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We consider a class of nonlinear discrete-time Volterra equations in Banach spaces. Estimates for the norm of operator-valued
functions and the resolvents of quasi-nilpotent operators are used to find sufficient conditions that all solutions of such equations
are elements of an appropriate Banach space.These estimates give us explicit boundedness conditions.The boundedness of solutions
to Volterra equations with infinite delay is also investigated.

1. Introduction

In many phenomena of the real world, not only does their
evolution prove to be dependent on the present state, but it
is essentially specified by the entire previous history. These
processes are encountered in the theory of viscoelasticity
[1, 2], optimal control problems [3], and also description of
the motion of bodies with reference to hereditary [3–5]. The
mathematical description of these processes can be carried
out with the aid of equations with the aftereffect, integral,
and integrodifferential equations. A significant contribution
to the development of this direction was made by V. Volterra,
V. B. Kolmanovskii, N. N. Krasovskii, S. M. V. Lunel, A. D.
Myshkis, and J. K. Hale.

The aim of this article is to develop a technique for
investigating stability and boundedness of nonlinear implicit
Volterra difference systems described by Volterra operator
equations. Only a few papers deal with the theory of gen-
eral Volterra equations and most of them are devoted to
the stability analysis of explicit Volterra linear difference
equations with constant coefficients or of convolution type.
For example, in Minh [6], some results on asymptotic
stability and almost periodicity are stated in terms of spectral
properties of the equations and their solutions, which are
linearVolterra equations of convolution type. InMinh [7], the

asymptotic behavior of individual orbits of linear functional
operator equations are established using an extension of the
Katznelson-Tzafriri’s theorem [8]. InNagabuchi [9], using the
decomposition of the phase space, together with the variation
of constants formula in the phase space, the existence of
almost periodic solutions for forced linear Volterra difference
equations in Banach spaces is derived. The considered equa-
tions are of convolution type. In Murakami and Nagabuchi
[10], sufficient stability properties and the asymptotic almost
periodicity for linear Volterra difference equations in Banach
spaces are derived. González et al. [11] consider an implicit
nonlinear Volterra difference equation in a Hilbert space and
obtained sufficient conditions so that the solutions exist and
have a bounded behavior. The coefficients of the considered
equations are sequences of real numbers. In Song and Baker
[12], several necessary and sufficient conditions for stability
are obtained for solutions of the linear Volterra difference
equations by considering the equations in various choices
of Banach spaces. However, the main results of this article
are established essentially to implicit linear Volterra differ-
ence equations. In Muroya and Ishiwata [13], considering
a nonlinear Volterra difference equation with unbounded
delay, sufficient conditions for the zero solution to be globally
asymptotically stable are derived. However, only an explicit
scalarVolterra difference is considered. InGyőri andHorváth
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[14], sufficient conditions are presented underwhich the solu-
tions to a linear nonconvolution Volterra difference equation
converge to limits, which are given by a limit formula. In
Kolmanovskii et al. [15], stability and boundedness problems
of some class of scalarVolterra nonlinear difference equations
are investigated. Stability conditions and boundedness are
formulated in terms of the characteristics equations. In Song
and Baker [16], the fixed point theory is used to establish
sufficient conditions to ensure the stability of the zero solu-
tion of an implicit nonlinear Volterra difference equation.
Besides, the existence of asymptotically periodic solutions
is established. However, in this article equations with linear
kernel are mainly considered.

One of the basic methods in the theory of stability and
boundedness of Volterra difference equations is the direct
Lyapunovmethod (see [1, 3, 17, 18]). But finding the Lyapunov
functionals for Volterra difference equations is still a difficult
task.

In this paper, to establish boundedness conditions of
solutions, we will interpret the Volterra difference equations
with nonlinear kernels as operator equations in appropriate
spaces. Such an approach for linear Volterra difference equa-
tions has been used by Myshkis [5], Kolmanovskii et al. [15],
Kwapisz [19], and Medina [20, 21]. The knowledge of these
bounds is important because they represent the error between
the exact solution of the original problem and its differ-
ence approximation.

Existence and uniqueness problems for the Volterra
difference equations were discussed by some authors. Usually
the solutionswere sought in the phase space 𝑙𝜔

𝑝
(𝑍
+

, 𝑋), 𝜔 > 0

and 𝑍
+

= {0, 1, 2, . . .} (e.g., see [15, 19]). In this paper, formu-
lating the Volterra discrete equations in the phase space
𝑙
𝑝
(𝑍
+

, 𝑋), where 𝑋 is an appropriate Hilbert space, and
assuming that the kernel operator has the Volterra property,
we obtain sufficient conditions for the existence and unique-
ness problem.

Our results compare favorably with the above-mentioned
works in the following sense:

(a) Sufficient conditions for the existence and uniqueness
of solutions of implicit nonlinear Volterra difference
equations are obtained.

(b) We established a theory on the asymptotic behavior of
implicit nonlinear Volterra difference systems which
are described by Volterra operator equations.

(c) Explicit estimates for the solutions of nonlinear
Volterra operator equations in Hilbert spaces are
derived.

The remainder of this article is organized as follows:
in Section 2, we introduce some notations, preliminary
results, and the statement of the problem. In Section 3, the
boundedness of solutions is derived using norm-estimates for
the resolvents of completely continuous quasi-nilpotent oper-
ators. In Section 4, we discuss the boundedness of solutions of
infinite-delay Volterra difference equations. Finally, Section 5
is devoted to the discussion of our results: we highlight the
main conclusions.

2. Statement of the Problem

Let𝑋 be a complex Hilbert space with norm ‖ ⋅ ‖
𝑋
fl ‖ ⋅ ‖. Let

𝑙
𝑝
= 𝑙
𝑝
(𝑍
+

, 𝑋) and 𝑙
∞

= 𝑙
∞
(𝑍
+

, 𝑋) be the spaces of sequences
ℎ = {ℎ(𝑗)}

∞

𝑗=1
such that

𝑙
𝑝
=

{

{

{

ℎ : 𝑍
+

→ 𝑋 :

∞

∑

𝑗=1

ℎ (𝑗)

𝑝

< ∞
}

}

}

,

1 ≤ 𝑝 < ∞,

𝑙
∞

= {ℎ : 𝑍
+

→ 𝑋 : sup
𝑗∈𝑍
+

ℎ (𝑗)
 < ∞} .

(1)

The spaces 𝑙
𝑝
, 1 ≤ 𝑝 ≤ ∞, equippedwith the standard norms

‖ℎ‖
𝑝
= (

∞

∑

𝑗=1

ℎ (𝑗)

𝑝

)

1/𝑝

, for 1 ≤ 𝑝 < ∞,

‖ℎ‖
∞

= sup
𝑗∈Z+

ℎ (𝑗)
 ,

(2)

are Banach spaces.
Denote

Ω
𝑟
= {ℎ ∈ 𝑙

∞
: ‖ℎ‖
∞

≤ 𝑟} , for 0 < 𝑟 ≤ ∞. (3)

We consider Volterra difference equations on a separable
Hilbert space𝑋

𝑥 (𝑛) = 𝑓 (𝑛) +

𝑛

∑

𝑗=0

𝐾(𝑛, 𝑗, 𝑥 (𝑗)) , 𝑛 ≥ 0, (4)

where

𝐾 : 𝑍
+

× 𝑍
+

× {𝜉 ∈ 𝑋 :
𝜉

∞ < 𝑟} → 𝑋 (5)

is the kernel, 𝑍+ denotes the set of nonnegative integers, and
𝑓 : 𝑍
+

→ 𝑋 is a given sequence.
Equation (4) can be regarded as the discrete-time analog

of the classical integral Volterra equation of the second kind

𝑥 (𝑡) = 𝑓 (𝑡) + ∫

𝑡

0

𝐾 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, (𝑡 ≥ 0) . (6)

We point out the distinction between (4) and the explicit
Volterra equation

𝑥 (𝑛) = 𝑓 (𝑛) +

𝑛−1

∑

𝑗=0

𝐾(𝑛, 𝑗, 𝑥 (𝑗)) , 𝑛 ≥ 0. (7)

The first step is to establish the solvability of (4). In the linear
case, in which we write (4) as

𝑥 (𝑛) = 𝑓 (𝑛) +

𝑛

∑

𝑗=0

𝐾(𝑛, 𝑗) 𝑥 (𝑗) , 𝑛 ≥ 0, (8)

with 𝐾(𝑛, 𝑗) being a finite-dimensional matrix, the existence
of 𝑥(𝑛) for each 𝑛 follows from the property that (𝐼 −𝐾(𝑛, 𝑛))
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is invertible for each 𝑛 ≥ 0. Song and Baker [16] deal with
the existence of solutions of (4), defined on 𝑑-dimensional
Euclidean spaces. In fact, considering implicit equations of
the form

𝑥 (𝑛 + 1) = 𝜓
𝑛
(𝑥 (0) , 𝑥 (1) , . . . , 𝑥 (𝑛) , 𝑥 (𝑛 + 1)) (9)

and assuming appropriate conditions on {𝜓
𝑛
}, they conclude

that solutions of equations

𝑥 = 𝜓
𝑛
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛
, 𝑥) (10)

are unique and can be expressed in the form

𝑥 = 𝜑
𝑛
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛
) . (11)

We present a different and more general approach to the
problem of existence and uniqueness discussed in [16].
Namely, for a given general discrete operator 𝑇 : 𝑆(𝑍

+

, 𝑋) →

𝑆(𝑍
+

, 𝑋), consider the equation

𝑢 (𝑛) = (𝑇𝑢) (𝑛) , 𝑛 ∈ 𝑍
+

, (12)

where 𝑆(𝑍
+

, 𝑋) denotes the linear space of all sequences 𝑠 :

𝑍
+

→ 𝑋.
We ask when the solutions of this equation belong to the

space 𝑙
𝑝
(𝑍
+

, 𝑋) of all functions 𝑥 ∈ 𝑆(𝑍
+

, 𝑋) satisfying the
condition

(

∞

∑

𝑗=1

𝑥 (𝑗)

𝑝

)

1/𝑝

< ∞, for 1 ≤ 𝑝 ≤ ∞. (13)

Assumption A. The operator 𝑇 is a causal operator; that is, for
any 𝑛 ∈ 𝑍

+,

(𝑇𝑢) (𝑛) = (𝑇V) (𝑛) ,

if 𝑢 (𝑗) = V (𝑗) for 𝑗 = 0, 1, . . . , 𝑛 − 1.

(14)

That is, the value of (𝑇𝑢) at 𝑛 is determined by the values of
𝑢(𝑗) for 𝑗 = 0, 1, . . . , 𝑛 − 1 (e.g., see Corduneanu [22]).

Remark 1. The causal property of the operator 𝑇 guarantees
the existence and uniqueness of the solutions of (12). Con-
sequently, when the operator 𝑇 of (12) has, for instance, the
form

(𝑇𝑥) (𝑛) = 𝑓 (𝑛) +

𝑛

∑

𝑗=0

𝐾(𝑛, 𝑗, 𝑥 (𝑗)) , (15)

we can establish existence and uniqueness results for the
solutions of (4).

Theorem 2. If the operator 𝑇 defined in (15) is a causal
operator, then there exists a solution of (4).

Finally, we will determine sufficient conditions on the
coefficients of (4) such that its solutions belong to the space
𝑙
𝑝
(𝑍
+

, 𝑋), 1 ≤ 𝑝 ≤ ∞.

In the finite-dimensional case, the spectrum of a linear
operator consists of its eigenvalues. The spectral theory of

bounded linear operators on infinite-dimensional spaces is
an important but challenging area of research. For example,
an operator may have a continuous spectrum in addition to,
or instead of, a point spectrum of eigenvalues. A particularly
simple and important case is that of compact, self-adjoint
operators. Compact operatorsmay be approximated by finite-
dimensional operators, and their spectral theory is close to
that of finite-dimensional operators.

To formulate the next result, let us introduce the following
notations and definitions: let 𝐻 be a separable Hilbert space
and 𝐴 a linear compact operator in 𝐻. If {𝑒

𝑘
}
∞

𝑘=1
is an

orthogonal basis in𝐻 and the series∑∞
𝑘=1

(𝐴𝑒
𝑘
, 𝑒
𝑘
) converges,

then the sum of the series is called the trace of the operator𝐴
and is denoted by

trace (𝐴) = tr (𝐴) =

∞

∑

𝑘=1

(𝐴𝑒
𝑘
, 𝑒
𝑘
) . (16)

Definition 3. An operator𝐴 satisfying the relation tr(𝐴∗𝐴) <

∞ is said to be a Hilbert-Schmidt operator, where 𝐴
∗ is the

adjoint operator of 𝐴.
The norm

𝑁
2
(𝐴) = 𝑁 (𝐴) = √tr (𝐴∗𝐴) (17)

is called the Hilbert-Schmidt norm of 𝐴.

Definition 4. A bounded linear operator𝐴 is said to be quasi-
Hermitian if its imaginary component

𝐴
𝐼
=

𝐴 − 𝐴
∗

2𝑖
(18)

is a Hilbert-Schmidt operator, where 𝐴
∗ is the adjoint

operator of 𝐴.

Theorem 5 (see [23, Lemma 2.3.1]). Let 𝑉 be a Hilbert-
Schmidt completely continuous quasi-nilpotent (Volterra) oper-
ator acting in a separable Hilbert space𝐻. Then the inequality


𝑉
𝑘

≤

𝑁
𝑘

(𝑉)

√𝑘!
, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑘, (19)

is true.

3. Main Results

Let 𝐴
𝑟
denote the infinite matrix with components

𝐴
𝑟,𝑛,𝑗

fl sup
𝑧∈𝑋:‖𝑧‖≤𝑟

𝐾 (𝑛, 𝑗, 𝑧)


‖𝑧‖
; for 𝑛, 𝑗 = 1, 2, . . . . (20)

Assume that

𝑁
𝑝
(𝐴
𝑟
) = [

[

∞

∑

𝑛=1

(

𝑛

∑

𝑗=1

𝐴
𝑞

𝑟,𝑛,𝑗
)

𝑝/𝑞

]

]

1/𝑞

< ∞, (21)

which implies

𝛽
𝑝
(𝐴
𝑟
) = sup
𝑛=1,2,...

[

[

𝑛

∑

𝑗=1

𝐴
𝑞

𝑟,𝑛,𝑗

]

]

1/𝑞

< ∞, (22)

where 1/𝑝 + 1/𝑞 = 1.
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Denote

𝑚
𝑝
(𝐴
𝑟
) =

∞

∑

𝑗=0

𝑁
𝑗

𝑝
(𝐴
𝑟
)

𝑝√𝑗!
. (23)

Theorem 6. Assume that 𝑓 ∈ 𝑙
𝑝
(𝑍
+

, 𝑋) and condition (21)
holds. Then any solution 𝑥 = (𝑥

1
, 𝑥
2
, . . .) of (4) belongs to

𝑙
𝑝
(𝑍
+

, 𝑋) and satisfies the inequalities

‖𝑥‖
𝑝
≤ 𝑚
𝑝
(𝐴
𝑟
)
𝑓

𝑝 , (24)

‖𝑥‖
∞

≤
𝑓

∞ + 𝛽
𝑝
(𝐴
𝑟
)𝑚
𝑝
(𝐴
𝑟
)
𝑓

𝑝 , (25)

provided that
𝑓

∞ + 𝛽
𝑝
(𝐴
𝑟
)𝑚
𝑝
(𝐴
𝑟
)
𝑓

𝑝 < 𝑟. (26)

Proof of Theorem 6. We will decompose the proof of Theo-
rem 6 in the following lemmas.

Lemma 7. Assume that 𝑓 ∈ 𝑙
𝑝
(𝑍
+

, 𝑋), 1 ≤ 𝑝 < ∞, and
condition (21) holds with 𝑟 = ∞, that is, 𝐴

∞
with components

𝐴
∞

(𝑛, 𝑗) = sup
𝑧∈𝑋

𝐾 (𝑛, 𝑗, 𝑧)


‖𝑧‖
, 𝑛, 𝑗 = 1, 2, . . . , (27)

is a Hilbert-Schmidt kernel.Then, any solution 𝑥 = (𝑥
1
, 𝑥
2
, . . .)

of (4) belongs to 𝑙
𝑝
(𝑍
+

, 𝑋) and satisfies the inequality

‖𝑥‖
𝑝
≤ 𝑚
𝑝
(𝐴
∞
)
𝑓

𝑝 . (28)

Proof. From (4) we have

‖𝑥 (𝑛)‖ ≤

𝑛

∑

𝑗=1

𝐴
∞

(𝑛, 𝑗)
𝑥 (𝑗)

 +
𝑓 (𝑛)

 . (29)

Let 𝐿 be the linear operator defined on 𝑙
𝑝
(𝑍
+

, 𝑋) by

(𝐿ℎ) (𝑛) =

𝑛

∑

𝑗=1

𝐴
∞

(𝑛, 𝑗) ℎ (𝑗) , ℎ ∈ 𝑙
𝑝
(𝑍
+

, 𝑋) . (30)

Rewrite equation (4) as

𝑥 = 𝑓 + 𝐿𝑥. (31)

Hence,

𝑥 = (𝐼 − 𝐿)
−1

𝑓. (32)

Since

(𝐼 − 𝐿)
−1

=

∞

∑

𝑗=0

𝐿
𝑗

, (33)

we have


(𝐼 − 𝐿)

−1
𝑝

≤

∞

∑

𝑗=0


𝐿
𝑗
𝑝

. (34)

Thus, by (32),

‖𝑥‖
𝑝
≤

∞

∑

𝑗=0


𝐿
𝑗
𝑝

𝑓
𝑝 . (35)

Since 𝐿 is a quasi-nilpotent Hilbert-Schmidt operator, it
follows, by Gil’ [23, Lemma 2.3.1], that


𝐿
𝑘
𝑝

≤
𝑁
𝑘

𝑝
(𝐴
∞
)

𝑝

√𝑘!
. (36)

This and (35) yield the required result.

Remark 8. By Hölder’s inequality, we have

𝑚
𝑝
(𝐴
∞
) = (1 −

1

𝑝𝑞/𝑝
)

−1/𝑞

exp [𝑁
𝑝

𝑝
(𝐴
∞
)] . (37)

Consequently, from Lemma 7,

‖𝑥‖
𝑝
≤ 𝛾
𝑝
exp [𝑁

𝑝

𝑝
(𝐴
∞
)]

𝑓
𝑝 , (38)

where

𝛾
𝑝
= (1 −

1

𝑝𝑞/𝑝
)

−1/𝑞

. (39)

Lemma 9. Assume that 𝑓 ∈ 𝑙
∞
(𝑍
+

, 𝑋) and condition (21)
holds with 𝑟 = ∞, and then any solution 𝑥 = (𝑥

1
, 𝑥
2
, . . .) of

(4) belongs to 𝑙
∞
(𝑍
+

, 𝑋) and satisfies the inequality

‖𝑥‖
∞

≤
𝑓

∞ + 𝛽
𝑝
(𝐴
∞
)𝑚
𝑝
(𝐴
∞
)
𝑓

𝑝 . (40)

Proof. From (31), it follows that

‖𝑥‖
∞

≤
𝑓

∞ + ‖𝐿𝑥‖
∞

. (41)

But due to Hölder’s inequality

‖𝐿𝑥‖
∞

≤ sup
𝑛=1,2,...

[

𝑛

∑

𝑘=1

𝐴
𝑞

∞
(𝑛, 𝑘)]

1/𝑞

‖𝑥‖
𝑝

= 𝛽
𝑝
(𝐴
∞
) ‖𝑥‖
𝑝
.

(42)

Hence, (28) and (42) yield

‖𝑥‖
∞

≤
𝑓

∞ + 𝛽
𝑝
(𝐴
∞
)𝑚
𝑝
(𝐴
∞
)
𝑓

𝑝 . (43)

Now, we will complete the Proof of Theorem 6, consider-
ing the case 0 < 𝑟 < ∞.

By Urysohn’s Lemma [24, p. 15], there are scalar-valued
functions 𝜆

𝑟
and 𝜇
𝑟
defined on 𝑙

𝑝
(𝑍
+

, 𝑋) and𝑋, respectively,
such that

𝜆
𝑟
(ℎ) =

{

{

{

1, ‖ℎ‖
∞

≤ 𝑟,

0, ‖ℎ‖
∞

> 𝑟,

𝜇
𝑟
(ℎ) =

{

{

{

1, ‖ℎ‖ ≤ 𝑟,

0, ‖ℎ‖ > 𝑟.

(44)
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Define
𝐾
𝑟
(𝑛, 𝑗, 𝑧) = 𝜆

𝑟
(ℎ)𝐾 (𝑛, 𝑗, 𝑧) ,

𝑓
𝑟
(ℎ) = 𝜇

𝑟
(ℎ) 𝑓 (ℎ) .

(45)

Consider the Volterra equation

𝑥 (𝑛) = 𝑓
𝑟
(𝑛) +

𝑛

∑

𝑗=1

𝐾
𝑟
(𝑛, 𝑗, 𝑥 (𝑗)) , 𝑛 ≥ 0. (46)

Due to Lemma 9 and condition (26), any solution of (46)
satisfies (25) and therefore belongs to Ω

𝑟
. But 𝐾

𝑟
= 𝐾 and

𝑓
𝑟

= 𝑓 on Ω
𝑟
. This proves estimates (25) for a solution of

(4). Estimates (24) follows from Lemma 7.This completes the
proof of Theorem 6.

4. Volterra Difference Equations with
Infinite Delay

Consider the Volterra difference equation of the form

𝑥 (𝑛) = 𝑓 (𝑛) +

𝑛

∑

𝑗=−∞

𝐾(𝑛, 𝑗, 𝑥 (𝑗)) , 𝑛 ≥ 0, (47)

which can be regarded as a retarded equation whose delay
is infinite. In general this problem requires that one give an
“initial function” on (−∞, 0], in order to obtain a unique
solution, after which the equation can be treated with the
techniques of standard Volterra equations. The nonunique-
ness of solutions of (47) is an intrinsic feature (e.g., see [25]).
If 𝜑 : (−∞, 0] → 𝑋 is an initial function to (47), then we
write (47) as

𝑥 (𝑛) = (𝑓 (𝑛) +

0

∑

𝑗=−∞

𝐾(𝑛, 𝑗, 𝜑 (𝑗)))

+

𝑛

∑

𝑗=1

𝐾(𝑛, 𝑗, 𝑥 (𝑗))

= �̃� (𝑛) +

𝑛

∑

𝑗=1

𝐾(𝑛, 𝑗, 𝑥 (𝑗)) ,

(48)

so that the initial function 𝜑 becomes part of the sequence
{�̃�(𝑛)}. Under these conditions, we can apply Theorem 5 to
(48), so that the next result is obtained.

Theorem 10. Assume that �̃� ∈ 𝑙
𝑝
(𝑍
+

, 𝑋), 1 ≤ 𝑝 ≤ ∞, and
condition (21) holds. Then the solution 𝑥(𝑛) = 𝑥(𝑛, 𝜑) of (48)
belongs to 𝑙

𝑝
(𝑍
+

, 𝑋) and satisfies the inequalities

‖𝑥‖
𝑝
≤ 𝑚
𝑝
(𝐴
𝑟
)

�̃�
𝑝

,

‖𝑥‖
∞

≤

�̃�
∞

+ 𝛽
𝑝
(𝐴
𝑟
)𝑚
𝑝
(𝐴
𝑟
)

�̃�
𝑝

.

(49)

Proof. Proceeding in a similar way to the proof ofTheorem 6,
with

�̃� (𝑛) = 𝑓 (𝑛) +

0

∑

𝑗=−∞

𝐾(𝑛, 𝑗, 𝜑 (𝑗)) , (50)

instead of 𝑓, and choosing an appropriate initial function 𝜑

such that �̃� ∈ 𝑙
𝑝
(𝑍
+

, 𝑋), the required result follows.

Remark 11. Consider

𝑥 (𝑛) = 𝑥 (𝑛, 𝜑) ∀𝑛 ≥ 0,

𝑥 (𝑗, 𝜑) = 𝜑 (𝑗) for 𝑗 < 0.

(51)

5. Conclusions

New conditions for the existence, uniqueness, and bounded-
ness of solutions of infinite-dimensional nonlinear Volterra
difference systems are derived. Unlike the classic method of
stability analysis, we do not use the technique of the Lyapunov
functions in the process of construction of the estimates for
the solutions. The proofs are carried out using estimates for
the norm of powers of quasi-nilpotent operators. That is, we
interpreted the Volterra difference equations, with nonlinear
kernels, as operator equations defined in the Banach spaces
𝑙
𝑝
(𝑍
+

, 𝑋). We want to point out that the results of this paper
can be useful for discussions of 𝑙

𝑝
(𝑍
+

, 𝑋) stability of the zero
solution of the homogeneous Volterra equation correspond-
ing to (4).

In connection with the above investigations, some open
problems arise. The richness of the spectral properties of
operators acting on infinite-dimensional Hilbert spaces will
need new stability formulations. Consequently, natural direc-
tions for future research is the generalization of our results
to local exponential stabilizability of nonlinear Volterra dif-
ference equations or investigating the feedback stabilization
of implicit nonlinear Volterra systems defined by operator
Volterra equations.
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[14] I. Győri and L.Horváth, “Asymptotic representation of the solu-
tions of linear Volterra difference equations,” Advances in Dif-
ference Equations, vol. 2008, Article ID 932831, 2008.

[15] V. B. Kolmanovskii, A. D. Myshkis, and J.-P. Richard, “Estimate
of solutions for some Volterra difference equations,” Nonlinear
Analysis. Theory, Methods & Applications. An International
Multidisciplinary Journal. Series A:Theory andMethods, vol. 40,
no. 1–8, pp. 345–363, 2000.

[16] Y. Song and C. T. H. Baker, “Perturbation theory for discrete
Volterra equations,” Journal of Difference Equations and Appli-
cations, vol. 9, no. 10, pp. 969–987, 2003.

[17] M. R. Crisci, V. B. Kolmanovskii, E. Russo, andA. Vecchio, “Sta-
bility of continuous and discrete Volterra integro-differential
equations by Liapunov approach,” Journal of Integral Equations
and Applications, vol. 7, no. 4, pp. 393–411, 1995.

[18] S. N. Elaydi, An Introduction to Difference Equations, Under-
graduate Texts in Mathematics, Springer, New York, NY, USA,
1996.

[19] M. Kwapisz, “On 𝑙
P solutions of discrete Volterra equations,”

Aequationes Mathematicae, vol. 43, no. 2-3, pp. 191–197, 1992.
[20] R. Medina, “Solvability of discrete Volterra equations in

weighted spaces,” Dynamic Systems and Applications, vol. 5, no.
3, pp. 407–421, 1996.

[21] R.Medina, “Stability results for nonlinear difference equations,”
Nonlinear Studies, vol. 6, no. 1, pp. 73–83, 1999.

[22] C. Corduneanu, Functional Equations with Causal Operators,
vol. 16, Taylor and Francis, London, UK, 2002.

[23] M. I. Gil’, Norm Estimations for Operator-Valued Functions and
Applications, vol. 192 ofMonographs and Textbooks in Pure and
AppliedMathematics,Marcel Dekker, NewYork,NY,USA, 1995.

[24] N. Dunford and J. T. Schwarz, Linear Operators, Part I, Wiley
Interscience, New York, NY, USA, 1966.

[25] P. Rejto and M. Taboada, “Unique solvability of nonlinear
Volterra equations in weighted spaces,” Journal of Mathematical
Analysis and Applications, vol. 167, no. 2, pp. 368–381, 1992.


