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This paper investigates the two-sided first exit problem for a jump process having jumps with rational Laplace transform. The
corresponding boundary value problem is solved to obtain an explicit formula for the first passage functional. Also, we derive the
distribution of the first passage time to two-sided barriers and the value at the first passage time.

1. Introduction

One-sided and two-sided exit problems for the compound
Poisson processes and jump-diffusion processes with two-
sided jumps have been applied widely in a variety of fields.
For example, in actuarial mathematics, the problem of first
exit from a half-line is of fundamental interest with regard to
the classical ruin problem and the expected discount penalty
function or the Gerber-Shiu function as well as the expected
total; see, for example, Mordecki [1], Xing et al. [2], Zhang et
al. [3], Lewis andMordecki [4], and Avram et al. [5]. Inmath-
ematical finance, the first passage time plays a crucial role for
the pricing of many path-dependent options and American
type options; see, for example, Geman and Yor [6], Bertoin
[7], Kyprianou [8], Rogers [9], Avram et al. [10], and Alili and
Kyprianou [11]. Recently, Cai [12] investigated the first pas-
sage time of hyperexponential jump-diffusion process. Cai
and Kou [13] proposed a mixed-exponential jump-diffusion
process tomodel the asset return and found an expression for
the joint distribution of the first exit problem for a jump and
overshoot for a mixed-exponential jump-diffusion process.
Chen et al. [14] and Yin et al. [15] discussed the first passage
functional for hyperexponential jump-diffusion process.

Motivated by works mentioned above, the main objective
of this paper is to study the first exit time of the two-
sided first exit problem for jump-diffusion process having
jump with rational Laplace transform proposed by Lewis and

Mordecki [4]; see also Kuznetsov [16]. This extends recent
results obtained in Chen et al. [14, Theorem 2.5] on the
hyperexponential jump-diffusion process.

The rest of the paper is organized as follows. In Section 2,
we introduce the jump-diffusion process having jumps with
rational Laplace transform. Section 3 concentrates on deriv-
ing the joint distribution of first exit time and a nonnegative
bounded measurable function of the process value at the first
exit time to two flat barriers. Section 4 presents the analytical
solution to the pricing problem of standard double-barrier
options.

2. The Model

A Lévy jump-diffusion process𝑋 = {𝑋𝑡, 𝑡 ≥ 0} is defined as

𝑋𝑡 = 𝑋0 + 𝜇𝑡 + 𝜎𝑊𝑡 − 𝑁𝑡∑
𝑖=1

𝑌𝑖, (1)

where 𝜇 ∈ R and 𝜎 > 0 represent the drift and volatility of the
diffusion part, respectively,𝑊 = {𝑊𝑡, 𝑡 ≥ 0} is a (standard)
Brownian motion, 𝑁 = {𝑁𝑡, 𝑡 ≥ 0} is a homogeneous
Poisson process with rate 𝜆, and {𝑌𝑖, 𝑖 = 1, 2, . . .} are
independent and identically distributed random variables
supported in R \ {0}; moreover, {𝑊𝑡, 𝑡 ≥ 0}, {𝑁𝑡, 𝑡 ≥ 0} and
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{𝑌𝑖, 𝑖 = 1, 2, . . .} are mutually independent; finally, the
probability density function (pdf) of 𝑌1 is given by

𝑓 (𝑦) = 𝑚∑
𝑗=1

𝑚𝑗∑
𝑖=1

𝑝𝑖𝑗 (𝜂𝑗)𝑖 𝑦𝑖−1(𝑖 − 1)! 𝑒−𝜂𝑗𝑦1{𝑦≥0}
+ 𝑛∑
𝑗=1

𝑛𝑗∑
𝑖=1

𝑞𝑖𝑗 (𝜃𝑗)𝑖 (−𝑦)𝑖−1(𝑖 − 1)! 𝑒𝜃𝑗𝑦1{𝑦<0},
(2)

where 𝑝𝑖𝑗, 𝑞𝑖𝑗 ≥ 0, such that∑𝑚𝑗=1∑𝑚𝑗𝑖=1 𝑝𝑖𝑗 + ∑𝑛𝑗=1∑𝑛𝑗𝑖=1 𝑞𝑖,𝑗 = 1,
Re(𝜂𝑗) and Re(𝜃𝑗) > 0 and that 𝜂𝑖 ̸= 𝜂𝑗 and 𝜃𝑖 ̸= 𝜃𝑗 for all 𝑖 ̸= 𝑗.

Another important tool to establish the key result of the
article is the infinitesimal generator of 𝑋𝑡. Note that 𝑋𝑡 is a
Markovian process and its infinitesimal generator is given by

Lℎ (𝑥) fl lim
𝑡↘0

E [ℎ (𝑋𝑡) | 𝑋0 = 𝑥] − ℎ (𝑥)𝑡
= 𝜇ℎ (𝑥) + 𝜎22 ℎ (𝑥)+ 𝜆∫+∞

−∞
(ℎ (𝑥 − 𝑦) − ℎ (𝑥)) 𝑓 (𝑦) 𝑑𝑦,

(3)

for any bounded and twice continuously differentiable func-
tion ℎ.

Throughout the rest of the paper, the law of 𝑋 such that𝑋0 = 𝑥 is denoted by P𝑥 and the corresponding expectation
by E𝑥; we write P and E when 𝑥 = 0. The Lévy exponent of𝑋 is given by

𝐺 (𝜁) = lnE [exp (𝜁𝑋𝑡)]𝑡= 𝜇𝜁 + 𝜎22 𝜁2 + 𝜆 (E [𝑒−𝜁𝑌1] − 1)= 𝜇𝜁 + 𝜎22 𝜁2
+ 𝜆( 𝑚∑

𝑗=1

𝑚𝑗∑
𝑖=1

𝑝𝑖𝑗 (𝜂𝑗)𝑖(𝜂𝑗 + 𝜁)𝑖 +
𝑛∑
𝑗=1

𝑛𝑗∑
𝑖=1

−𝑞𝑖𝑗 (𝜃𝑗)𝑖(𝜁 − 𝜃𝑗)𝑖 − 1) .
(4)

Accordingly, 𝐺 is a rational function on C. The equation𝐺(𝜁) − 𝛼 = 0 with > 0, 𝜎 > 0, and 𝜇 ∈ R yields 𝑆 = 𝑀+𝑁+2
zeros with𝑀 = ∑𝑚𝑖=1𝑚𝑖 and𝑁 = ∑𝑛𝑗=1𝑚𝑖; see Kuznetsov [16].

Let us denote the zeros of 𝐺(𝜁) − 𝛼 in the half-plane
Re(𝜁) > 0 {Re(𝜁) < 0} as 𝜌1, 𝜌2, . . . , 𝜌𝑀+1 {𝜌𝑀+2, 𝜌𝑀+3, . . . ,𝜌𝑀+𝑁+2}. Also, we assume that all zeros of𝐺(𝜁)−𝛼 are simple.

3. Distribution of the First Passage Time to
Two Flat Barriers

Define 𝜏 to be the first passage time of 𝑋𝑡 to two flat barriersℎ and𝐻 with ℎ < 𝐻; that is,𝜏 fl inf {𝑡 ≥ 0 : 𝑋𝑡 ≥ ℎ or 𝑋𝑡 ≤ 𝐻} . (5)

And let 𝜙 (𝑥) = E𝑥 [𝑒−𝛼𝜏𝑔 (𝑋𝜏)] , (6)

where 𝛼 > 0 and 𝑔 is nonnegative bounded measurable
function.

Now, by Feynman-Kac formula (see, e.g., Theorem 4.4.2,
Karatzas and Shreve [17]) we have that 𝜙(𝑥)must satisfy(L − 𝛼) 𝜙 (𝑥) = 0 in (ℎ,𝐻) ,𝜙 (𝑥) = 𝑔 (𝑥) on (−∞, ℎ] ∪ [𝐻, +∞) . (7)

Our goal in this section is to solve the boundary problem
(7) and find explicit formulae for 𝜙(𝑥). We first show that𝜙 satisfies an integrodifferential equation and then derive an
ordinary differential equation for 𝜙. Based on the ODE, we
show that 𝜙 can be written as a linear combination of known
exponential functions. As a consequence, its explicit form is
obtained, for instance, choosing 𝑔(𝑥) to be 𝑒𝛾𝑥; it is easy to
derive the joint distribution of the first passage time of 𝑋 to
two flat barriers and the process value at the first passage time.

Now, let P0(𝜁) = ∏𝑚
𝑗=1∏𝑚𝑗

𝑖=1(𝜁 + 𝜂𝑗)𝑖∏𝑛
𝑗=1∏𝑛𝑗

𝑖=1(𝜁 − 𝜃𝑗)𝑖;
then P1(𝜁) = P0(𝜁)(𝐺(𝜁) − 𝛼) is a polynomial whose zero
coincides with those of 𝐺(𝜁) − 𝛼. Also, denote by 𝐷 the
differential operator such that its characteristic polynomial is
P1(𝜁).

The following lemma will be needed for our proof of
Proposition 2.

Lemma 1. Let 𝑑(𝑘) indicate the 𝑘th derivative with respect to 𝑥
of any differentiable function and define

𝐹 (𝑖, 𝜂𝑗, 𝑥)
= ( 𝑑𝑑𝑥 + 𝜂𝑗)(𝑖) 𝑒−𝜂𝑗𝑥 ∫𝑥−∞ 𝜙 (𝑦) (𝑥 − 𝑦)𝑖−1 𝑒𝜂𝑗𝑦𝑑𝑦 (8)

with (𝑑/𝑑𝑥 + 𝜂𝑗)(𝑖) being the generalized Leibniz operator such
that

( 𝑑𝑑𝑥 + 𝜂𝑗)(𝑖) fl 𝑖∑
𝑘=0

(𝑖𝑘) (𝜂𝑗)𝑖−𝑘 𝑑(𝑘). (9)

Then, for all 𝑖 ≥ 1,
𝐹 (𝑖, 𝜂𝑗, 𝑥) = (𝑖 − 1)!𝜙 (𝑥) . (10)

Proof. We proceed by induction on 𝑖. For 𝑖 = 1, we have
𝐹 (1, 𝜂𝑗, 𝑥) = ( 𝑑𝑑𝑥 + 𝜂𝑗) 𝑒−𝜂𝑗𝑥 ∫𝑥−∞ 𝜙 (𝑦) 𝑒𝜂𝑗𝑦𝑑𝑦= −𝜂𝑗𝑒−𝜂𝑗𝑥 ∫𝑥

−∞
𝜙 (𝑦) 𝑒𝜂𝑗𝑦𝑑𝑦 + 𝜙 (𝑥)

+ 𝜂𝑗𝑒−𝜂𝑗𝑥 ∫𝑥
−∞

𝜙 (𝑦) 𝑒𝜂𝑗𝑦𝑑𝑦 = 𝜙 (𝑥) .
(11)
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Moreover,

( 𝑑𝑑𝑥 + 𝜂𝑗) 𝑒−𝜂𝑗𝑥 ∫𝑥−∞ 𝜙 (𝑦) (𝑥 − 𝑦)𝑖−1 𝑒𝜂𝑗𝑦𝑑𝑦= −𝜂𝑗𝑒−𝜂𝑗𝑥 ∫𝑥
−∞

𝜙 (𝑦) (𝑥 − 𝑦)𝑖−1 𝑒𝜂𝑗𝑦𝑑𝑦
+ (𝑖 − 1) 𝑒−𝜂𝑗𝑥 ∫𝑥

−∞
𝜙 (𝑦) (𝑥 − 𝑦)𝑖−2 𝑒𝜂𝑗𝑦𝑑𝑦

+ 𝜂𝑗𝑒−𝜂𝑗𝑥 ∫𝑥
−∞

𝜙 (𝑦) (𝑥 − 𝑦)𝑖−1 𝑒𝜂𝑗𝑦𝑑𝑦
= (𝑖 − 1) 𝑒−𝜂𝑗𝑥 ∫𝑥

−∞
𝜙 (𝑦) (𝑥 − 𝑦)𝑖−2 𝑒𝜂𝑗𝑦𝑑𝑦.

(12)

It follows inductively that

𝐹 (𝑖, 𝜂𝑗, 𝑥) = ( 𝑑𝑑𝑥 + 𝜂𝑗)(𝑖)⋅ 𝑒−𝜂𝑗𝑥 ∫𝑥
−∞

𝜙 (𝑦) (𝑥 − 𝑦)𝑖−1 𝑒𝜂𝑗𝑦𝑑𝑦
= ( 𝑑𝑑𝑥 + 𝜂𝑗)(𝑖−1) ( 𝑑𝑑𝑥 + 𝜂𝑗)⋅ 𝑒−𝜂𝑗𝑥 ∫𝑥

−∞
𝜙 (𝑦) (𝑥 − 𝑦)𝑖−1 𝑒𝜂𝑗𝑦𝑑𝑦 = (𝑖 − 1)

⋅ ( 𝑑𝑑𝑥 + 𝜂𝑗)(𝑖−1) 𝑒−𝜂𝑗𝑥 ∫𝑥−∞ 𝜙 (𝑦) (𝑥 − 𝑦)𝑖−2 𝑒𝜂𝑗𝑦𝑑𝑦= (𝑖 − 1) 𝐹 (𝑖 − 1, 𝜂𝑗, 𝑥) = (𝑖 − 1)!𝐹 (1, 𝜂𝑗, 𝑥)= (𝑖 − 1)!𝜙 (𝑥) ,

(13)

which is the desired result.

We may now state the following.

Proposition 2. Suppose a bounded solution 𝜙 defined onR to
the boundary value problem (7) exists. Then onR \ {ℎ,𝐻}, 𝜙 is
infinitely differentiable and satisfies the ODE,𝐷𝜙 ≡ 0, 𝑜𝑛 (ℎ,𝐻) . (14)

Hence, on (ℎ,𝐻), 𝜙(𝑥) = ∑𝑆𝑘=1 𝑄𝑘𝑒𝜌𝑘𝑥 for some constants 𝑄𝑘.
Proof. Applying the infinitesimal generatorL to the function𝜙, we obtain

L𝜙 (𝑥) = 𝜎22 𝜙 (𝑥) + 𝜇𝜙 (𝑥) + 𝜆 𝑚∑
𝑖=1

𝑚𝑖∑
𝑗=1

𝑝𝑖𝑗
⋅ (𝜂𝑗)𝑖(𝑖 − 1)! 𝑒−𝜂𝑗𝑥 ∫𝑥−∞ 𝜙 (𝑦) (𝑥 − 𝑦)𝑖−1 𝑒𝜂𝑗𝑦𝑑𝑦
+ 𝜆 𝑚∑

𝑗=1

𝑚𝑗∑
𝑖=1

𝑞𝑖𝑗

⋅ (𝜃𝑗)𝑖(𝑖 − 1)! 𝑒𝜃𝑗𝑥 ∫+∞𝑥 𝜙 (𝑦) (𝑦 − 𝑥)𝑖−1 𝑒−𝜃𝑗𝑦𝑑𝑦
− 𝜆𝜙 (𝑥) .

(15)

Next, 𝜙 will be shown to satisfy an ODE. Using Lemma 1, we
get, for 𝑗 = 1, 2, . . . , 𝑚, 𝑖 = 1, 2, . . . , 𝑚𝑗,

( 𝑑𝑑𝑥 + 𝜂𝑗)(𝑖) 𝑒−𝜂𝑗𝑥 ∫𝑥−∞ (𝑥 − 𝑦)𝑖−1 𝜙 (𝑦) 𝑒𝜂𝑗𝑦𝑑𝑦= (𝑖 − 1)!𝜙 (𝑥) . (16)

The same computation will yield, for 𝑗 = 1, 2, . . . , 𝑛, 𝑖 =1, 2, . . . , 𝑛𝑗,
( 𝑑𝑑𝑥 − 𝜃𝑗)(𝑖) 𝑒𝜃𝑗𝑥 ∫+∞𝑥 (𝑦 − 𝑥)𝑖−1 𝜙 (𝑦) 𝑒−𝜃𝑗𝑦𝑑𝑦
= − (𝑖 − 1)!𝜙 (𝑥) . (17)

Now, since 𝜎 > 0 and (L − 𝛼)𝜙 ≡ 0 then, thanks to
Proposition 3.3 in the work of Chen et al. [18], 𝜙 is infinitely
differentiable on (ℎ,𝐻) and
0 = 𝑚∏

𝑗=1

𝑚𝑗∏
𝑖=1

( 𝑑𝑑𝑥 + 𝜂𝑗)(𝑖) 𝑛∏
𝑗=1

𝑛𝑗∏
𝑖=1

( 𝑑𝑑𝑥 − 𝜃𝑗)(𝑖) (L − 𝛼) 𝜙 (𝑥)
= 𝑚∏
𝑗=1

𝑚𝑗∏
𝑖=1

( 𝑑𝑑𝑥 + 𝜂𝑗)(𝑖)
⋅ 𝑛∏
𝑗=1

𝑛𝑗∏
𝑖=1

( 𝑑𝑑𝑥 − 𝜃𝑗)(𝑖) (𝜎22 𝑑2𝑑𝑥2 + 𝜇 𝑑𝑑𝑥 − 𝜆 − 𝛼)𝜙 (𝑥)
+ 𝜆 𝑚∑

𝑗=1

𝑚𝑗∑
𝑖=1

𝑚∏
𝑘=1,𝑘 ̸=𝑗

𝑚𝑗∏
𝑖=1

( 𝑑𝑑𝑥 + 𝜂𝑘)(𝑖) 𝑝𝑖𝑗 (𝜂𝑗)𝑖(𝑖 − 1)! (𝑖 − 1)!𝜙 (𝑥)
− 𝜆 𝑛∑

𝑗=1

𝑛𝑗∑
𝑖=1

𝑛∏
𝑘=1,𝑘 ̸=𝑗

𝑛𝑗∏
𝑖=1

( 𝑑𝑑𝑥 − 𝜃𝑘)(𝑖) 𝑞𝑖𝑗 (𝜃𝑗)𝑖(𝑖 − 1)! (𝑖 − 1)!𝜙 (𝑥) .

(18)

Hence, (18) transforms the integrodifferential equation (L −𝛼)𝜙 ≡ 0 into an ODE : �̂�𝜙 ≡ 0, where �̂� is high order
differential operator.

To complete the proof, �̂�must be shown to coincide with𝐷. To show that the characteristic polynomials of 𝐷 and �̂�
will suffice, write P̂(𝜁) as the characteristic polynomial of �̂�.
Then, by (18), P̂ is given by

P̂ (𝜁) = 𝑚∏
𝑗=1

𝑚𝑗∏
𝑖=1

(𝜁 + 𝜂𝑗)𝑖 𝑛∏
𝑗=1

𝑛𝑗∏
𝑖=1

(𝜁 − 𝜃𝑗)𝑖 [[𝜇𝜁 + 𝜎
22 𝜁2

+ 𝜆( 𝑚∑
𝑗=1

𝑚𝑗∑
𝑖=1

𝑝𝑖𝑗 (𝜂𝑗)𝑖(𝜁 + 𝜂𝑗)𝑖 +
𝑛∑
𝑗=1

𝑛𝑗∑
𝑖=1

−𝑞𝑖𝑗 (𝜃𝑗)𝑖(𝜁 − 𝜃𝑖)𝑖 − 1)
− 𝛼]] = P0 (𝜁) (𝐺 (𝜁) − 𝛼) .

(19)
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This equation reveals that the characteristic polynomial
P1(𝜁) of 𝐷 equals that, P̂(𝜁), of �̂�, which completes the
proof.

Proposition 3. Suppose that 𝜙 is a bounded solution to
the boundary value problem (7) and, on (ℎ,𝐻), 𝜙(𝑥) =∑𝑆𝑘=1 𝑄𝑘𝑒𝜌𝑘𝑥 for some constants 𝑄𝑘. Then the constant vector𝑄 satisfies the equation

𝐴𝑄 = 𝑉𝑔, (20)

where 𝐴 is 𝑆 × 𝑆 nonsingular matrix given by

𝐴 = (𝑍1𝑍2) , (21)

𝑍1

=

((((((((((((((((((((((((
(

𝜂1𝜌1 + 𝜂1 𝑒𝜌1ℎ ⋅ ⋅ ⋅ 𝜂1𝜌𝑆 + 𝜂1 𝑒𝜌𝑆ℎ... d
...

( 𝜂1𝜌1 + 𝜂1)𝑚1 𝑒𝜌1ℎ ⋅ ⋅ ⋅ ( 𝜂1𝜌𝑆 + 𝜂1)𝑚1 𝑒𝜌𝑆ℎ... d
...𝜂𝑚𝜌1 + 𝜂𝑚 𝑒𝜌1ℎ ⋅ ⋅ ⋅ 𝜂𝑚𝜌𝑆 + 𝜂𝑚 𝑒𝜌𝑆ℎ... d
...

( 𝜂𝑚𝜌1 + 𝜂𝑚)𝑚𝑚 𝑒𝜌1ℎ ⋅ ⋅ ⋅ ( 𝜂𝑚𝜌𝑆 + 𝜂𝑚)𝑚𝑚 𝑒𝜌𝑆ℎ𝑒𝜌1ℎ ⋅ ⋅ ⋅ 𝑒𝜌𝑆ℎ

))))))))))))))))))))))))
)

(22)

𝑍2

=

((((((((((((((((((((((((
(

𝜃1𝜌1 − 𝜃1 𝑒𝜌1𝐻 ⋅ ⋅ ⋅ 𝜃1𝜌𝑆 − 𝜃1 𝑒𝜌𝑆𝐻... d
...

( 𝜃1𝜌1 − 𝜃1)𝑛1 𝑒𝜌1𝐻 ⋅ ⋅ ⋅ ( 𝜃1𝜌𝑆 − 𝜃1)𝑛1 𝑒𝜌𝑆𝐻... d
...𝜃𝑛𝜌1 − 𝜃𝑛 𝑒𝜌1𝐻 ⋅ ⋅ ⋅ 𝜃𝑛𝜌𝑆 − 𝜃𝑛 𝑒𝜌𝑆𝐻... d
...

( 𝜃𝑛𝜌1 − 𝜃𝑛)𝑛𝑛 𝑒𝜌1𝐻 ⋅ ⋅ ⋅ ( 𝜃𝑛𝜌𝑆 − 𝜃𝑛)𝑛𝑛 𝑒𝜌𝑆𝐻𝑒𝜌1𝐻 ⋅ ⋅ ⋅ 𝑒𝜌𝑆𝐻

))))))))))))))))))))))))
)

(23)

and 𝑉𝑔 = (𝑉𝑔,1(𝑗, 𝑖), 𝑗 = 1, 2 . . . , 𝑚, 𝑖 = 1, 2 . . . , 𝑚𝑗, 𝑔(ℎ),𝑉𝑔,2(𝑗, 𝑖), 𝑗 = 1, 2 . . . , 𝑛, 𝑖 = 1, 2 . . . , 𝑛𝑗, 𝑔(𝐻)),
𝑉𝑔,1 (𝑗, 𝑖) = ∫0

−∞
𝑔 (𝑦 + ℎ) (𝜂𝑗)𝑖 (−𝑦)𝑖−1 𝑒𝜂𝑗𝑦(𝑖 − 1)! 𝑑𝑦, (24)

𝑉𝑔,2 (𝑗, 𝑖) = ∫+∞
0

𝑔 (𝑦 + 𝐻) (𝜃𝑗)𝑖 𝑦𝑖−1𝑒−𝜃𝑗𝑦(𝑖 − 1)! 𝑑𝑦. (25)

Proof. Since (L−𝛼)𝜙 = 0 and 𝜙(𝑥) = ∑𝑆𝑘=1 𝑄𝑘𝑒𝜌𝑘𝑥 on (ℎ,𝐻),
which entails0 = (L − 𝛼) 𝜙 (𝑥)

= 𝜎22 𝜙 (𝑥) + 𝜇𝜙 (𝑥) + 𝜆∫+∞−∞ 𝜙 (𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦
− (𝜆 + 𝛼) 𝜙 (𝑥)

= 𝑆∑
𝑘=1

𝑄𝑘𝑒𝜌𝑘𝑥 (𝜎22 𝜌2𝑘 + 𝜇𝜌𝑘 − (𝜆 + 𝛼))
+ 𝜆∫+∞

−∞
𝜙 (𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦,

(26)

furthermore∫+∞
−∞

𝜙 (𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦 = (∫ℎ
−∞

+∫+∞
𝐻

)𝑔 (𝑦) 𝑓 (𝑥
− 𝑦) 𝑑𝑦 + ∫𝑥−ℎ

𝑥−𝐻
𝜙 (𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦

= 𝑚∑
𝑗=1

𝑚𝑗∑
𝑖=1

𝑝𝑖𝑗𝑒−𝜂𝑗(𝑥−ℎ) ∫0
−∞

(𝜂𝑗)𝑖(𝑖 − 1)!𝑔 (𝑦 + ℎ)
⋅ (𝑥 − ℎ − 𝑦)𝑖−1 𝑒𝜂𝑗𝑦𝑑𝑦
+ 𝑛∑
𝑗=1

𝑛𝑗∑
𝑖=1

𝑞𝑖𝑗𝑒𝜃𝑗(𝑥−𝐻) ∫+∞
0

(𝜃𝑗)𝑖(𝑖 − 1)!𝑔 (𝑦 + 𝐻)
⋅ (𝑦 + 𝐻 − 𝑥)𝑖−1 𝑒−𝜃𝑗𝑦𝑑𝑦 + 𝑚∑

𝑗=1

𝑚𝑗∑
𝑖=1

𝑝𝑖𝑗 𝑆∑
𝑘=1

𝑄𝑘𝑒𝜌𝑘𝑥
⋅ (𝜂𝑗)𝑖(𝑖 − 1)! ∫𝑥−ℎ0

𝑦𝑖−1𝑒−(𝜂𝑗+𝜌𝑘)𝑦𝑑𝑦
+ 𝑚∑
𝑗=1

𝑚𝑗∑
𝑖=1

𝑞𝑖𝑗 𝑆∑
𝑘=1

𝑄𝑘𝑒𝜌𝑘𝑥 (𝜃𝑗)𝑖(𝑖 − 1)! ∫0𝑥−𝐻 𝑦𝑖−1𝑒(𝜃𝑗−𝜌𝑘)𝑦𝑑𝑦.

(27)

Now, since (𝑎 ± 𝑦)𝑖−1 = ∑𝑖−1𝑙=0 ( 𝑖−1𝑙 ) (±𝑦)𝑙(𝑎)𝑖−1−𝑙,∫𝑎
0
𝑦𝑖−1𝑒−𝛽𝑦𝑑𝑦 = 𝛽−𝑖Γ (𝑖, 𝑎𝛽)

= 𝛽−𝑖 (𝑖 − 1)! (1 − 𝑒−𝑎𝛽𝑖−1∑
𝑙=0

(𝑎𝛽)𝑙𝑙! ) (28)
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with Γ(𝑖, 𝑥) being the incomplete gamma function (see
Gradshteyn and Ryzhik [19, page 342]).

Consequently, by combining (26) and (27) and taking into
account the fact that 𝐺(𝜌𝑘) − 𝛼 = 0 for all 𝑘 = 1, 2, . . . , 𝑆, we
obtain

0 = 𝑚∑
𝑗=1

𝑚𝑗∑
𝑖=1

𝑝𝑖𝑗𝑒−𝜂𝑗(𝑥−ℎ) ∫0
−∞

(𝜂𝑗)𝑖(𝑖 − 1)!𝑔 (𝑦 + ℎ)
⋅ 𝑖−1∑
𝑙=0

(𝑖 − 1𝑙 ) (𝑥 − ℎ)𝑙 (−𝑦)𝑖−1−𝑙 𝑒𝜂𝑗𝑦𝑑𝑦
+ 𝑛∑
𝑗=1

𝑛𝑗∑
𝑖=1

𝑞𝑖𝑗𝑒𝜃𝑗(𝑥−𝐻) ∫+∞
0

(𝜃𝑗)𝑖(𝑖 − 1)!𝑔 (𝑦 + 𝐻)
⋅ 𝑖−1∑
𝑙=0

(𝑖 − 1𝑙 ) (𝐻 − 𝑥)𝑙 (𝑦)𝑖−1−𝑙 𝑒−𝜃𝑗𝑦𝑑𝑦
+ 𝑆∑
𝑘=1

𝑄𝑘𝑒𝜌𝑘ℎ 𝑚∑
𝑗=1

𝑚𝑗∑
𝑖=1

− 𝑝𝑖𝑗𝑒−𝜂𝑗(𝑥−ℎ)
⋅ (𝜂𝑗)𝑖(𝜂𝑗 + 𝜌𝑘)𝑖

𝑖−1∑
𝑙=0

[(𝜂𝑗 + 𝜌𝑘) (𝑥 − ℎ)]𝑙𝑙!
+ 𝑆∑
𝑘=1

𝑄𝑘𝑒𝜌𝑘𝐻 𝑚∑
𝑗=1

𝑚𝑗∑
𝑖=1

− 𝑞𝑖𝑗𝑒𝜃𝑗(𝑥−𝐻)
⋅ (𝜃𝑗)𝑖(𝜌𝑘 − 𝜃𝑗)𝑖

𝑖−1∑
𝑙=0

[(𝜃𝑗 − 𝜌𝑘) (𝑥 − 𝐻)]𝑙𝑙! .

(29)

Comparing 𝑒−𝜂𝑗(𝑥−ℎ) and 𝑒𝜃𝑗(𝑥−𝐻) yields (20), which entails the
desired result.

Lemma 4. For a given value of 𝛼 > 0 the matrix 𝐴 given by
(21) is invertible.

Proof. Assume that 𝐴𝐶 = 0 for some vector 𝐶 = (𝐶1, 𝐶2, . . . ,𝐶𝑆)𝑇. Consider the function 𝑉(𝑥) = ∑𝑆𝑘=1 𝐶𝑘𝑒𝜌𝑘𝑥 for 𝑥 ∈(ℎ,𝐻) and 𝑉(𝑥) = 0, otherwise, with 𝜌1, . . . , 𝜌𝑆 to be the
distinct zeros of the equation 𝐺(𝑥) − 𝛼 = 0. Since 𝐴𝐶 = 0
and 𝑉(𝑥) is a solution to the boundary value problem,(L − 𝛼) 𝜙 (𝑥) = 0, in (ℎ,𝐻) ,𝜙 (𝑥) = 0, on (−∞, ℎ] ∪ [𝐻, +∞) . (30)

From the uniqueness of solutions to the boundary value prob-
lem (30),𝑉(𝑥) ≡ 0 in (ℎ,𝐻). Now, since {𝑒𝜌𝑘𝑥, 1 ≤ 𝑘 ≤ 𝑆} are
linearly independent then 𝐶 = 0 and 𝐴 is invertible.

In the following, y ⋅z is written for the usual inner product
of the vectors y and z inC𝑆 and for every real value 𝑥, e𝜌𝛼(𝑥) =[𝑒𝜌1𝑥, 𝑒𝜌2𝑥, . . . , 𝑒𝜌𝑆𝑥], where 𝜌1, 𝜌2, . . . , 𝜌𝑆 are the 𝑆 = 𝑁+𝑀+2
roots of the equation 𝐺(𝜁) = 𝛼. Our main result is the
following.

Theorem 5. For any 𝛼 ≥ 0 and a nonnegative bounded
measurable function 𝑔 on (ℎ,𝐻)𝑐, the following assertions are
equivalent:

(a) 𝜙(𝑥) = E𝑥[𝑒−𝛼𝜏𝑔(𝑋𝜏)], where 𝜏 fl inf{𝑡 ≥ 0 : 𝑋𝑡 ≥ℎ 𝑜𝑟 𝑋𝑡 ≤ 𝐻}.
(b) The function 𝜙(𝑥) solves the boundary problem (7).
(c) The function 𝜙(𝑥) is given by the formula

𝜙 (𝑥) = {{{Q (𝑔) ⋅ e𝜌𝛼 (𝑥) , 𝑖𝑓 𝑥 ∈ (ℎ,𝐻) ,𝑔 (𝑥) , 𝑖𝑓 𝑥 ∉ (ℎ,𝐻) , (31)

withQ(𝑔) = 𝐴−1𝑉𝑔 and 𝐴 and 𝑉𝑔 are given by formu-
las (21) and (24), respectively.

Proof. The fact that (b) implies (c) is straightforward conse-
quence of Proposition 3. Conversely, consider the function𝑉(𝑥) = ∑𝑆𝑘=1 𝑄𝑘𝑒𝜌𝑘𝑥 for 𝑥 ∈ (ℎ,𝐻) and 𝑉(𝑥) = 𝑔(𝑥) other-
wise, where 𝑔 is a bounded function on (ℎ,𝐻)𝑐 and 𝑄𝑘’s are
given constants. Then the same reasoning as in Proposition 3
shows that(L − 𝛼)𝑉 (𝑥)

= 𝑚∑
𝑗=1

𝑚𝑗∑
𝑖=1

𝑝𝑖𝑗𝑒−𝜂𝑗(𝑥−ℎ) ∫0
−∞

(𝜂𝑗)𝑖(𝑖 − 1)!𝑔 (𝑦 + ℎ)
⋅ (𝑥 − ℎ − 𝑦)𝑖−1 𝑒𝜂𝑗𝑦𝑑𝑦
+ 𝑛∑
𝑗=1

𝑛𝑗∑
𝑖=1

𝑞𝑖𝑗𝑒𝜃𝑗(𝑥−𝐻) ∫+∞
0

(𝜃𝑗)𝑖(𝑖 − 1)!𝑔 (𝑦 + 𝐻)
⋅ (𝑦 + 𝐻 − 𝑥)𝑖−1 𝑒−𝜃𝑗𝑦𝑑𝑦 + 𝑚∑

𝑗=1

𝑚𝑗∑
𝑖=1

𝑝𝑖𝑗 𝑆∑
𝑘=1

𝑄𝑘𝑒𝜌𝑘𝑥
⋅ (𝜂𝑗)𝑖(𝑖 − 1)! ∫𝑥−ℎ0

𝑦𝑖−1𝑒−(𝜂𝑗+𝜌𝑘)𝑦𝑑𝑦
+ 𝑚∑
𝑗=1

𝑚𝑗∑
𝑖=1

𝑞𝑖𝑗 𝑆∑
𝑘=1

𝑄𝑘𝑒𝜌𝑘𝑥 (𝜃𝑗)𝑖(𝑖 − 1)! ∫0𝑥−𝐻 𝑦𝑖−1𝑒(𝜃𝑗−𝜌𝑘)𝑦𝑑𝑦.

(32)

Thanks to (20), we conclude that (c) implies (b).
Let us finally assume that (a) holds. Then by Feynman-

Kac formula, the function 𝜙(𝑥) solves the boundary problem
(7); hence (b) holds. Conversely, thanks to Proposition 4.1 in
the work of Chen et al. [18], the boundary problem (7) has
a unique solution; consequently (b) implies (a). The proof is
complete.

As an illustration of the main result of Theorem 5, we
can obtain closed-form expressions for the expectations of a
variety of functions with respect to 𝜏 and 𝑋𝜏. For instance,
choosing 𝑔(𝑥) = 𝑒𝛾𝑥 in the above theorem, we can derive the
joint Laplace transform of (𝜏, 𝑋𝜏), which is presented in the
following corollary.
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Corollary 6. For any 𝛼 > 0, 𝛾 > 0,
E𝑥 [𝑒−𝛼𝜏+𝛾𝑋𝜏] = {{{𝑄 ⋅ e

𝜌
𝛼 (𝑥) , 𝑖𝑓 𝑥 ∈ (ℎ,𝐻) ,𝑒𝛾𝑥, 𝑖𝑓 𝑥 ∉ (ℎ,𝐻) , (33)

where 𝑄 = (𝑄1, 𝑄2, . . . , 𝑄𝑆)𝑇 = 𝐴−1𝑉(𝛾), 𝐴 is given by for-
mula (21), and 𝑉(𝛾) is given by

𝑉 (𝛾) = ( 𝑒𝛾ℎ(𝛾 + 𝜂𝑗)𝑖 , 𝑗 = 1, 2 . . . , 𝑚, 𝑖
= 1, 2 . . . , 𝑚𝑗, 𝑒𝛾ℎ, 𝑒𝛾𝐻(𝛾 − 𝜃𝑗)𝑖 , 𝑗 = 1, 2 . . . , 𝑛, 𝑖
= 1, 2 . . . , 𝑛𝑗, 𝑒𝛾𝐻) .

(34)

As another consequence of Theorem 5 and Lebesgue’s
dominated convergence theorem, we get the following for the
asymptotic case when ℎ → −∞ and𝐻 → +∞, respectively.

Corollary 7. For two flat barriers ℎ and 𝐻 (ℎ < 𝐻), define
the first downwards passage time under ℎ and the first upwards
passage time over𝐻 by𝜏+ℎ fl inf {𝑡 ≥ 0 : 𝑋𝑡 ≥ ℎ} ,𝜏−𝐻 fl inf {𝑡 ≥ 0 : 𝑋𝑡 ≤ 𝐻} . (35)

Then for 𝛼 > 0, one has the following:
E𝑥 [𝑒−𝛼𝜏+ℎ 𝑔 (𝑋𝜏+

ℎ
)] = {{{𝑄1 ⋅ e1

𝜌
𝛼 (𝑥) , 𝑖𝑓 𝑥 ≥ ℎ,𝑔 (𝑥) , 𝑖𝑓 𝑥 < ℎ,

E𝑥 [𝑒−𝛼𝜏−𝐻𝑔 (𝑋𝜏−𝐻
)] = {{{𝑄2 ⋅ e2

𝜌
𝛼 (𝑥) , 𝑖𝑓 𝑥 ≤ 𝐻,𝑔 (𝑥) , 𝑖𝑓 𝑥 > 𝐻,

(36)

with𝑄1 = (𝑄1, 𝑄2, . . . , 𝑄𝑀+1)𝑇 = 𝐴−1+ 𝑉+,𝑄2 = (𝑄𝑀+2, 𝑄𝑀+3, . . . , 𝑄𝑆)𝑇 = 𝐴−1− 𝑉−,
e1
𝜌
𝛼 (𝑥) = [𝑒𝜌1𝑥, 𝑒𝜌2𝑥, . . . , 𝑒𝜌𝑀+1𝑥] ,

e2
𝜌
𝛼 (𝑥) = [𝑒𝜌𝑀+2𝑥, 𝑒𝜌𝑀+3𝑥, . . . , 𝑒𝜌𝑆𝑥] ,𝑉+ = (𝑉𝑔,+ (𝑗, 𝑖) , 𝑗 = 1, 2 . . . , 𝑚, 𝑖 = 1, 2 . . . , 𝑚𝑗, 𝑔 (ℎ)) ,𝑉− = (𝑉𝑔,− (𝑗, 𝑖) , 𝑗 = 1, 2 . . . , 𝑛, 𝑖 = 1, 2 . . . , 𝑛𝑗, 𝑔 (𝐻)) .

𝑉𝑔,+ (𝑗, 𝑖) = ∫0
−∞

𝑔 (𝑦 + ℎ) (𝜂𝑗)𝑖 (−𝑦)𝑖−1 𝑒𝜂𝑗𝑦(𝑖 − 1)! 𝑑𝑦,
𝑉𝑔,− (𝑗, 𝑖) = ∫+∞

0
𝑔 (𝑦 + 𝐻) (𝜃𝑗)𝑖 𝑦𝑖−1𝑒−𝜃𝑗𝑦(𝑖 − 1)! 𝑑𝑦,

𝐴+

=

((((((((((((((((((((((((
(

𝜂1𝜌1 + 𝜂1 𝑒𝜌1ℎ ⋅ ⋅ ⋅ 𝜂1𝜌𝑀+1 + 𝜂1 𝑒𝜌𝑀+1ℎ... d
...

( 𝜂1𝜌1 + 𝜂1)𝑚1 𝑒𝜌1ℎ ⋅ ⋅ ⋅ ( 𝜂1𝜌𝑀+1 + 𝜂1)𝑚1 𝑒𝜌𝑀+1ℎ... d
...𝜂𝑚𝜌1 + 𝜂𝑚 𝑒𝜌1ℎ ⋅ ⋅ ⋅ 𝜂𝑚𝜌𝑀+1 + 𝜂𝑚 𝑒𝜌𝑀+1ℎ... d
...

( 𝜂𝑚𝜌1 + 𝜂𝑚)𝑚𝑚 𝑒𝜌1ℎ ⋅ ⋅ ⋅ ( 𝜂𝑚𝜌𝑀+1 + 𝜂𝑚)𝑚𝑚 𝑒𝜌𝑀+1ℎ𝑒𝜌1ℎ ⋅ ⋅ ⋅ 𝑒𝜌𝑀+1ℎ

))))))))))))))))))))))))
)

,

𝐴−

=

((((((((((((((((((((((((
(

𝜃1𝜌𝑀+2 − 𝜃1 𝑒𝜌𝑀+2𝐻 ⋅ ⋅ ⋅ 𝜃1𝜌𝑆 + 𝜃1 𝑒𝜌𝑆𝐻... d
...

( 𝜃1𝜌𝑀+2 − 𝜃1)𝑛1 𝑒𝜌𝑀+2𝐻 ⋅ ⋅ ⋅ ( 𝜃1𝜌𝑆 − 𝜃1)𝑛1 𝑒𝜌𝑆𝐻... d
...𝜃𝑛𝜌𝑀+2 − 𝜃𝑛 𝑒𝜌𝑀+2𝐻 ⋅ ⋅ ⋅ 𝜃𝑛𝜌𝑆 − 𝜃𝑛 𝑒𝜌𝑆𝐻... d
...( 𝜃𝑛𝜌𝑀+2 − 𝜃𝑛)𝑛𝑛 𝑒𝜌𝑀+2𝐻 ⋅ ⋅ ⋅ ( 𝜃𝑛𝜌𝑆 − 𝜃𝑛)𝑛𝑛 𝑒𝜌𝑆𝐻𝑒𝜌𝑀+2𝐻 ⋅ ⋅ ⋅ 𝑒𝜌𝑆𝐻

))))))))))))))))))))))))
)

.

(37)

4. Pricing Double-Barrier Options

Wenow showhowour theoretical results can be easily applied
to derive pricing formulae for standard double-barrier
options. We assume the asset price process {𝑆𝑡 : 𝑡 ≥ 0} under
the risk-neutral probability measure P is defined as 𝑆𝑡 fl 𝑒𝑋𝑡 .
The log-return process {𝑋𝑡 : 𝑡 ≥ 0} is given by (1) where𝑋0 =
log(𝑆0) and 𝜇 fl 𝑟 −𝜎2/2 −𝜆E[𝑒𝑌1 − 1] (i.e., E[𝑒−𝑟−𝑇𝑆𝑇] = 𝑆0),
where 𝑟 > 0 is the risk-free rate. More recently, Cai et al. [20]
presented the following.

Thepayoffof a standard double-barrier option is activated
(knocked in) or extinguished (knocked out) when the price of
the underlying asset crosses barriers. For example, a knock-
out call option will not give the holder the payoff of a Euro-
pean call option unless the underlying price remains within a
prespecified range before the option matures. More precisely,
consider an interval (𝐿, 𝑈) and the initial asset price 𝑆0 is in it.
The holder will receive (𝑆𝑇 − 𝐾)+1{𝜏>𝑇} at maturity 𝑇, where𝜏 = inf {𝑡 ≥ 0 : 𝑆𝑡 ≤ 𝑈 or 𝑆𝑡 ≥ 𝐿} . (38)
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Under the risk-neutral probability measure, the price of such
option with maturity 𝑇 and strike𝐾 is given by𝑒−𝑟𝑇E [(𝑆𝑇 − 𝐾)+ 1{𝜏>𝑇} | 𝑆0] . (39)

Make a change variable 𝜅 fl − log𝐾. Then, the expectation
can be represented as𝐶 (𝜅, 𝑇) fl 𝑒−𝑟𝑇E𝑥 [(𝑆0𝑒𝑋𝑇 − 𝑒−𝜅)+ 1{𝜏>𝑇}] . (40)

Define �̂�(𝛼, 𝛾) and Δ̂(𝛼, 𝛾) as the double Laplace transforms
of the price 𝐶(𝜅, 𝑇) in (40) and the delta Δ(𝛼, 𝛾) =𝜕𝐶(𝜅, 𝑇)/𝜕𝑆0 with respect to 𝑇 and 𝜅, respectively; that is,

�̂� (𝛼, 𝛾) = ∫∞
0
∫∞
−∞

𝑒−𝛾𝜅−𝛼𝑇𝐶 (𝜅, 𝑇) 𝑑𝜅 𝑑𝑇,
Δ̂ (𝛼, 𝛾) = ∫∞

0
∫∞
−∞

𝑒−𝛾𝜅−𝛼𝑇Δ (𝛼, 𝛾) 𝑑𝜅 𝑑𝑇. (41)

Theorem 8. For any 𝛾 > 0 and 𝛼 > max(𝐺(𝛾 + 1) − 𝑟, 0)
�̂� (𝛼, 𝛾) = 𝑆𝛾+10𝛾 (𝛾 + 1) (𝐺 (𝛾 + 1) − (𝛼 + 𝑟)) (𝑄⋅ e𝜌𝛼+𝑟 (𝑥) − 𝑒(𝛾+1)𝑥) 1(log(𝐿/𝑆0),log(𝑈/𝑆0)) (𝑥) , (42)

Δ̂ (𝛼, 𝛾) = 𝑆𝛾0𝛾 (𝐺 (𝛾 + 1) − (𝛼 + 𝑟)) (𝑄 ⋅ e𝜌𝛼+𝑟 (𝑥)− 𝑒(𝛾+1)𝑥) 1(log(𝐿/𝑆0),log(𝑈/𝑆0)) (𝑥) , (43)

where 𝑄 = 𝐴−1𝑉(𝛾 + 1) and 𝐴 associated with 𝑟 + 𝑎 is defined
as in Theorem 5 and 𝑉 is given by formula (34).

Proof. Equation (43) is an easy consequence of (42). To prove
(43), using an idea of Kou et al. [21] (see also Cai et al. [20])
along with a change of the order of integration and the inte-
gral with respect to 𝜅, we obtain
�̂� (𝛼, 𝛾) = ∫∞

0
𝑑𝑇∫∞

−∞
𝑒−𝛾𝜅−𝛼𝑇𝐶 (𝜅, 𝑇) 𝑑𝜅

= E𝑥 [∫𝜏
0
𝑒−(𝛼+𝑟)𝑇𝑑𝑇∫∞

−(log𝑆0+𝑋𝑇)
𝑒−𝛾𝜅 (𝑆0𝑒𝑋𝑇 − 𝑒−𝜅) 𝑑𝜅]

= 𝑆𝛾+10𝛾 (𝛾 + 1)E𝑥 [∫𝜏0 𝑒−(𝛼+𝑟)𝑇+(𝛾+1)𝑋𝑇𝑑𝑇] .
(44)

Now, we suppose that 𝐺(𝛾 + 1) < 𝛼 + 𝑟 and applying Itô’s
formula to the process {𝑒−(𝛼+𝑟)𝑡+(𝛾+1)𝑋𝑡 , 𝑡 ≥ 0}, we obtain𝑀𝑡 fl 𝑒−(𝛼+𝑟)(𝑡∧𝜏)+(𝛾+1)𝑋𝑡∧𝜏 − 𝑒(𝛾+1)𝑋0

− ∫𝑡∧𝜏
0

𝑒−(𝛼+𝑟)𝑇 (− (𝛼 + 𝑟) 𝑒(𝛾+1)𝑋𝑠 +L𝑒(𝛾+1)𝑋𝑇) 𝑑𝑇
= 𝑒−(𝛼+𝑟)(𝑡∧𝜏)+(𝛾+1)𝑋𝑡∧𝜏 − 𝑒(𝛾+1)𝑋0
− (𝐺 (𝛾 + 1) − (𝛼 + 𝑟)) ∫𝑡∧𝜏

0
𝑒−𝛼𝑇+(𝛾+1)𝑋𝑇𝑑𝑇

(45)

is a local martingale starting from𝑀0 = 0. Since 𝐺(𝛾 + 1) <𝛼 + 𝑟, it follows from Fubini’s theorem that

E [∫𝑡
0
𝑒−(𝛼+𝑟)𝑇+(𝛾+1)𝑋𝑇𝑑𝑇]

= ∫𝑡
0
𝑒−(𝛼+𝑟)𝑇E [𝑒(𝛾+1)𝑋𝑇] 𝑑𝑇

= ∫𝑡
0
𝑒(−(𝛼+𝑟)+𝐺(𝛾+1))𝑇𝑑𝑇

= 1(− (𝛼 + 𝑟) + 𝐺 (𝛾 + 1)) [𝑒(−(𝛼+𝑟)+𝐺(𝛾+1))𝑡 − 1]∀𝑡 ≥ 0.

(46)

It follows from the dominated convergence theorem that{𝑀𝑡; 𝑡 ≥ 0} is actually a martingale. In particular

E𝑥 [𝑒−(𝛼+𝑟)𝜏+(𝛾+1)𝑋𝜏 − 𝑒(𝛾+1)𝑥]
= (𝐺 (𝛾 + 1) − (𝛼 + 𝑟))E𝑥 [∫𝜏

0
𝑒−(𝛼+𝑟)𝑇+(𝛾+1)𝑋𝑇𝑑𝑇] . (47)

Combining (44) and (47) and applying Corollary 6 we can
therefore conclude that�̂� (𝛼, 𝛾)

= 𝑆𝛾+10𝛾 (𝛾 + 1) (𝐺 (𝛾 + 1) − (𝛼 + 𝑟)) (E𝑥 [𝑒−(𝛼+𝑟)𝜏+(𝛾+1)𝑋𝜏]
− 𝑒(𝛾+1)𝑥) = 𝑆𝛾+10𝛾 (𝛾 + 1) (𝐺 (𝛾 + 1) − (𝛼 + 𝑟)) (𝑄⋅ e𝜌𝛼+𝑟 (𝑥) − 𝑒(𝛾+1)𝑥) 1(log(𝐿/𝑆0),log(𝑈/𝑆0)) (𝑥) ,

(48)

where𝑄 = 𝐴−1𝑉(𝛾+1) and𝐴 associated with 𝑟+𝛼 is defined
as in Theorem 5 and 𝑉 is given by formula (34), which ends
the proof.
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