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This article explores the fate of the infinite series tests of Dirichlet, Dedekind, and Abel in the context of an arbitrary ordered field. It
is shown that each of these three tests characterizes the Dedekind completeness of an Archimedean ordered field; specifically, none
of the three is valid in any proper subfield ofR. The argument hinges on a contractive-type property for sequences in Archimedean
ordered fields that are bounded and strictly increasing. For an arbitrary ordered field, it turns out that each of the tests of Dirichlet
and Dedekind is equivalent to the sequential completeness of the field.

1. Introduction

The main theorems of calculus derive their validity from the
completeness property of the real numbers, but the extent
of the interconnectedness of the theorems themselves is
continuing to come into sharper focus. The “real analysis in
reverse” program, as described in [1], is shedding light on the
fact that so many of the theorems of real analysis are actually
equivalent reformulations of the notion of completeness
and hence of one another. In addition to [1], the flurry of
recent articles [2–9] is dedicated to the study of abstract
ordered fields, particularly the various ways in which the
Archimedean and completeness properties are manifested.

An ordered field F has the Archimedean property if the
canonically embedded copy of the natural numbers is not
bounded above. Equivalent expressions of the Archimedean
property aremany, and several of the articles cited above treat
them. Discussions of completeness center around Dedekind
completeness and Cauchy completeness. The former means
that F has the supremum property; namely, every nonempty
subset of F that is bounded above has a least upper bound
in F ; the latter, also called sequential completeness, entails the
convergence of all Cauchy sequences in F .

The ordered field F is topologized by the basic open
intervals (𝑎, 𝑏) = {𝑥 ∈ F : 𝑎 < 𝑥 < 𝑏}, for all elements 𝑎, 𝑏 ∈ F ,

while the absolute value function for F is defined by |𝑎| =
max{−𝑎, 𝑎} for all 𝑎 ∈ F . Absolute value works in conjunction
with the order topology to lend a familiarmeaning to analytic
aspects of F . For example, a sequence (𝑥𝑛) of elements of F
converges to 𝑥 ∈ F if, for every positive element 𝜀 in F , there
is a natural number𝑁 for which |𝑥𝑛−𝑥| < 𝜀whenever 𝑛 ≥ 𝑁.
The definition of a Cauchy sequence in F also parallels its
counterpart from real analysis.

It is easy to prove that a field that is Dedekind complete
has the Archimedean property, and it is well known that
a field that is Dedekind complete is also Cauchy complete.
Moreover, if an Archimedean ordered field is Cauchy com-
plete, then it must be Dedekind complete (CA35 of [3] or
Sections 1-2 of [8]); such a field is, up to isomorphism, the
fieldR of real numbers. Behind all this, of course, is Cantor’s
classical construction of the real numbers as the Cauchy
completion of the rationals ([10]). A remarkable fact about
ordered fields with the Archimedean property is that they
are precisely those that are isomorphic to subfields of R
(Theorem 3.5 of [5] or Section 4 of [1]).

Series tests are among the many theorems from calculus
that have been considered in the classification of ordered
fields. An elementary example from the Classroom Capsule
[6] exposes the equivalence of the geometric series test and
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the Archimedean property. Other familiar tests that enter the
fray are given as follows.

Absolute Convergence Test. If (𝑎𝑛) is a sequence of elements in
the ordered field F for which the series∑ |𝑎𝑛| converges, then
the series ∑𝑎𝑛 also converges.
ComparisonTest. If (𝑎𝑛) and (𝑏𝑛) are sequences of nonnegative
elements in the ordered field F that satisfy 𝑎𝑛 ≤ 𝑏𝑛 for all 𝑛 and∑𝑏𝑛 converges, then ∑𝑎𝑛 converges.

We document the connection between completeness and
these two series tests in the following theorem which may
be viewed as a modest complement to the main result of [2].
Theorem 1 will be an important tool in this article.

Theorem1. For an ordered field F , the following statements are
equivalent:

(a) F is Cauchy complete.
(b) The absolute convergence test holds.
(c) The comparison test holds.

Proof. The fact that the absolute convergence test character-
izes Cauchy completeness for ordered fields is proven in the
article [2].

The validity of the comparison test in fields that are
Cauchy complete follows by noting that convergence of the
series ∑𝑏𝑛 implies that its sequence (𝐵𝑛) of partial sums is
convergent and hence Cauchy. The sequence (𝐴𝑛) of partial
sums of the series ∑𝑎𝑛 is therefore also Cauchy, from which
the convergence of the series ∑𝑎𝑛 follows from the Cauchy
completeness of the field.

Finally, to see that the absolute convergence test holds
whenever the comparison test does, observe that, for all 𝑛,
the inequalities

0 ≤ 𝑎𝑛 + 𝑎𝑛 ≤ 2 𝑎𝑛 (1)

are true in F , setting the stage for the comparison test to
ensure that the series∑(𝑎𝑛+|𝑎𝑛|) converges. Since also∑−|𝑎𝑛|
converges, it follows that ∑𝑎𝑛 converges.

Theorem 1 refines a result of [8] on the characteriza-
tion of Dedekind complete ordered fields in terms of the
Archimedean property together with either (b) or (c).

The equivalence of statements (a) and (b) of Theorem 1
appears mutatis mutandis in functional analysis where it
is known that a normed linear space is a Banach space if
and only if the absolute convergence test for series is valid
(Theorem 2.8 of [11] or Statement (VIII) of [12]).

Our goal in the present article is to involve the series tests
of Dirichlet, Dedekind, and Abel in the taxonomy of ordered
fields.The classical versions of these may be found, for exam-
ple, in [13] or [14], but each has meaning in the more general
abstract context. We devote Section 2 to their statements and
a short discussion of them. Like the absolute convergence
test and the comparison test, Dirichlet’s, Dedekind’s, and
Abel’s tests are connected with completeness in the sense of
both Dedekind and Cauchy. These relationships are detailed

in Sections 4 and 5. Along the way, we explore the role of
sequences of bounded variation in ordered fields.

2. The Series Tests of Dirichlet,
Dedekind, and Abel

The hypothesis of Dedekind’s test calls for the sequence (𝑏𝑛)
to have bounded variationwhich, in the setting of the ordered
field F , means that there is an element 𝑀 ∈ F for which the
inequality ∑𝑛𝑘=1 |𝑏𝑘+1 − 𝑏𝑘| ≤ 𝑀 holds for all 𝑛 ∈ N. We will
treat sequences of bounded variation in some detail in the
next section. Without further ado, here is the trio of series
tests under consideration for an arbitrary ordered field.

Dirichlet’s Test. If ∑𝑎𝑛 is a series whose partial sums form
a bounded sequence and (𝑏𝑛) is a decreasing sequence that
converges to 0, then the series∑𝑎𝑛𝑏𝑛 converges.
Dedekind’s Test. If ∑𝑎𝑛 is a convergent series and (𝑏𝑛) is a
sequence of bounded variation, then the series∑𝑎𝑛𝑏𝑛 conver-
ges.

Abel’s Test. If∑𝑎𝑛 is a convergent series and (𝑏𝑛) is amonotone
convergent sequence, then the series ∑𝑎𝑛𝑏𝑛 converges.

Dirichlet’s test is recognizable as a generalization of
Leibniz’s alternating series test from calculus (Theorem 3.4.2
of [14]) and, as Apostol mentions in Section 8.15 of [13], these
three tests are useful tools when one is confronted with the
task of trying to determine convergence of real series that
do not converge absolutely. Moreover, as Knopp points out
in Section 5.5 of [14], a common feature of the tests in this
trio is that they all allow conclusions to be drawn about the
series ∑𝑎𝑛𝑏𝑛 from assumptions concerning the series ∑𝑎𝑛
and the sequence (𝑏𝑛). Knopp remarks that such tests may be
construed as “comparison tests in the extended sense,” and
he also includes a few applications and examples of them.

It turns out that Abel’s test can be inferred from
Dedekind’s test, since, as explained in the next section, every
monotone convergent sequence has bounded variation. A
moment’s reflection reveals that Abel’s test is also a corollary
of Dirichlet’s test. Indeed, the sequence of partial sums of a
convergent series ∑𝑎𝑛 is bounded, so attention needs only
to be directed to the stipulation that (𝑏𝑛) is a monotone
convergent sequence. If (𝑏𝑛) is decreasing and its limit is 𝑏,
then the auxiliary sequence given by 𝑐𝑛 = 𝑏𝑛 − 𝑏 is also
decreasing, and it converges to 0. Dirichlet’s test thus ensures
that the series∑𝑎𝑛𝑐𝑛 converges.The convergence of the series
∑𝑎𝑛𝑏𝑛 follows easily from algebraic properties of convergent
series. The case that (𝑏𝑛) is increasing with limit 𝑏 is handled
analogously, since this time the sequence (−𝑐𝑛) decreases to 0.

None of the series tests of Dedekind, Dirichlet, or Abel is,
on its own, strong enough to imply Dedekind completeness
for an ordered field F in which it holds. If F is Archimedean,
however, and any of these three tests is in force, then it will
follow from Theorem 3 that F is Dedekind complete. The
linchpin is a contractive-type property for certain sequences
in Archimedean ordered fields which is detailed in Lemma 4.
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Aswe shall see inTheorem6 in the final section, the valid-
ity of either of the tests of Dedekind orDirichlet in an ordered
field is equivalent to the Cauchy completeness of the field. In
a similar vein, it was recently confirmed in [15] that a normed
linear space is a Banach space precisely when a suitable vector
version of Dedekind’s test holds and, moreover, that a unital
normed algebra is a Banach algebra if and only if an algebra
version of Dedekind’s test is valid.

3. Sequences of Bounded Variation

The set of all sequences of elements of the ordered field F

having bounded variation will be denoted by 𝑏VF . Examples
abound. Indeed, sequences that are monotone and bounded
automatically have bounded variation: if (𝑎𝑛)𝑛∈N is increasing,
for example, with |𝑎𝑛| ≤ 𝐾 for all 𝑛 ∈ N, then

𝑛

∑
𝑘=1

𝑎𝑘+1 − 𝑎𝑘 =
𝑛

∑
𝑘=1

(𝑎𝑘+1 − 𝑎𝑘) = 𝑎𝑛+1 − 𝑎1

≤ 𝑎𝑛+1 − 𝑎1 ≤ 𝐾 − 𝑎1,
(2)

which shows that (𝑎𝑛)𝑛∈N has bounded variation.
Sequences of bounded variation are always bounded

since, for any 𝑛 ∈ N,
𝑎𝑛 ≤ 𝑎1 + 𝑎2 − 𝑎1 + 𝑎3 − 𝑎2 + ⋅ ⋅ ⋅ + 𝑎𝑛 − 𝑎𝑛−1

≤ 𝑎1 + 𝑀.
(3)

But, in general, there is no relationship between 𝑏VF and the
set 𝑐F of convergent sequences in F . For example, in any
Archimedean ordered field, the sequence

1, 0, 12 , 0,
1
3 , 0,

1
4 , 0, . . . (4)

converges to 0, but it does not have bounded variation,
whereas, in any non-Archimedean ordered field, it has
bounded variation but does not converge. In fact, in a non-
Archimedean ordered field, any sequence of rational numbers
has bounded variation.

Like their counterparts in the realm of functions on an
interval (see Section 6.7 of [13]), sequences of bounded vari-
ation admit a Jordan decomposition. Specifically, a sequence
(𝑎𝑛)𝑛∈N in 𝑏VF may be resolved into the difference of two
bounded increasing sequences (𝑝𝑛)𝑛∈N and (𝑞𝑛)𝑛∈N in a
canonical way. Indeed, it is easily verified that this is accom-
plished by the choice 𝑝𝑛 = (V𝑛+𝑎𝑛)/2 and 𝑞𝑛 = (V𝑛−𝑎𝑛)/2 for
all 𝑛 ∈ N, where V1 = 0 and V𝑛 = ∑𝑛−1𝑘=1 |𝑎𝑘+1 − 𝑎𝑘| for all 𝑛 ≥ 2.

Since, by Proposition 4 of [9], the Archimedean property
of an ordered field F is characterized by the condition that
all increasing sequences that are bounded above are Cauchy
sequences, the Jordan decomposition now reveals that F has
the Archimedean property if and only if every sequence of
bounded variation in F is a Cauchy sequence.

Moreover, if every sequence of bounded variation in
F happens to converge, then, because we have seen that
every monotone bounded sequence lies in 𝑏VF , themonotone

convergence theorem holds for F . The monotone convergence
theorem is a stalwart among the statements that are equiv-
alent to Dedekind completeness (CA13 of [3] or Section 1
of [8]), so we conclude that a field for which the inclusion
𝑏VF ⊆ 𝑐F holds must be Dedekind complete.

The hypotheses for Abel’s test seem to vary slightly in the
literature. The version we work with follows Theorem 8.29
of [13] in requiring a convergent series ∑𝑎𝑛 and a monotone
convergent sequence (𝑏𝑛). However, in the statement of Abel’s
test that is Theorem 5.5.1 of [14], the series ∑𝑎𝑛 is still
required to be convergent, whereas the sequence (𝑏𝑛) is only
assumed to be monotone and bounded. The two versions are
equivalent preciselywhen the underlying field isR.Moreover,
on account of the Jordan decomposition, it turns out that, in
any field, the latter version is equivalent to Dedekind’s test.

As we see, facts about sequences of bounded variation
may often be deduced from properties of monotone sequen-
ces. Though they find themselves somewhat overshadowed
bymonotone sequences, sequences of bounded variation still
play a role in analysis. It turns out that Dedekind’s test is the
easier half of the result that says that the topological dual
space of the Banach space 𝑐𝑠R of all real sequences (𝑎𝑛) for
which the associated series ∑𝑎𝑛 converges may be identified
with 𝑏VR (Exercise IV.13.12 of [16]). Sequences of bounded
variation rear their heads again in the related context of
summability theory: in order that an infinite matrix defines
a transformation that maps 𝑐𝑠R into 𝑐𝑠R, one of the necessary
and sufficient conditions is that each of its rows is in 𝑏VR
(Theorem 5.6.1 of [14] or Exercise II.4.45 of [16]).
Lemma 2. If the ordered field F is Cauchy complete, then the
series tests of Dirichlet, Dedekind, and Abel all hold.

Proof. The identity for summation by parts due to Abel
(Theorem 8.27 of [13]), a well-known analogue for integration
by parts in a Riemann-Stieltjes integral, carries over to the
setting of an abstract field (or, in fact, of any ring) verbatim:
for elements 𝑎1, . . . , 𝑎𝑛 and 𝑏1, . . . , 𝑏𝑛 of F and 𝐴𝑘 = ∑𝑘𝑗=1 𝑎𝑗
for 𝑘 = 1, . . . , 𝑛, the following equality holds:

𝑛

∑
𝑘=1

𝑎𝑘𝑏𝑘 = 𝐴𝑛𝑏𝑛+1 −
𝑛

∑
𝑘=1

𝐴𝑘 (𝑏𝑘+1 − 𝑏𝑘) . (5)

As in the classical approach, it seems natural to deduce
the convergence of the series ∑𝑎𝑛𝑏𝑛 by establishing the
convergence of the two sequences on the right hand side of
the preceding formula.

In the case of Dirichlet’s test, this method turns out to
be successful in an arbitrary Cauchy complete field, thanks
toTheorem 1. Indeed, the hypotheses of Dirichlet’s test easily
ensure that (𝐴𝑛𝑏𝑛+1) and ∑ |𝑏𝑘+1 − 𝑏𝑘| both converge. Hence,
if 𝑀 denotes a positive upper bound on the sequence of
partial sums (𝐴𝑛), then the series∑∞𝑘=1𝑀|𝑏𝑘+1−𝑏𝑘| converges.
By Theorem 1, we obtain the convergence of the series
∑∞𝑘=1 |𝐴𝑘(𝑏𝑘+1 − 𝑏𝑘)| from the comparison test and then the
desired convergence of the series∑∞𝑘=1 𝐴𝑘(𝑏𝑘+1 − 𝑏𝑘) from the
absolute convergence test.
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However, more work is needed for Dedekind’s test, since
the convergence of sequences of bounded variation is guaran-
teed only in the setting of a Dedekind complete ordered field.
We therefore separate the following two cases.

If the Cauchy complete field F happens to be Archime-
dean, then F is Dedekind complete, and we are in the classical
setting F = R for which Dedekind’s and Abel’s tests are,
of course, immediate from the preceding partial summation
formula.

It thus remains to address the case that F is non-Archi-
medean. Since the hypotheses for Dedekind’s and Abel’s tests
ensure that 𝑎𝑛 → 0 as 𝑛 → ∞ and that the sequence (𝑏𝑛) is
bounded, we have that 𝑎𝑛𝑏𝑛 → 0 as 𝑛 → ∞. Convergence
of the series ∑𝑎𝑛𝑏𝑛 thus follows from part (b) of the main
theorem of [2].

4. Dedekind Completeness and Series Tests

We now involve the trio of series tests in a list of statements
about an ordered field that are equivalent to Dedekind
completeness.

Theorem 3. For an ordered field F , the following statements
are equivalent:

(a) F is Dedekind complete.
(b) Sequences in F that are monotone and bounded are

convergent.
(c) 𝑏VF ⊆ 𝑐F .
(d) F is Archimedean and Dirichlet’s test holds.
(e) F is Archimedean and Dedekind’s test holds.
(f) F is Archimedean and Abel’s test holds.

As indicated in the previous section, the equivalence of
statements (a) and (b) is well known, and the equivalence
of (b) and (c) is clear from the Jordan decomposition for
sequences of bounded variation.

Because a field that is Dedekind complete is Archimedean
and Cauchy complete, the implications (a) ⇒ (d) and (a) ⇒
(e) follow from Lemma 2. The implications (d) ⇒ (f) and
(e) ⇒ (f) are consequences of the fact that Dirichlet’s test and
Dedekind’s test both imply Abel’s test, as detailed toward the
end of Section 2.

It thus remains to establish that (f) ⇒ (b). Our proof will
be based on the following result.

Lemma 4. Let 𝑟 be a positive element of the Archimedean
ordered field F , and let (𝑐𝑛)𝑛∈N be a strictly increasing bounded
sequence in F . Then there exists a subsequence (𝑐𝑛𝑘)𝑘∈N such
that

𝑐𝑛𝑘+2 − 𝑐𝑛𝑘+1 < 𝑟 (𝑐𝑛𝑘+1 − 𝑐𝑛𝑘) ∀𝑘 ∈ N. (6)

Proof. By the characterization of Archimedean fields men-
tioned earlier, we may and do assume that F is a subfield of
R. Then there exists an element 𝐿 ∈ R for which 𝑐𝑛 → 𝐿 as
𝑛 → ∞. The inductive choice of the desired subsequence will

be straightforward once we know that for every 𝑝 ∈ N there
exists some 𝑞 ∈ N with 𝑞 > 𝑝 such that the estimate

𝑐𝑗 − 𝑐𝑞 < 𝑟 (𝑐𝑞 − 𝑐𝑝) (7)

holds for all 𝑗 ∈ Nwith 𝑗 > 𝑞. For this, fix𝑝 ∈ N, and note that
whenever 𝑞 ∈ N satisfies 𝑞 > 𝑝 the inequality 𝑟(𝑐𝑝+1 − 𝑐𝑝) ≤
𝑟(𝑐𝑞 − 𝑐𝑝) automatically holds. Now, take 𝑞 ∈ N so large that
𝑞 > 𝑝 and 𝐿 − 𝑐𝑞 < 𝑟(𝑐𝑝+1 − 𝑐𝑝).Then, for all 𝑗 ∈ N with 𝑗 > 𝑞,
we obtain

𝑐𝑗 − 𝑐𝑞 < 𝐿 − 𝑐𝑞 < 𝑟 (𝑐𝑝+1 − 𝑐𝑝) ≤ 𝑟 (𝑐𝑞 − 𝑐𝑝) . (8)

To complete the proof of the lemma, we choose 𝑛1 = 1
and then, by induction, a sequence of integers 𝑛𝑘 ∈ N with
𝑛𝑘 < 𝑛𝑘+1 such that the a priori estimate

𝑐𝑗 − 𝑐𝑛𝑘+1 < 𝑟 (𝑐𝑛𝑘+1 − 𝑐𝑛𝑘) (9)

holds for all 𝑘 ∈ N and 𝑗 ∈ N with 𝑗 > 𝑛𝑘+1. Once a
subsequence (𝑐𝑛𝑘)𝑘∈N with the preceding property has been
chosen, for each 𝑘 ∈ N we may take 𝑗 = 𝑛𝑘+2 to conclude that
the sequence satisfies the conclusion of the lemma.

We mention in passing that the preceding result remains
valid for increasing, rather than strictly increasing, sequences
provided that the strict inequality < in the assertion is
replaced by≤. Indeed, this is obvious in the case of an increas-
ing sequence that is eventually constant, while every increas-
ing bounded sequence that fails to be eventually constant
admits a strictly increasing subsequence to which Lemma 4
may be applied.

We are now ready to finish the proof of Theorem 3.

Proof of (𝑓) ⇒ (𝑏). Suppose that F is an Archimedean
ordered field for which Abel’s test holds, and consider an
arbitrary increasing bounded sequence (𝑐𝑛)𝑛∈N in F . To see
that this sequence converges in F , we may suppose that it is
not eventually constant and thus admits a strictly increasing
subsequence. Since an increasing sequence converges in F

precisely when it contains a convergent subsequence, wemay,
without loss of generality, assume that (𝑐𝑛)𝑛∈N is actually
strictly increasing. We then apply Lemma 4 with the choice
𝑟 = 1/4 to obtain a subsequence (𝑐𝑛𝑘)𝑘∈N for which

𝑐𝑛𝑘+2 − 𝑐𝑛𝑘+1 <
1
4 (𝑐𝑛𝑘+1 − 𝑐𝑛𝑘) (10)

for all 𝑘 ∈ N. As before, it suffices to show that this
subsequence converges in F . This will now be established by
an application of Abel’s test and the Archimedean property
for the field F . For this, we introduce

𝑎𝑘 = 1
2𝑘 ,

𝑏𝑘 = 2𝑘 (𝑐𝑛𝑘+1 − 𝑐𝑛𝑘)
(11)

for all 𝑘 ∈ N. Because F is Archimedean, we know from [6]
that the geometric series

∞

∑
𝑘=1

𝑎𝑘 =
∞

∑
𝑘=1

(1
2)
𝑘

(12)
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converges in F . Moreover, the choice of the subsequence
(𝑐𝑛𝑘)𝑘∈N ensures that

𝑏𝑘+1 = 2𝑘+1 (𝑐𝑛𝑘+2 − 𝑐𝑛𝑘+1) < 2𝑘−1 (𝑐𝑛𝑘+1 − 𝑐𝑛𝑘) = 1
2𝑏𝑘, (13)

and therefore 0 < 𝑏𝑘+1 < (1/2𝑘)𝑏1 for all 𝑘 ∈ N. Thus
(𝑏𝑘) decreases to 0. By Abel’s test, we now conclude that
the sequence of partial sums ∑𝑚𝑘=1 𝑎𝑘𝑏𝑘 converges in F . Since
telescoping shows that

𝑚

∑
𝑘=1

𝑎𝑘𝑏𝑘 =
𝑚

∑
𝑘=1

(𝑐𝑛𝑘+1 − 𝑐𝑛𝑘) = 𝑐𝑛𝑚+1 − 𝑐𝑛1 (14)

for all 𝑚 ∈ N, this confirms the desired convergence of
(𝑐𝑛𝑘)𝑘∈N.

While the geometric series test is certainly not, on its own,
strong enough to guarantee completeness, the Classroom
Capsule [6], together with Theorem 3, shows that if F is an
ordered field in which the geometric series test, along with
any of the tests of Dirichlet, Dedekind, or Abel holds, then F

is Dedekind complete. Theorem 3 also reveals that the only
subfield of R in which Dirichlet’s, Dedekind’s, or Abel’s test
holds is the fieldR of real numbers itself. There are, however,
many non-Archimedean ordered fields in which each of these
three tests holds. We will take up this issue after an example.

Example 5. An example that simultaneously illustrates the
failure of each of the three tests in the field Q of rational
numbers is provided by the geometric series ∑∞𝑛=1 1/2𝑛 and
the harmonic sequence (1/𝑛)𝑛∈N. The series converges in
Q, so its partial sums are bounded, and the sequence is a
decreasing sequence that converges to 0. The hypotheses of
Dirichlet’s test are thus satisfied. We invoke some calculus to
show that the series∑∞𝑛=1 1/(𝑛2𝑛) does not, however, converge
inQ.The Taylor series for (1−𝑥)−1, valid whenever |𝑥| < 1, is
the familiar geometric series 1+𝑥+𝑥2+𝑥3+⋅ ⋅ ⋅ . Term-by-term
integration yields the series

𝑥 + 𝑥2
2 + 𝑥3

3 + 𝑥4
4 + ⋅ ⋅ ⋅ = − log (1 − 𝑥) , (15)

where the equality is valid for the same radius of convergence.
The choice 𝑥 = 1/2 reveals ∑∞𝑛=1 1/(𝑛2𝑛) = log 2. But
log 2 is irrational, since otherwise the equation log 2 = 𝑝/𝑞
with 𝑝, 𝑞 ∈ N would entail that the number 𝑒 is a root
of the polynomial 𝑥𝑝 − 2𝑞, contradicting the fact that 𝑒 is
transcendental, a celebrated result of Hermite dating back
to 1873 (Chapter 15 of [17]). The conclusion of Dirichlet’s
test thus does not hold for Q. These data also show that
Dedekind’s and Abel’s tests fail inQ.

5. Cauchy Completeness and Series Tests

Weconcludewith a return to the case ofCauchy completeness
and the following extension of Theorem 1.

Theorem 6. For an ordered field F , the following statements
are equivalent:

(a) F is Cauchy complete.
(b) The absolute convergence test holds.
(c) The comparison test holds.
(d) Dedekind’s test holds.
(e) Dirichlet’s test holds.

Proof. The equivalence of statements (a), (b), and (c) was
handled in Theorem 1, and the implications (a) ⇒ (d) and
(a) ⇒ (e) were addressed in Lemma 2. By Theorem 3, it
thus suffices to establish (d) ⇒ (b) and (e) ⇒ (b) in the
non-Archimedean case. To this end, we consider an arbitrary
sequence (𝑥𝑛) in a non-Archimedean field F for which the
series ∑ |𝑥𝑛| converges.

If (d) holds, then we choose 𝑏𝑛 ∈ {−1, 1} such that 𝑥𝑛 =𝑏𝑛|𝑥𝑛| for all 𝑛 ∈ N and observe that the sequence of partial
sums ∑𝑛𝑘=1 |𝑏𝑘+1 − 𝑏𝑘| is bounded above in F , since F fails to
be Archimedean. Thus Dedekind’s test ensures that ∑𝑥𝑛 =
∑𝑏𝑛|𝑥𝑛| converges in F , which confirms that (d) implies (b).

To prove the convergence of ∑𝑥𝑛 under condition (e),
we first note that the convergence of the series ∑ |𝑥𝑛| entails
that the sequence of partial sums of the series ∑𝑥𝑛 is a
Cauchy sequence. So, to meet our goal, it suffices to show
that the sequence of partial sums of the series ∑𝑥𝑛 has a
convergent subsequence. This will be accomplished by the
following construction.

The supposition that∑ |𝑥𝑛| converges implies that |𝑥𝑛| →0 as 𝑛 → ∞, and, without loss of generality, we assume
that the sequence (|𝑥𝑛|) is not eventually 0. Invoking the
procedure detailed in the proof of the classical monotone
convergence theorem (Theorem 3.4.7 of [18]), we inductively
extract a decreasing “peak” subsequence (|𝑥𝑛𝑘 |) as follows.We
start by selecting 𝑛1 as the least positive integer 𝜅 for which
|𝑥𝜅| ≥ |𝑥𝑗| for all 𝑗 ∈ N. Thereafter, once 𝑛𝑘 is designated,𝑛𝑘+1 is chosen to be the least positive integer 𝜅 beyond 𝑛𝑘 for
which |𝑥𝜅| ≥ |𝑥𝑗| for all 𝑗 > 𝑛𝑘. Evidently, |𝑥𝑛𝑘 | > 0 for all
𝑘 ∈ N, and (|𝑥𝑛𝑘 |) decreases to 0.

Now, for each 𝑘 ∈ N, let

𝑎𝑘 =
𝑥𝑛𝑘 + ⋅ ⋅ ⋅ + 𝑥𝑛𝑘+1−1𝑥𝑛𝑘


(16)

and observe that

𝑎𝑘 ≤
𝑥𝑛𝑘

 + ⋅ ⋅ ⋅ + 𝑥𝑛𝑘+1−1
𝑥𝑛𝑘


≤ 𝑛𝑘+1 − 𝑛𝑘. (17)

The sequence of partial sums of the series ∑𝑎𝑘 is thus
bounded in F on account of the field F being non-
Archimedean. Hence, by Dirichlet’s test, the series ∑𝑎𝑘|𝑥𝑛𝑘 |
converges. Since

𝑛𝑚+1−1

∑
𝑘=1

𝑥𝑘 = 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛1−1 +
𝑚

∑
𝑘=1

𝑎𝑘 𝑥𝑛𝑘
 (18)

for all 𝑚 ∈ N, we conclude that the sequence of partial sums
of the series∑𝑥𝑛 has indeed a convergent subsequence, so we
have reached our stated goal.
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An anonymous referee graciously offered the equivalence
of statements (a), (d), and (e) of Theorem 6 together with an
outline of a proof. The suggested argument to establish the
fact that Cauchy completeness is a consequence of Dirichlet’s
test was based on the main theorem of [2] along with results
about rearrangements of series with nonnegative terms. In
the end, we chose our own version of the proof of (e) ⇒ (b)
on account of its direct focus on the absolute convergence
test. The question of whether the validity of Abel’s test in
an arbitrary ordered field implies that the field is Cauchy
complete remains open.
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