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This paper deals with an analytical solution of an initial value system of time dependent linear and nonlinear partial differential
equations by implementing reduced differential transform (RDT) method. The effectiveness and the convergence of RDT method
are tested by means of five test problems, which indicates the validity and great potential of the reduced differential transform
method for solving system of partial differential equations.

1. Introduction

The reduced differential transformmethod has been success-
fully employed to solve various types of linear and nonlinear,
homogeneous or nonhomogeneous, equations appearing in
science and engineering. Partial differential equations have
also been applied in modeling many physical engineering
problems and differential equations in nonlinear dynamics
[1–3]. Most of the partial differential equations cannot be
solved exactly, and so, developing schemes for getting accu-
rate and efficient numerical solution differential equations
have been an active research area. Burgers’ equation [4], a
system of nonlinear fractional differential equations [1], and
nonlinearKlein–Gordon equationwith a quadratic nonlinear
term [2] have been solved using Adomian decomposition
method. A system of nonlinear fractional partial differential
equations has been solved using homotopy analysis method
by Jafari and Seifi [3] and Bataineh et al. [5], using variational
iteration method by Wazwaz [6]. In [7], Wang and Cheng
adopted variational method and finite element approach to
solve damped nonlinear Klein–Gordon equations.

The coupled Burgers equation has been solved by us-
ing various schemes; among them are variational iteration

method [8], Adomian–Pade technique [9], fourth-order
compact schemes [10], a composite numerical scheme [11],
lattice Boltzmann method [12], finite element and finite
difference method [13], two algorithms based on cubic spline
function technique [14], a robust finite difference scheme [15],
andmodified extended cubic B-spline differential quadrature
method [16]; while using modified cubic B-spline differential
quadrature method Burgers’ and Burgers-Huxley equations
have been solved in [17–19], respectively. The fractional
models of Burgers equation have been solved in [19–22]. The
space- and time-fractional coupled Burgers equations have
been solved using generalized differential transform method
[19] andhomotopy perturbationmethod [21]. Reduced differ-
ential transformmethod is used to solve (1 + 𝑛)-dimensional
Burgers’ equation [20]. Recently, Prakash et al. [22] adopted
fractional variational iteration method to solve fractional
coupled Burgers equations.

Keskin and Oturanç [23] have developed reduced differ-
ential transformmethod to solve partial differential equations
of integer order [24] as well as fractional order. After Keskin
and Oturanç, RDT method has been implemented for the
numerical computation of various physical models of engi-
neering and sciences [25–27].
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The main goal of this paper is to provide an analytical
solution of initial value system of time dependent partial
differential equations obtained by employing RDT method
developed by Keskin and Oturanç [23].

2. Reduced Differential Transform Method

The basic properties of the fractional reduced differential
transform method are described in this section. Let 𝜓(𝑥, 𝑡)
be a function of two variables such that 𝜓(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡).
By using the properties of the one-dimensional differential
transform (DT) method 𝜓(𝑥, 𝑡) can be written as

𝜓 (𝑥, 𝑡) = ∞∑
𝑖=0

𝑓 (𝑖) 𝑥𝑖 ∞∑
𝑗=0

𝑔 (𝑗) 𝑡𝑗 = ∞∑
𝑖=0

∞∑
𝑗=0

Ψ (𝑖, 𝑗) 𝑥𝑖𝑡𝑗, (1)

where Ψ(𝑖, 𝑗) is referred to as the spectrum of 𝜓(𝑥, 𝑡) and is
defined by

Ψ (𝑘, ℎ) = 1ℎ!𝑘! ( 𝜕𝑘+ℎ𝜓 (𝑥, 𝑡)𝜕𝑥𝑘𝜕𝑡ℎ )
(𝑥0 ,𝑡0)

. (2)

For more details on DT method, see [28] and the references
therein.

Denote the lowercase 𝜓(𝑥, 𝑡) as the original function
while its fractional reduced transformed function is denoted
by the uppercase Ψ𝑘(𝑥).
Definition 1. If 𝜓(𝑥, 𝑡) is analytic and continuously differen-
tiable with respect to 𝑥 and 𝑡, then RDT of 𝜓 is given by

𝑈𝑘 (𝑥) = 1𝑘! [ 𝜕𝑘𝑢 (𝑥, 𝑡)𝜕𝑡𝑘 ]
𝑡=0

. (3)

The reduced inverse differential transform of𝑈𝑘(𝑥) is defined
as follows:

𝑢 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑈𝑘 (𝑥) 𝑡𝑘. (4)

Equations (3) and (4) together reduce to

𝑢 (𝑥, 𝑡) = ∞∑
𝑘=0

1𝑘! ( 𝜕𝑘𝑢 (𝑥, 𝑡)𝜕𝑡𝑘 )
𝑡=0

𝑡𝑘. (5)

The basic properties of RDT method are found in [1, 4] and
can be deduced from (3) and (4), given in the following.

2.1. Some Basic Properties and Notation of RDT Method. In
this section, the properties of RDTmethod as in [23–25] have
been revisited to complete our study.

Property 1. If𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)±V(𝑥, 𝑡), then𝑊𝑘(𝑥) = 𝑈𝐾(𝑥)±𝑉𝑘(𝑥).
Property 2. If 𝑤(𝑥, 𝑡) = 𝛼𝑢(𝑥, 𝑡), then 𝑊𝑘(𝑥) = 𝛼𝑈𝑘(𝑥).
Property 3. If 𝑤(𝑥, 𝑡) = [𝑥𝑚𝑡𝑛], then 𝑊𝑘(𝑥) = 𝑥𝑚𝛿(𝑘 − 𝑛),
where

𝛿 (𝑘 − 𝑛) = {{{
1, when 𝑘 = 𝑛,
0, when 𝑘 ̸= 𝑛. (6)

Property 4. If 𝑤(𝑥, 𝑡) = [𝑥𝑚𝑡𝑛𝑢(𝑥, 𝑡)], then 𝑊𝑘(𝑥) =𝑥𝑚𝑈𝑘−𝑛(𝑥).
Property 5. If 𝑤(𝑥, 𝑡) = [𝜕𝑟𝑢(𝑥, 𝑡)/𝜕𝑡𝑟], then 𝑊𝑘(𝑥) = (𝑘 +1)(𝑘 + 2) ⋅ ⋅ ⋅ (𝑘 + 𝑟)𝑈𝑘+𝑟(𝑥) = ((𝑘 + 𝑟)!/𝑘!)𝑈𝑘+𝑟(𝑥).
Property 6. If 𝑤(𝑥, 𝑡) = [𝜕𝑢(𝑥, 𝑡)/𝜕𝑥], then 𝑊𝑘(𝑥) = 𝜕𝑈𝑘(𝑥)/𝜕𝑥.
Property 7. If 𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)V(𝑥, 𝑡), then 𝑊𝑘(𝑥) =∑𝑘𝑖=0𝑈𝑖(𝑥)𝑉𝑘−𝑖(𝑥).
Property 8. If 𝑤(𝑥, 𝑡) = [𝑢(𝑥, 𝑡)]𝑚, then

𝑊𝑘 (𝑥) = {{{{{{{
𝑈0 (𝑥) , 𝑘 = 0,
𝑘∑
𝑛=1

(𝑚 + 1) 𝑛 − 𝑘𝑘𝑈0 (𝑥) 𝑈𝑛 (𝑥) 𝑊𝑘−𝑛 (𝑥) , 𝑘 ≥ 1. (7)

For details on RDT method we refer the readers to [23–25].

3. Results and Discussion

In this section, we give five test problems of linear and
nonlinear partial differential equations (PDEs) using reduced
differential transform (RDT) method.

Example 2. Consider the initial value system of linear PDEs:

𝜕𝑢 (𝑥, 𝑡)𝜕𝑡 = 𝜕V (𝑥, 𝑡)𝜕𝑥 − V (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡) ,
𝜕V (𝑥, 𝑡)𝜕𝑡 = 𝜕𝑢 (𝑥, 𝑡)𝜕𝑥 − V (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡) ,
𝑢 (𝑥, 0) = sinh (𝑥) ,
V (𝑥, 0) = cosh (𝑥) .

(8)



International Journal of Differential Equations 3

On using RDTmethod (8) reduces to a set of recurrence rela-
tions as follows:

(1 + 𝑘) 𝑈𝑘+1 (𝑥) = 𝜕𝜕𝑥 𝑉𝑘 (𝑥) − 𝑉𝑘 (𝑥) − 𝑈𝑘 (𝑥) ,
(1 + 𝑘) 𝑉𝑘+1 (𝑥) = 𝜕𝜕𝑥 𝑈𝑘 (𝑥) − 𝑉𝑘 (𝑥) − 𝑈𝑘 (𝑥) ,

𝑈0 (𝑥) = sinh (𝑥) ,
𝑉0 (𝑥) = cosh (𝑥) .

(9)

On solving system (9), we get

𝑈2𝑖+1 (𝑥) = −1(2𝑖 + 1)! cosh (𝑥) ;
𝑈2𝑖 (𝑥) = 12𝑖! sinh (𝑥) ,

𝑖 = 0, 1, 2, . . .
𝑉2𝑖+1 (𝑥) = −1(2𝑖 + 1)! sinh (𝑥) ;

𝑉2𝑖 (𝑥) = 12𝑖! cosh (𝑥) ,
𝑖 = 0, 1, 2, . . . .

(10)

Using inverse RDT method (4), we get

𝑢 (𝑥, 𝑡) = sinh (𝑥 − 𝑡) ,
V (𝑥, 𝑡) = cosh (𝑥 − 𝑡) . (11)

The same solution is obtained by using homotopy analysis
method [3], variational iteration method [6], and homotopy
perturbation method [21]. The solution behavior of 𝑢, V is
depicted in Figure 1.

Example 3. Consider the following initial value system of
nonlinear PDEs:

𝜕𝑢𝜕𝑡 + ( 𝜕V𝜕𝑥 ) ( 𝜕𝑤𝜕𝑦 ) − ( 𝜕V𝜕𝑦 ) ( 𝜕𝑤𝜕𝑥 ) = −𝑢,
𝜕V𝜕𝑡 + ( 𝜕𝑢𝜕𝑥 ) ( 𝜕𝑤𝜕𝑦 ) − ( 𝜕𝑢𝜕𝑦 ) ( 𝜕𝑤𝜕𝑥 ) = V,
𝜕𝑤𝜕𝑡 + ( 𝜕𝑢𝜕𝑥 ) ( 𝜕V𝜕𝑦 ) − ( 𝜕𝑢𝜕𝑦 ) ( 𝜕V𝜕𝑥 ) = 𝑤,

𝑢 (𝑥, 𝑦, 0) = 𝑒𝑥+𝑦,
V (𝑥, 𝑦, 0) = 𝑒𝑥−𝑦,

𝑤 (𝑥, 𝑦, 0) = 𝑒−𝑥+𝑦.

(12)

On using RDT method (12) reduces to a set of recurrence
relations as follows:

(1 + 𝑘) 𝑈𝑘+1 (𝑥, 𝑦) = −𝑈𝑘 − 𝑘∑
𝑖=0

{( 𝜕𝜕𝑥 𝑉𝑖) ( 𝜕𝜕𝑦 𝑊𝑘−𝑖)
− ( 𝜕𝜕𝑦 𝑉𝑖) ( 𝜕𝜕𝑥 𝑊𝑘−𝑖)} ,

(1 + 𝑘) 𝑉𝑘+1 (𝑥, 𝑦) = 𝑉𝑘 − 𝑘∑
𝑖=0

{( 𝜕𝜕𝑥 𝑈𝑖) ( 𝜕𝜕𝑦 𝑊𝑘−𝑖)
− ( 𝜕𝜕𝑦 𝑈𝑖) ( 𝜕𝜕𝑥 𝑊𝑘−𝑖)} ,

(1 + 𝑘) 𝑊𝑘+1 (𝑥, 𝑦) = 𝑊𝑘 − 𝑘∑
𝑖=0

{( 𝜕𝜕𝑥 𝑈𝑖) ( 𝜕𝜕𝑦 𝑉𝑘−𝑖)
− ( 𝜕𝜕𝑦 𝑈𝑖) ( 𝜕𝜕𝑥 𝑉𝑘−𝑖)} ,

𝑈0 (𝑥, 𝑦) = 𝑒𝑥+𝑦,
𝑉0 (𝑥, 𝑦) = 𝑒𝑥−𝑦,
𝑊0 (𝑥, 𝑦) = 𝑒−𝑥+𝑦.

(13)

On solving system (13), we have

𝑈1 (𝑥, 𝑦) = (−1)1! 𝑒𝑥+𝑦,
𝑉1 (𝑥, 𝑦) = 11! 𝑒𝑥−𝑦,

𝑊1 (𝑥, 𝑦) = 11! 𝑒−𝑥+𝑦,
𝑈2 (𝑥, 𝑦) = (−1)22! 𝑒𝑥+𝑦,

𝑉2 (𝑥, 𝑦) = 12! 𝑒𝑥−𝑦,
𝑊2 (𝑥, 𝑦) = 12! 𝑒−𝑥+𝑦,

...
𝑈𝑘 (𝑥, 𝑦) = (−1)𝑘𝑘! 𝑒𝑥+𝑦,

𝑉𝑘 (𝑥, 𝑦) = 1𝑘! 𝑒𝑥−𝑦,
𝑊𝑘 (𝑥, 𝑦) = 1𝑘! 𝑒−𝑥+𝑦,

∀𝑘 ≥ 0.

(14)
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Figure 1: Behavior of 𝑢 (a) and V (b) of initial value system (8) in (−𝜋, 𝜋).
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Figure 2: Behavior of 𝑢 (a) and V (b) of initial value system (12) in (0, 1.5).

On using inverse RDT method (4), we get

𝑢 (𝑥, 𝑦, 𝑡) = 𝑒𝑥+𝑦−𝑡,
V (𝑥, 𝑦, 𝑡) = 𝑒𝑥−𝑦+𝑡,

𝑤 (𝑥, 𝑦, 𝑡) = 𝑒−𝑥+𝑦+𝑡.
(15)

This is the required exact solution of initial value system (12)
of PDEs. The same solution is obtained by using homotopy
perturbation method [21]. The solution behavior of 𝑢, V, and𝑤 at 𝑡 = 1 is depicted in Figures 2 and 3.

Example 4. Consider the following form of IVS of two-
dimensional coupled viscous Burgers’ equation:

𝜕𝑢𝜕𝑡 = 𝜕2𝑢𝜕𝑥2 + 2𝑢 𝜕𝑢𝜕𝑥 − 𝜕𝜕𝑥 (𝑢V) ,
𝜕𝑢𝜕𝑡 = 𝜕2V𝜕𝑥2 + 2V 𝜕V𝜕𝑥 − 𝜕𝜕𝑥 (𝑢V) ,

𝑢 (𝑥, 0) = sin𝑥,
V (𝑥, 0) = sin𝑥.

(16)

On using RDT method (16) reduces to a set of recurrence
relations as follows:

(1 + 𝑘) 𝑈𝑘+1 (𝑥) = 𝑑2𝑑𝑥2𝑈𝑘 (𝑥)
+ 𝑘∑
𝑖=0

{2𝑈𝑖 (𝑥) 𝑑𝑑𝑥 𝑈𝑘−𝑖 (𝑥) − (𝑈𝑖 (𝑥) 𝑑𝑑𝑥 𝑉𝑘−𝑖 (𝑥)
+ 𝑉 (𝑥)𝑖 𝑑𝑑𝑥 𝑈𝑘−𝑖 (𝑥))} ,

(1 + 𝑘) 𝑉𝑘+1 (𝑥) = 𝑑2𝑑𝑥2𝑉 (𝑥)𝑘
+ 𝑘∑
𝑖=0

{2𝑉𝑖 (𝑥) 𝑑𝑑𝑥 𝑉𝑘−𝑖 (𝑥) − (𝑈𝑖 (𝑥) 𝑑𝑑𝑥 𝑉𝑘−𝑖 (𝑥)
+ 𝑉𝑖 (𝑥) 𝑑𝑑𝑥 𝑈𝑘−𝑖 (𝑥))} ,

𝑈0 (𝑥) = sin𝑥,
𝑉0 (𝑥) = sin𝑥.

(17)

On solving system (17), we get

𝑈𝑘 (𝑥) = 𝑉𝑘 (𝑥) = (−1)𝑘𝑘! sin𝑥, ∀𝑘 ≥ 0. (18)
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viscous Burgers’ equation (16) in (−𝜋, 𝜋) at different time levels.

On using inverse RDT method (4), we get

𝑢 (𝑥, 𝑡) = 𝑒−𝑡 sin (𝑥) ,
V (𝑥, 𝑡) = 𝑒−𝑡 sin (𝑥) . (19)

This is the required exact solution of the initial value
system of coupled viscous Burgers’ equation (16). The same
solution is obtained by homotopy perturbation method [21]
and variational iteration method [22] for integer-order time
derivatives. The physical behavior of 𝑢, V is depicted in
Figure 4.

Example 5. Consider the following form of initial value sys-
tem of two-dimensional coupled viscous Burgers’ equation:

𝜕𝑢𝜕𝑡 = 𝜕2𝑢𝜕𝑥2 + 2𝑢 𝜕𝑢𝜕𝑥 − 𝜕𝜕𝑥 (𝑢V) ,
𝜕𝑢𝜕𝑡 = 𝜕2V𝜕𝑥2 + 2V 𝜕V𝜕𝑥 − 𝜕𝜕𝑥 (𝑢V) ,

𝑢 (𝑥, 0) = 𝑥2,
V (𝑥, 0) = 𝑥3.

(20)

On using RDT method (20) reduces to a set of recurrence
relations as follows:

(1 + 𝑘) 𝑈𝑘+1 (𝑥) = 𝑑2𝑑𝑥2𝑈𝑘 (𝑥)
+ 𝑘∑
𝑖=0

{2𝑈𝑖 (𝑥) 𝑑𝑑𝑥 𝑈𝑘−𝑖 (𝑥) − (𝑈𝑖 (𝑥) 𝑑𝑑𝑥 𝑉𝑘−𝑖 (𝑥)
+ 𝑉 (𝑥)𝑖 𝑑𝑑𝑥 𝑈𝑘−𝑖 (𝑥))} ,

(1 + 𝑘) 𝑉𝑘+1 (𝑥) = 𝑑2𝑑𝑥2𝑉 (𝑥)𝑘
+ 𝑘∑
𝑖=0

{2𝑉𝑖 (𝑥) 𝑑𝑑𝑥 𝑉𝑘−𝑖 (𝑥) − (𝑈𝑖 (𝑥) 𝑑𝑑𝑥 𝑉𝑘−𝑖 (𝑥)
+ 𝑉𝑖 (𝑥) 𝑑𝑑𝑥 𝑈𝑘−𝑖 (𝑥))} ,

𝑈0 (𝑥) = 𝑥2,
𝑉0 (𝑥) = 𝑥3.

(21)

Solving the recurrence relation (21), we get

𝑈1 (𝑥) = 2 − 5𝑥4 + 4𝑥3;
𝑉1 (𝑥) = 6𝑥 − 5𝑥4 + 6𝑥5,
𝑈2 (𝑥) = 12 𝑥 (32 − 84𝑥 + 40𝑥3 − 54𝑥4 − 7𝑥5) ;
𝑉2 (𝑥) = 12 𝑥2 (−84 + 168𝑥 + 6𝑥3 − 77𝑥4 + 96𝑥5) ;
𝑈3 (𝑥) = 13 (−96 + 384𝑥2 − 908𝑥3 − 225𝑥4 + 336𝑥5

− 679𝑥6 + 276𝑥7 − 2612 𝑥8) ;
𝑉3 (𝑥) = 13 (−96 + 576𝑥 + 108𝑥3 − 1995𝑥4 + 3456𝑥5

− 21𝑥6 + 380𝑥7 − 27272 𝑥8 + 1320𝑥9) ;
𝑈4 (𝑥) = 14 (320 − 2540𝑥 − 1128𝑥2 + 4096𝑥3

− 391403 𝑥4 + 7528𝑥5 − 3108𝑥6 − 212563 𝑥7
+ 3957𝑥8 + 705𝑥9 − 29812 𝑥10) ;



6 International Journal of Differential Equations

𝑉4 (𝑥) = 14 (256𝑥 − 9912𝑥2 + 28608𝑥3 − 420𝑥4
+ 10616𝑥5 − 50764𝑥6 + 62648𝑥7 − 273𝑥8
+ 239053 𝑥9 − 437032 𝑥10 + 17472𝑥11) ,

𝑈5 (𝑥) = 15 (−756 + 8000𝑥 − 51484𝑥2 + 50472𝑥3
− 22730𝑥4 − 158174𝑥5 + 3533813 𝑥6 + 52866𝑥7
− 6384814 𝑥8 + 3547256 𝑥9 − 314052 𝑥10
+ 323492 𝑥11 − 1421038 𝑥12) ;

𝑉5 (𝑥) = 15 (−5532 + 47520𝑥 − 1812𝑥2 + 71608𝑥3
− 512430𝑥4 + 880998𝑥5 − 8771𝑥6 + 319894𝑥7
− 43891474 𝑥8 + 21392852 𝑥9 − 1596656 𝑥10
+ 3231672 𝑥11 − 26875818 𝑥12 + 228480𝑥13) ;

...
(22)

Using inverse RDTmethod, the approximate solution is given
as

𝑢 (𝑥, 𝑡) = 𝑈0 + 𝑈1𝑡 + 𝑈2𝑡2 + 𝑈2𝑡3 + 𝑈4𝑡4 + 𝑈5𝑡5 + ⋅ ⋅ ⋅
= 𝑥2 + (2 − 5𝑥4 + 4𝑥3) 𝑡 + 12 𝑥 (32 − 84𝑥 + 40𝑥3
− 54𝑥4 − 7𝑥5) 𝑡2 + 13 (−96 + 384𝑥2 − 908𝑥3
− 225𝑥4 + 336𝑥5 − 679𝑥6 + 276𝑥7 − 2612 𝑥8) 𝑡3
+ 14 (320 − 2540𝑥 − 1128𝑥2 + 4096𝑥3 − 391403 𝑥4
+ 7528𝑥5 − 3108𝑥6 − 212563 𝑥7 + 3957𝑥8 + 705𝑥9
− 29812 𝑥10) 𝑡4 + 15 (−756 + 8000𝑥 − 51484𝑥2
+ 50472𝑥3 − 22730𝑥4 − 158174𝑥5 + 3533813 𝑥6
+ 52866𝑥7 − 6384814 𝑥8 + 3547256 𝑥9 − 314052 𝑥10
+ 323492 𝑥11 − 1421038 𝑥12) 𝑡5 + ⋅ ⋅ ⋅ ,

V (𝑥, 𝑡) = 𝑉0 + 𝑉1𝑡 + 𝑉2𝑡2 + 𝑉2𝑡3 + 𝑉4𝑡4 + 𝑉5𝑡5 + ⋅ ⋅ ⋅
= 𝑥3 + (6𝑥 − 5𝑥4 + 6𝑥5) 𝑡 + 12 𝑥2 (−84 + 168𝑥
+ 6𝑥3 − 77𝑥4 + 96𝑥5) 𝑡2 + 13 (−96 + 576𝑥
+ 108𝑥3 − 1995𝑥4 + 3456𝑥5 − 21𝑥6 + 380𝑥7
− 27272 𝑥8 + 1320𝑥9) 𝑡3 + 14 (256𝑥 − 9912𝑥2
+ 28608𝑥3 − 420𝑥4 + 10616𝑥5 − 50764𝑥6
+ 62648𝑥7 − 273𝑥8 + 239053 𝑥9 − 437032 𝑥10
+ 17472𝑥11) 𝑡4 + 15 (−5532 + 47520𝑥 − 1812𝑥2
+ 71608𝑥3 − 512430𝑥4 + 880998𝑥5 − 8771𝑥6
+ 319894𝑥7 − 43891474 𝑥8 + 21392852 𝑥9
− 1596656 𝑥10 + 3231672 𝑥11 − 26875818 𝑥12
+ 228480𝑥13) 𝑡5 + ⋅ ⋅ ⋅ .

(23)

This is the required approximate solution of system (20). The
approximate solution of system (20) is obtained by homotopy
perturbation method [21] and variational iteration method
[22] for integer-order time derivatives.

Example 6. Consider initial value system as follows:

𝜕𝑢𝜕𝑡 = − 𝜕2V𝜕𝑥2 − 2 (𝑢2 + V2) V,
𝜕V𝜕𝑡 = 𝜕2𝑢𝜕𝑥2 + 2 (𝑢2 + V2) 𝑢,

𝑢 (𝑥, 0) = cos𝑥,
V (𝑥, 0) = sin𝑥.

(24)

Setting 𝜓 = 𝑢 + 𝑖V, 𝑖2 = −1, then the above system can be
written as

𝜕𝜓𝜕𝑡 = 𝑖 ( 𝜕2𝜓𝜕𝑥2 + 2 (𝜓2) 𝜓) ,
𝜓 (𝑥, 0) = 𝑒𝑖𝑥.

(25)
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On using RDT method (25) reduces to a recurrence relation
as follows:

(1 + 𝑘) Ψ𝑘+1 (𝑥) = 𝑖 ( 𝜕2Ψ𝑘 (𝑥)𝜕𝑥2
+ 2 𝑘∑
𝑘2=0

𝑘2∑
𝑘1=0

Ψ𝑘1 (𝑥) Ψ𝑘2−𝑘1 (𝑥) Ψ𝑘−𝑘2 (𝑥)) , 𝑘 ≥ 1
Ψ0 (𝑥) = 𝑒𝑖𝑥.

(26)

On solving the above relation, we get

𝑈1 (𝑥) = 𝑖𝑒𝑖𝑥,
𝑈2 (𝑥) = 𝑖22! 𝑒𝑖𝑥,

...
𝑈𝑘 (𝑥) = 𝑖𝑘𝑘! 𝑒𝑖𝑥

...

(27)

The inverse RDT leads to

𝜓 (𝑥, 𝑡) = ∞∑
𝑘=0

Ψ𝑘 (𝑥) 𝑡𝑘

= (1 + 𝑖𝑡 + 𝑖2𝑡22! + ⋅ ⋅ ⋅ + 𝑖𝑘𝑡𝑘𝑘! + ⋅ ⋅ ⋅) 𝑒𝑖𝑥
= 𝑒𝑖(𝑥+𝑡).

(28)

This is the desired approximate solution of the initial value
system (24), which is the same as that obtained in [28] using
DTM.

4. Concluding Remark

In this paper, reduced differential transformmethod has been
implemented successfully to five test problems of the initial
value systems of time dependent partial differential equa-
tions including two-dimensional coupled viscous Burgers’
equations. The obtained results agreed well with homotopy
perturbation method [21], homotopy analysis method [3],
variational iteration method [6, 22], and differential trans-
formmethod [28]. Easiness and effectiveness are the strength
of RDT method.
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