [15]) that 𝑥 ≡ 0 is elliptic and
not strongly resonant; therefore, the first twist coefficient 𝛽 is
well defined. Remember that 𝛽 is proportional to 𝛽∗ given by
(25). In order to proveTheorem 7, it is sufficient to show that𝛽∗ > 0.

On the other hand, from (28) we also deduce that
the rotation number 𝜌 associated with Hill’s equation (20)
satisfies

𝜎
1
≤ 𝜌 ≤ 𝜎

2
< 𝜋
2𝑇. (35)

The characteristic exponent is by definition 𝜃 = 𝑇𝜌. Thus,

𝜎
1
𝑇 ≤ 𝜃 ≤ 𝜎

2
𝑇 < 𝜋

2 . (36)

Let 𝑟
1
= 𝜎1/2
1
/𝜎
2
and 𝑟
2
= 𝜎1/2
2
/𝜎
1
denote, respectively, the

lower and upper bound of 𝑟(𝑡) given by Lemma 8. So, from
(25) one deduces that

𝛽∗ ≥ 3
8𝑇𝑟41𝑐∗ +∬[0,𝑇]2 (𝑏

+ (𝑡) − 𝑏− (𝑡))
⋅ (𝑏+ (𝑠) − 𝑏− (𝑠)) 𝑟3 (𝑡) 𝑟3 (𝑠)
⋅ 𝜒
2
(𝜙 (𝑡) − 𝜙 (𝑠)) 𝑑𝑡 𝑑𝑠 ≥ 3

8𝑇𝑟41𝑐∗
−∬
[0,𝑇]
2

𝑏+ (𝑡) 𝑏− (𝑠) 𝑟3 (𝑡) 𝑟3 (𝑠)
⋅ 𝜒
2
(𝜙 (𝑡) − 𝜙 (𝑠)) 𝑑𝑡 𝑑𝑠 − ∫

[0,𝑇]
2

𝑏− (𝑡) 𝑏+ (𝑠)
⋅ 𝑟3 (𝑡) 𝑟3 (𝑠) 𝜒

2
(𝜙 (𝑡) − 𝜙 (𝑠)) 𝑑𝑡 𝑑𝑠,

(37)

because the function 𝜒
2
is positive in (0, 𝜃] ⊂ ]0, 𝜋[ (see (27)

and (36)). On the other hand, an upper bound for 𝜒
2
was

computed in [16]:

𝜒2 (𝑥) ≤ 2 + 3 cos 𝜃
8 sin(3𝜃/2) , (𝑥 ∈ ]0, 𝜃] , 𝜃 ∈ ]0, 𝜋2 [) . (38)

Thus, using (36) and from themonotonocity of sin and cos in]0, 𝜋/2[, we get
𝜒2 (𝑥) ≤ 2 + 3 cos𝑇𝜎

18 sin ((3𝑇/2) 𝜎
1
) . (39)

Going back to 𝛽∗, now we can deduce that

𝛽∗ ≥ 3
8𝑇𝑟41𝑐∗ − 2𝑇2𝑟26𝑏∗

2 5
8 sin ((3𝑇/2) 𝜎

1
) > 0, (40)

where the last inequality is a consequence of condition (29).

5. Applications to the Relativistic Oscillator

In Section 2, we prove the existence of a unique 2𝜋/𝜔-
periodic elliptic solution 𝜑 for the problem (4) under a
suitable hypothesis over the parameters 𝑘 and 𝑚, more
concretely, if 4𝑘 < 𝑚𝜔2. One more time, we emphasize that
this problem is equivalent to the driven relativistic harmonic
oscillator (1).

The third approximation for (4) around the periodic
solution 𝜑 is given by

𝑥 + 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) 𝑥2 + c (𝑡) 𝑥3 + ⋅ ⋅ ⋅ = 0, (41)

where

𝑎 (𝑡) = 𝑘𝑐3𝑚2
(𝜑2 (𝑡) + 𝑚2𝑐2)3/2 ,

𝑏 (𝑡) = −3𝑘𝑚2𝑐3𝜑 (𝑡)
2 (𝜑2 (𝑡) + 𝑚2𝑐2)5/2 ,

𝑐 (𝑡) = 𝑘𝑚2𝑐3 (4𝜑2 (𝑡) − 𝑚2𝑐2)
2 (𝜑2 (𝑡) + 𝑚2𝑐2)7/2 .

(42)

Proof of Theorem 1. From Proposition 5 and hyphothesis
(H1), we have a unique 𝑇-periodic solution 𝜑which is elliptic
and not strongly resonant and verifying the bound (7). In
particular,

𝜑 (𝑡) < 2𝐹
0𝜔 . (43)

In order to prove that 𝜑 is of twist type, we will apply
Theorem 7 to the third approximation (41). By hyphothesis
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(H2), we get 𝑐(𝑡) < 0, ∀𝑡 ∈ R. Hence, the constants involved
inTheorem 7 can be taken as

𝜎2
1
= 𝑘
𝑚 (1 + ( 2𝐹

0𝑐𝑚𝜔)
2)
−3/2

,

𝜎2
2
= 𝑘
𝑚,

𝑏∗ = 3𝑘𝐹
0𝜔𝑚3𝑐2 ,

𝑐
∗
= 𝑘𝑚2𝑐3 (𝑚2𝑐2 − 16𝐹2

0
/𝜔2)

2 (𝑚2𝑐2 + 4𝐹2
0
/𝜔2)7/2 .

(44)

After several tedious computations, one can see that the
inequalities (H3) of Theorem 1 and (29) of Theorem 7
are equivalent. The application of Theorem 7 finishes the
proof.
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