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The flow of fluid in atmosphere and ocean is governed by rotating stratified Boussinesq equations.Through the literature, we found
that many researchers are trying to find the solutions of rotating stratified Boussinesq equations. In this paper, we have obtained
special exact solutions and nonlinear plane waves. Finally, we provide exact solutions to rotating stratified Boussinesq equations
with large scale motion superimposed with the nonlinear plane waves. In support of our investigations, we provided two examples:
one described the special exact solution and in second example, we have determined the special exact solution superimposed with
nonlinear plane wave. Also, we depicted some integral curves that represent the flow of an incompressible fluid particle on the plane
𝑥
1
+ 𝑥
2
= 𝐿(constant) as the particular case.

1. Introduction

In certain ranges of scale in the atmosphere and in the ocean,
the flow of fluid is controlled by interaction of gravitational
force and the rotation of earth with density variation about
reference state. The fluid velocity is too slow to involve
incompressible effect. Equations which work on these scales
are called the rotating stratifiedBoussinesq equations, and the
gravity waves they support are built up in Gill [1]. It may be
noted that the Boussinesq approximation in the literature is
also referred to as the Oberbeck-Boussinesq approximation,
for which the reader is referred to an interesting article of
Rajagopal et al. [2]. Majda and Shefter [3] chose certain
special solutions of this system of PDEs to demonstrate
onset of instability when the Richardson number is less
than 1/4. In their study of instability in stratified fluids at
large Richardson number they obtained the exact solutions
to stratified Boussinesq equations neglecting the effects of
rotations and viscosity. Further, in absence of strain field
Srinivasan et al. [4] proved that the reduced system of ODEs
is completely integrable. For the similar kind of work reader
may refer to articles of Maas [5, 6]. In his monograph Majda
[7] has obtained the special solution of rotating stratified
Boussinesq equations excluding the effects of viscosity and
finite rotation. In our earlier work we have included the

effect of earth rotation and obtained the nonlinear plane wave
solutions of rotating stratified Boussinesq equations.

In this paper, we continue with the special exact solutions
of rotating stratified Boussinesq equations on the large scale
motions and nonlinear plane waves. Here, we built up the
exact solutions of rotating stratified Boussinesq equations
superimposed with nonlinear plane waves followed by two
examples, out of which one gives special exact solution and
second example provides us the superimposition of nonlinear
plane wave with special exact solution of rotating stratified
Boussinesq equations.

2. Special Solutions

The motion of an incompressible flow of fluid in the atmo-
sphere and in the ocean is governed by the following nondi-
mensional rotating stratified Boussinesq equations:

𝐷k
𝐷𝑡

+

1

𝑅
0

u = −𝑃∇𝑝 − Γ𝜌ê
3
,

div k = 0,

𝐷𝜌̃

𝐷𝑡

=

𝐷𝜌

𝐷𝑡

+ (

𝑑𝜌

𝑑𝑥
3

) V3 = 0.

(1)
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Here, we have that k = (V1, V2, V3), u = (𝑢
1
, 𝑢
2
, 𝑢
3
) = ê
3
× k, Γ

is the nondimensional number, 𝑅
0
is the Rossby number, and

𝑃 is the Euler number. Nondimensional density function is

𝜌̃ (x, 𝑡) = 𝜌
𝑏
+ 𝜌 (𝑥

3
) + 𝜌 (x, 𝑡) . (2)

We make the usual assumption valid for local consideration
that 𝑑𝜌/𝑑𝑥

3
is constant and it is the integrated part of 𝜌

𝑏
.

Henceforth, we have 𝜌̃(x, 𝑡) = 𝜌
𝑏
+ 𝜌(x, 𝑡). For more details

one may refer to our earlier article [8]. The more elaborative
discussion about the nondimensional analysis of rotating
stratified Boussinesq equations is found in the monograph of
Majda [7].

Now, we present the special solutions of (1) in large scale
motion of fluid. For local behavior of incompressible fluid, we
have Taylor’s series expansion for smooth velocity field and
density function about some point x

0
:

k (x, 𝑡) = k (x
0
, 𝑡) + ∇k|(x0 ,𝑡) (x − x

0
) + 𝑂 (

󵄨
󵄨
󵄨
󵄨
x − x
0

󵄨
󵄨
󵄨
󵄨

2

) ,

𝜌̃ (x, 𝑡) = 𝜌
𝑏
+ ∇𝜌̃

󵄨
󵄨
󵄨
󵄨(x0 ,𝑡)

(x − x
0
) + 𝑂 (

󵄨
󵄨
󵄨
󵄨
x − x
0

󵄨
󵄨
󵄨
󵄨

2

) ,

(3)

where ∇k is a 3 × 3 matrix whose (𝑖, 𝑗)th entry is 𝜕V𝑖/𝜕𝑥
𝑗
,

where 𝑖 = 1, 2, 3 and 𝑗 = 1, 2, 3. Equation (4) is the
decomposition of the matrix ∇k as a sum of symmetric and
skew symmetric matrices and this kind of decomposition is
unique:

∇k|(x0 ,𝑡) = (

∇k + (∇k)𝑇

2

) + (

∇k − (∇k)𝑇

2

)

= D (x
0
, 𝑡) + Ω (x

0
, 𝑡) = 𝑉 (x

0
, 𝑡) ,

(4)

where D is the symmetric part of ∇k and is called deforma-
tion matrix; it has the property that the trace of matrix D
is equal to the divergence of vector field k, whereas Ω is a
skew symmetric part of matrix ∇k and satisfies the following
equation:

Ωh =

1

2

w × h, (5)

for any vector h ∈ R3. The vectorw is vorticity vector; that is,
w = ∇ × k = (𝑤

1
, 𝑤
2
, 𝑤
3
). Hence, from (4) we get

∇k|(x0 ,𝑡) h = D (x
0
, 𝑡) h +

1

2

w (x
0
, 𝑡) × h. (6)

The decomposition of a vector k as in (3) by mean of (4) has a
simple physical interpretation; namely, every incompressible
velocity field is a sum of translation, stretching, and rotation.
Wemaydeprive the translation part by aGalilean transforma-
tion. We assume that k(x

0
, 𝑡) = 0. A gradient of u is a matrix

(𝑢
𝑖

𝑥𝑘
) which can be uniquely expressed as (𝑢𝑖

𝑥𝑘
) = (𝑆 + 𝑄),

where the symmetric matrix 𝑆 and skew symmetric matrix𝑄
are as given below:

𝑆 =

1

2

(

(

(

(

−2

𝜕V1

𝜕𝑥
1

𝜕V1

𝜕𝑥
1

−

𝜕V2

𝜕𝑥
2

−

𝜕V2

𝜕𝑥
3

𝜕V1

𝜕𝑥
1

−

𝜕V2

𝜕𝑥
2

2

𝜕V1

𝜕𝑥
2

𝜕V1

𝜕𝑥
3

−

𝜕V2

𝜕𝑥
3

𝜕V1

𝜕𝑥
3

0

)

)

)

)

,

𝑄 =

1

2

(

(

(

(

0 −

𝜕V2

𝜕𝑥
2

−

𝜕V1

𝜕𝑥
1

−

𝜕V2

𝜕𝑥
3

𝜕V2

𝜕𝑥
2

+

𝜕V1

𝜕𝑥
1

0

𝜕V1

𝜕𝑥
3

𝜕V2

𝜕𝑥
3

−

𝜕V1

𝜕𝑥
3

0

)

)

)

)

.

(7)

For any h ∈ R3, a skew symmetric matrix 𝑄 satisfies the
following equation:

𝑄h = −

1

2

𝜕k
𝜕𝑥
3

× h. (8)

Through the literature we see that at the large scale motion
(1) admit the special solutions, which are given in the form of
Theorem 1.

Theorem 1. The rotating stratified Boussinesq equations (1)
admit the special solutions of the form

k (x, 𝑡) = D (𝑡) x +

1

2

w (𝑡) × x,

𝜌̃ = 𝜌
𝑏
+ b (𝑡) ⋅ x,

𝑃𝑝 =

1

2

𝑃̂ (𝑡) x ⋅ x,

(9)

where 𝑃 is nondimensional number as defined in (1) andD(𝑡)

is symmetric matrix with zero trace; when w(𝑡) = ∇ × k and
b(𝑡) = ∇𝜌̃ satisfy the ODEs,

𝑑w
𝑑𝑡

= D (𝑡) [w (𝑡) +

1

𝑅
0

ê
3
] + Γê

3
× b (𝑡) − 1

2𝑅
0

ê
3

× w (𝑡) ,

𝑑b
𝑑𝑡

= −D (𝑡) b (𝑡) + 1

2

w (𝑡) × b (𝑡) ,

(10)

and matrix 𝑃̂(𝑡) is given by

−𝑃̂ =

𝑑D

𝑑𝑡

+D
2
+ Ω
2
+

1

𝑅
0

𝑆 +

Γ

2

(ê
3
b𝑇 + bê

3

𝑇
) , (11)

where the matrixΩ is as defined in (4) through the linear map
given by (5) and the matrix 𝑆 is given by (7).

In Section 3, we present the nonlinear plane wave solu-
tions of rotating stratified Boussinesq equations.
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3. Nonlinear Plane Waves

In the development of exact solutions of (1) in the form of
nonlinear plane waves, the following trivial Lemma 2 is a
useful step.

Lemma 2. For v of the form v = A(𝑡)𝐹(𝛼(𝑡) ⋅ x), div k = 0

implies

(i) A(𝑡) ⋅ 𝛼(𝑡) = 0;
(ii) k ⋅ ∇𝑊(𝛼(𝑡) ⋅ x) = 0,

for arbitrary𝑊, whereA(𝑡) = (𝐴
1
(𝑡), 𝐴
2
(𝑡), 𝐴
3
(𝑡)) and𝛼(𝑡) =

(𝛼
1
(𝑡), 𝛼
2
(𝑡), 𝛼
3
(𝑡)).

For the proof of this lemma onemay refer toMajda [7, pp.
20]. Theorem 3 describes the nonlinear plane wave solutions
of (1).

Theorem 3. The rotating stratified Boussinesq equations (1)
admit the exact solutions in the form of nonlinear plane waves
as follows:

k = A (𝑡) 𝐹 (𝛼 (𝑡) ⋅ x) ,

𝜌 = 𝐵 (𝑡) 𝐹 (𝛼 (𝑡) ⋅ x) ,

𝑝 = 𝑃 (𝑡) 𝐺 (𝛼 (𝑡) ⋅ x) ,

(12)

where 𝐹 and 𝐺 are arbitrary functions of 𝛼(𝑡) ⋅ x with the
condition 𝐺

󸀠
(𝑠) = 𝐹(𝑠) provided that 𝛼(𝑡), A(𝑡), 𝐵(𝑡), and 𝑃(𝑡)

satisfy the following equations:

𝑑𝛼 (𝑡)

𝑑𝑡

= 0,

A (𝑡) ⋅ 𝛼 (𝑡) = 0,

𝑃 (𝑡)

= −

1

𝑅
0
𝑃

(

𝛼 (𝑡) ⋅ (ê
3
× A (𝑡))

|𝛼 (𝑡)|
2

) −

Γ𝛼
3
(𝑡)

𝑃 |𝛼 (𝑡)|
2
𝐵 (𝑡) ,

𝑑A (𝑡)

𝑑𝑡

=

−1

𝑅
0

(ê
3
× A (𝑡))

+ [

𝛼 (𝑡) ⋅ (ê
3
× A (𝑡))

𝑅
0 |
𝛼 (𝑡)|
2

+

Γ𝛼
3
(𝑡)

|𝛼 (𝑡)|
2
𝐵 (𝑡)]𝛼 (𝑡)

− Γ𝐵 (𝑡) ê
3
,

𝑑𝐵 (𝑡)

𝑑𝑡

+

𝑑𝜌

𝑑𝑥
3

𝐴
3
(𝑡) = 0.

(13)

4. Superimposed Nonlinear
Plane Wave Solutions

In Section 2, we obtained exact solutions of rotating stratified
Boussinesq equations for the large scale motion of fluids,

while in Section 3, we have determined the nonlinear plane
wave solutions. In this section we aim at presenting the
special exact solutions of (1) superimposed with nonlinear
plane waves. We have obtained such solutions and presented
them in the form of Theorem 6. Prior to determining the
superimposed solutions, we have some key elements in the
form of lemmas. The proof of these lemmas is essential to
develop these superimposed solutions.

Lemma 4. Let 𝑉 be as defined in (4) and let 𝛼, A be any two
vectors in R3; then one has

𝑉
𝑇
𝛼 ⋅ A = 𝑉A ⋅ 𝛼. (14)

Proof. We have 𝑉 = D + Ω as defined in (4), so that 𝑉𝑇 =

(D + Ω)
𝑇
= D − Ω. Hence,

𝑉
𝑇
𝛼 ⋅ A = (D + Ω)

𝑇
𝛼 ⋅ A = [(D − Ω)𝛼] ⋅ A

= [D𝛼 −
1

2

w × 𝛼] ⋅ A

= [DA +

1

2

w × A] ⋅ 𝛼 = [(D + Ω)A] ⋅ 𝛼

= 𝑉A ⋅ 𝛼.

(15)

Lemma 5. Let 𝑉 be as defined in (4) and let 𝑆 and 𝑄 be
the symmetric and skew symmetric matrices, respectively, as
defined in (7); then one has

1

𝑅
0

ê
3
× (𝑉x) = 1

𝑅
0

(𝑆 + 𝑄) x. (16)

Proof. The term𝑉 as defined in (4) is nothing but ∇k; that is,

𝑉 =

(

(

(

(

𝜕V1

𝜕𝑥
1

𝜕V1

𝜕𝑥
2

𝜕V1

𝜕𝑥
3

𝜕V2

𝜕𝑥
1

𝜕V2

𝜕𝑥
2

𝜕V2

𝜕𝑥
3

𝜕V3

𝜕𝑥
1

𝜕V3

𝜕𝑥
2

𝜕V3

𝜕𝑥
3

)

)

)

)

. (17)

Hence, we have

𝑉x =

(

(

(

(

𝑥
1

𝜕V1

𝜕𝑥
1

+ 𝑥
2

𝜕V1

𝜕𝑥
2

+ 𝑥
3

𝜕V1

𝜕𝑥
3

𝑥
1

𝜕V2

𝜕𝑥
1

+ 𝑥
2

𝜕V2

𝜕𝑥
2

+ 𝑥
3

𝜕V2

𝜕𝑥
3

𝑥
1

𝜕V3

𝜕𝑥
1

+ 𝑥
2

𝜕V3

𝜕𝑥
2

+ 𝑥
3

𝜕V3

𝜕𝑥
3

)

)

)

)

. (18)
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Furthermore, we calculate

1

𝑅
0

ê
3
× (𝑉x)

=

1

𝑅
0

(

(

−𝑥
1

𝜕V2

𝜕𝑥
1

− 𝑥
2

𝜕V2

𝜕𝑥
2

− 𝑥
3

𝜕V2

𝜕𝑥
3

𝑥
1

𝜕V1

𝜕𝑥
1

+ 𝑥
2

𝜕V1

𝜕𝑥
2

+ 𝑥
3

𝜕V1

𝜕𝑥
3

0

)

)

.

(19)

In the similar fashion, we calculate the vector (1/𝑅
0
)(𝑆 + 𝑄)x

as follows:

1

𝑅
0

(𝑆 + 𝑄) x

=

1

𝑅
0

(

(

−𝑥
1

𝜕V2

𝜕𝑥
1

− 𝑥
2

𝜕V2

𝜕𝑥
2

− 𝑥
3

𝜕V2

𝜕𝑥
3

𝑥
1

𝜕V1

𝜕𝑥
1

+ 𝑥
2

𝜕V1

𝜕𝑥
2

+ 𝑥
3

𝜕V1

𝜕𝑥
3

0

)

)

(20)

and (19) and (20) lead to the conclusion of the lemma.

Now, we present the superimposed solutions of rotating
stratified Boussinesq equations (1) which are the superposi-
tion of exact solutions and nonlinear plane wave solutions.
We describe these solutions in the form of Theorem 6.

Theorem 6. There are special exact solutions to the rotating
stratified Boussinesq equations (1) in the form of

k (x, 𝑡) = D (𝑡) x +

1

2

w (𝑡) × x + A (𝑡) 𝐹 (𝛼 (𝑡) ⋅ x) ,

𝜌̃ = 𝜌
𝑏
+ b (𝑡) ⋅ x + 𝐵 (𝑡) 𝐹 (𝛼 (𝑡) ⋅ x)

= 𝜌
𝑏
+ 𝜌 (x, 𝑡) ,

𝑝 =

1

2𝑃

𝑃̂ (𝑡) x ⋅ x + 𝑃 (𝑡) 𝐺 (𝛼 (𝑡) ⋅ x) ,

(21)

where 𝐺
󸀠
(𝑠) = 𝐹(𝑠) and D is an arbitrary 3 × 3, traceless,

symmetric matrix as defined in (4) provided thatw(𝑡) and b(𝑡)
satisfy theODEs (10) alongwith thewave phase and amplitudes
satisfy the following ODEs:

𝑑𝛼 (𝑡)

𝑑𝑡

= −𝑉
𝑇
(𝑡)𝛼 (𝑡) ,

𝑑A (𝑡)

𝑑𝑡

= −𝑉 (𝑡)A (𝑡) + 𝛼 (𝑡)

2 (𝑉
𝑇
(𝑡)𝛼 (𝑡) ⋅ A (𝑡))

|𝛼 (𝑡)|
2

−

1

𝑅
0

(ê
3
× A (𝑡))

+ [

𝛼 (𝑡) ⋅ (ê
3
× A (𝑡))

𝑅
0 |
𝛼 (𝑡)|
2

+

Γ𝛼
3
(𝑡)

|𝛼 (𝑡)|
2
𝐵 (𝑡)]𝛼 (𝑡)

− Γ𝐵 (𝑡) ê
3
,

𝑑𝐵 (𝑡)

𝑑𝑡

= −A (𝑡) ⋅ b (𝑡) ,

(22)

where 𝑉(𝑡) = D(𝑡) + Ω(𝑡) as defined in (4). The initial
conditions are arbitrary, except that one requires

𝛼 (𝑡) ⋅ A (𝑡)|𝑡=0
= 0. (23)

The matrix 𝑃̂(𝑡) in pressure term satisfies the differential
equation (11) and scalar function 𝑃(𝑡) in pressure term is
calculated as

−𝑃 (𝑡) =

2 (𝑉
𝑇
(𝑡)𝛼 (𝑡) ⋅ A (𝑡))

𝑃 |𝛼 (𝑡)|
2

+

1

𝑅
0
𝑃

(

𝛼 (𝑡) ⋅ (ê
3
× A (𝑡))

|𝛼 (𝑡)|
2

)

+

Γ𝛼
3
(𝑡)

𝑃 |𝛼 (𝑡)|
2
𝐵 (𝑡) .

(24)

Proof. We proceed towards the proof of the theorem. In the
beginning, we consider that k = k(x, 𝑡), 𝑉 = 𝑉(𝑡), A = A(𝑡),
𝛼 = 𝛼(𝑡), 𝐵 = 𝐵(𝑡), 𝑃 = 𝑃(𝑡), 𝑃̂ = 𝑃̂(𝑡), 𝐹(𝛼(𝑡) ⋅ x) = 𝐹(𝛼 ⋅ x) =
𝐹, and𝐺(𝛼(𝑡) ⋅x) = 𝐺(𝛼 ⋅x) = 𝐺 for handy use of calculations
throughout the proof.

To prove this theorem we have to verify that the velocity
k, density function 𝜌̃, and pressure 𝑝 which are given by (21)
satisfy (1).

Let us consider the derivative of A ⋅ 𝛼 which is given by

𝑑

𝑑𝑡

(A ⋅ 𝛼) =
𝑑A
𝑑𝑡

⋅ 𝛼 + A ⋅

𝑑𝛼

𝑑𝑡

. (25)

Substituting 𝑑𝛼/𝑑𝑡 and 𝑑A/𝑑𝑡 from (22) into the right hand
side of (25) and then simplifying the right hand side with the
use of Lemma 4, we get (𝑑/𝑑𝑡)(A⋅𝛼) = 0. Together with initial
condition (23), we conclude that

A ⋅ 𝛼 = 0 (26)

for all times. Now, we proceed towards the requirements for
an incompressible fluid; we have𝑉 = D+Ω so that k = 𝑉x +
𝐹A. Therefore, div k = trace D + (A ⋅ 𝛼)𝐹

󸀠. 𝐹 is arbitrary and
D is symmetric traceless strain matrix so that trace D = 0,
and also we have A ⋅ 𝛼 = 0 for all times. Hence k satisfy the
equation div k = 0.

Our next aim is to verify the momentum equation. We
now compute the advective derivative:

𝜕k
𝜕𝑡

=

𝑑𝑉

𝑑𝑡

x + 𝐹

𝑑A
𝑑𝑡

+ 𝐹
󸀠
(

𝑑𝛼

𝑑𝑡

⋅ x)A. (27)
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The advection caused by velocity is calculated as

(k ⋅ ∇) k = [(𝑉x + 𝐹A) ⋅ ∇] [𝑉x + 𝐹A]

= 𝑉
2x + 𝐹𝑉A + (𝑉x ⋅ 𝛼) 𝐹

󸀠A

= 𝑉
2x + 𝐹𝑉A + (𝑉

𝑇
𝛼 ⋅ x) 𝐹󸀠A

because of Lemma 4.

(28)

Adding (27) and (28), we obtain the advective derivative of k
as

𝐷k
𝐷𝑡

= (

𝑑𝑉

𝑑𝑡

+ 𝑉
2
) x + 𝐹(

𝑑A
𝑑𝑡

+ 𝑉A)

+ 𝐹
󸀠
([

𝑑𝛼

𝑑𝑡

+ 𝑉
𝑇
𝛼] ⋅ x)A.

(29)

Now, we calculate the rotation term of momentum equation:

1

𝑅
0

u =

1

𝑅
0

ê
3
× k =

1

𝑅
0

ê
3
× [𝑉x + 𝐹A]

=

1

𝑅
0

ê
3
× (𝑉x) + 1

𝑅
0

𝐹 (ê
3
× A)

=

1

𝑅
0

(𝑆 + 𝑄) x +

1

𝑅
0

𝐹 (ê
3
× A)

because of Lemma 5.

(30)

With easy calculations, we see that the term due to pressure
in momentum equation is expressed as

𝑃∇𝑝 = 𝑃̂x + 𝑃𝑃𝐹𝛼. (31)

𝜌 = (b ⋅ x) + 𝐵𝐹 implies that

Γ𝜌ê
3
= Γ (b ⋅ x) ê

3
+ Γ𝐵𝐹ê

3
= Γ (ê

3
b𝑇) x + Γ𝐵𝐹ê

3
. (32)

Taking the addition of (29), (30), (31), and (32), we find that

𝐷k
𝐷𝑡

+

1

𝑅
0

u + 𝑃∇𝑝 + Γ𝜌ê
3

= [

𝑑𝑉

𝑑𝑡

+ 𝑉
2
+ 𝑃̂ +

1

𝑅
0

(𝑆 + 𝑄) + Γ (ê
3
b𝑇)] x

+ 𝐹[

𝑑A
𝑑𝑡

+ 𝑉A +

1

𝑅
0

(ê
3
× A) + 𝑃𝑃𝛼 + Γ𝐵ê

3
]

+ 𝐹
󸀠
[(

𝑑𝛼

𝑑𝑡

+ 𝑉
𝑇
𝛼) ⋅ x]A.

(33)

Since 𝑉 = (D + Ω), it is easy to verify that 𝑉 satisfies the
following equation:

𝑑𝑉

𝑑𝑡

+ 𝑉
2
+ 𝑃̂ + Γê

3
b𝑇 + 1

𝑅
0

(𝑆 + 𝑄) = 0. (34)

Therefore, the first term of right hand side of (33) vanishes.
Furthermore, 𝐹 is arbitrary function of 𝛼 ⋅ x, A satisfy the

second equation of (22), and substituting the value of 𝑃 from
(24), we verify that the second term in right hand side of
(33) becomes zero. Also, we see that third term in right hand
side of same equation vanishes because 𝛼 satisfy the first
equation of (22). All these terms together confirm that the
right hand side of (33) is identically equal to zero. That is,
𝐷k/𝐷𝑡 + (1/𝑅

0
)u + 𝑃∇𝑝 + Γ𝜌ê

3
= 0. Hence, we verified that

the velocity k, pressure𝑝, and density function 𝜌̃ given by (21)
together with (22) and (24) satisfy the first equation of (1).

Now, we are at the last step of the proof; here we have to
verify the density function 𝜌̃ given by (21) which satisfy the
density momentum equation of (1), so that we consider

𝐷𝜌̃

𝐷𝑡

=

𝜕𝜌̃

𝜕𝑡

+ (k ⋅ ∇) 𝜌̃

=

𝜕

𝜕𝑡

[𝜌
𝑏
+ b ⋅ x + 𝐵𝐹]

+ [(𝑉x + 𝐹A) ⋅ ∇] [𝜌𝑏 + b ⋅ x + 𝐵𝐹]

=

𝑑b
𝑑𝑡

⋅ x + 𝐹

𝑑𝐵

𝑑𝑡

+ 𝐵𝐹
󸀠 𝑑𝛼

𝑑𝑡

⋅ x + 𝑉x ⋅ b + 𝐹A ⋅ b

+ 𝐵𝐹
󸀠
𝑉x ⋅ 𝛼 + 𝐵𝐹𝐹

󸀠A ⋅ 𝛼.

(35)

The term 𝐵𝐹𝐹
󸀠A ⋅ 𝛼 of (35) is zero because of (26). Also, we

can use Lemma 4 in the above equations and then finally we
can obtain the simplified form of (35) as given below:

𝐷𝜌̃

𝐷𝑡

= [

𝑑b
𝑑𝑡

+ 𝑉
𝑇b] ⋅ x + 𝐹[

𝑑𝐵

𝑑𝑡

+ A ⋅ b]

+ 𝐵𝐹
󸀠
[

𝑑𝛼

𝑑𝑡

+ 𝑉
𝑇
𝛼] ⋅ x.

(36)

Here, we notice that the second and third terms in the right
hand side of (36) are equal to zero because of first and last
equations of (22). To see the first term in right hand side of
the above equation, we have𝑉 = D+Ω as a sumof symmetric
and skew symmetric matrices, respectively, so that𝑉𝑇 = D−

Ω and b satisfies (10). Therefore, we have

𝑑b
𝑑𝑡

= −Db +

1

2

w × b = (−D + Ω) b = −𝑉
𝑇b. (37)

This implies that 𝑑b/𝑑𝑡+𝑉𝑇b = 0.Thus, we have that the first
term in right hand side of (36) is also zero. Hence, 𝜌̃ given by
(21) satisfy the densitymomentumequation𝐷𝜌̃/𝐷𝑡 = 0.Thus
we complete the proof of theorem.

5. Examples

In this section, we provide two examples that concerns
Theorems 3 and 6. Let us start with Example 1.

Example 1. Let us consider vectors A = (0, 0, 𝐴
3
(𝑡))
𝑇 and

𝛼(𝑡) = (1, 1, 0)
𝑇. Now we define 𝐹(𝛼 ⋅ x) = 𝐹(𝑥

1
+ 𝑥
2
) =

sin(𝑥
1
+ 𝑥
2
) and 𝐺(𝛼 ⋅ x) = 𝐺(𝑥

1
+ 𝑥
2
) = − cos(𝑥

1
+ 𝑥
2
). A

scalar function 𝐵(𝑡) is now defined as

𝐵 (𝑡) = 𝑐
1
sin (𝑁𝑡) + 𝑐

2
cos (𝑁𝑡) (38)
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and 𝐴
3
(𝑡) is defined as

𝐴
3
(𝑡) = Γ

1/2
[𝑐
1
cos (𝑁𝑡) − 𝑐

2
sin (𝑁𝑡)] , (39)

where 𝑐
1
, 𝑐
2
are arbitrary constants and 𝑁 is the Brunt-

Väisälä frequency, which has the relation 𝑁 = Γ
1/2 with

consideration of 𝜌 = −𝑥
3
for stable stratification. Then, we

see that

k (x, 𝑡) = A (𝑡) sin (𝑥
1
+ 𝑥
2
) ,

𝜌 (x, 𝑡) = 𝐵 (𝑡) sin (𝑥
1
+ 𝑥
2
) ,

𝜌̃ (x, 𝑡) = 𝜌 (𝑥
3
) + 𝜌 (x, 𝑡) ,

𝑝 = 0.

(40)

The velocity, density, and pressure given by (40) represent
the nonlinear plane wave solution of (1) as suggested by
Theorem 3.

Example 2. Let us consider vectors A = (0, 0, 𝐴
3
(𝑡))
𝑇, 𝛼(𝑡) =

(−1, 1, 0)
𝑇, and b = (0, 0, −1)

𝑇. Now we define 𝐹(𝛼 ⋅ x) =

𝐹(−𝑥
1
+ 𝑥
2
) = sin(−𝑥

1
+ 𝑥
2
) and 𝐺(𝛼 ⋅ x) = 𝐺(−𝑥

1
+ 𝑥
2
) =

− cos(−𝑥
1
+ 𝑥
2
). A scalar function 𝐵(𝑡) is now defined as

𝐵 (𝑡) = 𝑐
1
sin (𝑁𝑡) + 𝑐

2
cos (𝑁𝑡) (41)

and 𝐴
3
(𝑡) is defined as

𝐴
3
(𝑡) = Γ

1/2
[𝑐
1
cos (𝑁𝑡) − 𝑐

2
sin (𝑁𝑡)] , (42)

where 𝑐
1
, 𝑐
2
are arbitrary constants and 𝑁 is the Brunt-

Väisälä frequency, which has the relation 𝑁 = Γ
1/2 with

consideration of 𝜌 = −𝑥
3
for stable stratification. Consider

the matricesD, Ω, and 𝑃̂(𝑡) as given below:

D = (

𝜆 0 0

0 −𝜆 0

0 0 0

) ,

Ω = (

0 −𝜆 0

𝜆 0 0

0 0 0

) ,

𝑃̂ (𝑡) = (

𝜆

𝑅
0

−

𝜆

𝑅
0

0

−

𝜆

𝑅
0

𝜆

𝑅
0

0

0 0 −Γ

),

(43)

where 𝜆 is a nonzero scalar. With these assumptions we cal-
culate the scalar function 𝑃(𝑡) according to formula (24) and

this is equal to zero. Then the following is the superimposed
solution of (1) suggested byTheorem 6:

k (x, 𝑡) = D (𝑡) x +

1

2

w (𝑡) × x + A (𝑡) 𝐹 (𝛼 (𝑡) ⋅ x)

= (

𝜆 (𝑥
1
− 𝑥
2
)

𝜆 (𝑥
1
− 𝑥
2
)

0

)

+(

0

0

Γ
1/2

[𝑐
1
cos (𝑁𝑡) − 𝑐

2
sin (𝑁𝑡)]

)

⋅ sin (−𝑥
1
+ 𝑥
2
) ,

𝜌̃ = 𝜌
𝑏
+ b (𝑡) ⋅ x + 𝐵 (𝑡) 𝐹 (𝛼 (𝑡) ⋅ x) = 𝜌

𝑏
+ 𝜌 (x, 𝑡)

= 𝜌
𝑏
− 𝑥
3
+ (𝑐
1
sin (𝑁𝑡) + 𝑐

2
cos (𝑁𝑡))

⋅ sin (−𝑥
1
+ 𝑥
2
) ,

𝑝 =

1

2𝑃

𝑃̂ (𝑡) x ⋅ x + 𝑃 (𝑡) 𝐺 (𝛼 (𝑡) ⋅ x) = 1

2𝑃

⋅(

𝜆

𝑅
0

−

𝜆

𝑅
0

0

−

𝜆

𝑅
0

𝜆

𝑅
0

0

0 0 −Γ

) x ⋅ x + 0

=

1

2𝑃

[

𝜆

𝑅
0

(𝑥
2

1
− 2𝑥
1
𝑥
2
+ 𝑥
2

2
) − Γ𝑥

2

3
] .

(44)

Let us find the flow of fluids that concern Example 2.
Consider that the fluid particle is at x(𝑡) = (𝑥

1
, 𝑥
2
, 𝑥
3
)
𝑇 at

any instant 𝑡. A particle is moving with velocity k(x, 𝑡) and
suppose that the particle is at position x(0) = (𝑥

10
, 𝑥
20
, 𝑥
30
)
𝑇

at time 𝑡 = 0. The flow of fluid is then defined through the
map 𝛽 : R ×R3 󳨃→ R3 as follows:

𝛽 (𝑡, x) = x (𝑡) = (

𝑥
1
(𝑡)

𝑥
2
(𝑡)

𝑥
3
(𝑡)

) (45)

and this flow is completely determined by the following initial
value problem for any x ∈ R3:

𝑑x
𝑑𝑡

= k (x, 𝑡) ,

x (0) = (𝑥
10
, 𝑥
20
, 𝑥
30
)
𝑇

.

(46)
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Figure 1: Integral curves.

In this example, we have the initial value problem as given
below:

𝑑𝑥
1

𝑑𝑡

= 𝜆 (𝑥
1
− 𝑥
2
) ; 𝑥

1
(0) = 𝑥

10
,

𝑑𝑥
2

𝑑𝑡

= 𝜆 (𝑥
1
− 𝑥
2
) ; 𝑥

2
(0) = 𝑥

20
,

𝑑𝑥
3

𝑑𝑡

= Γ
1/2

[𝑐
1
cos (𝑁𝑡) − 𝑐

2
sin (𝑁𝑡)] sin (−𝑥

1
+ 𝑥
2
) ;

𝑥
3
(0) = 𝑥

30
.

(47)

We can solve the first and second equations of (47) explicitly
and it is observed that−𝑥

1
(𝑡)+𝑥
2
(𝑡) remain constant along the

flow. Let us assume that −𝑥
1
(𝑡)+𝑥

2
(𝑡) = 𝐿 for all 𝑡. Hence, we

have 𝑥
20

= 𝐿+𝑥
10
. Also, we consider 𝑐

1
, 𝑐
2
to be the particular

constants. With these axioms a vector function given by right
hand side of (47) is Lipschitz continuous in x over the vertical
plane −𝑥

1
+ 𝑥
2

= 𝐿. Hence there exists a unique solution
through each point on this plane.The integral curves passing
through each of the points (𝑥

10
, 𝑥
20
, 𝑥
30
) on this plane are

given by

𝑥
1
(𝑡) = −𝜆𝐿𝑡 + 𝑥

10
,

𝑥
2
(𝑡) = −𝜆𝐿𝑡 + 𝐿 + 𝑥

10
,

𝑥
3
(𝑡) = 𝑥

30
+ sin (𝐿) [𝑐

1
sin (𝑁𝑡) + 𝑐

2
cos (𝑁𝑡) − 𝑐

2
] .

(48)

To the given particular value of 𝐿, we have the particular
integral curve passing through each of the points of the
form (𝑥

10
, 𝑥
20
, 𝑥
30
). In Figure 1, we have depicted these inte-

gral curves for 𝐿 = 𝜋/2, 𝜆 = 5, 𝑁 = 16, and 𝑐
1
= 𝑐
2
= 1

passing through the points (1, 𝜋/2 + 1, 1), (1, 𝜋/2 + 1, 2),
and (1, 𝜋/2 + 1, 3) by red, blue, and green colored curves,
respectively.

Furthermore, if we vary 𝐿 and initial points satisfying
the condition −𝑥

10
+ 𝑥
20

= 𝐿, then (48) gives us a two-
parameter family of integral surface. We have depicted this
integral surface in Figure 2 for −𝜋/2 ≤ 𝐿 ≤ 𝜋/2.

5
0

−5

5

0
−5

2

0

x2

x
3

x1

Figure 2: Integral surface.

6. Conclusion
In Section 2, we have the special exact solutions of rotating
stratified Boussinesq equations (1) in the form of (9), whereas
(12) gives us the nonlinear plane wave solutions. In Section 4,
we develop the superimposed solutions of rotating stratified
Boussinesq equations that are given by (21), which consists
of addition of two components, one in the form of (9) and
second component in the form of (12). We present these
solutions in the form of Theorem 6. In support of these
solutions, we have given two examples in Section 5.
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