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We prove convergence of solutions to zero in an exponential manner for a system of ordinary differential equations. The feature
of this work is that it deals with nonlinear non-Lipschitz and unbounded distributed delay terms involving non-Lipschitz and
unbounded activation functions.

1. Introduction

Of concern is the following system

𝑥
󸀠

𝑖
(𝑡) = − 𝑎

𝑖
(𝑡) 𝑥
𝑖
(𝑡)

+

𝑚

∑

𝑗=1
𝑏
𝑖𝑗
(𝑡) 𝑓
𝑖𝑗
(∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) 𝑔

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠)

+ 𝑐
𝑖
(𝑡) ,

(1)

for 𝑖 = 1, . . . , 𝑚 and 𝑡 > 0 with 𝑥
𝑗
(𝑡) = 𝑥0𝑗(𝑡) continuous

on (−∞, 0]. Here 𝑎
𝑖
(𝑡) ≥ 0, 𝑏

𝑖𝑗
(𝑡), 𝑓
𝑖𝑗
(𝑡), 𝑔
𝑗
(𝑡), 𝐾
𝑖𝑗
(𝑡) ≥ 0, and

𝑐
𝑖
(𝑡), 𝑖, 𝑗 = 1, . . . , 𝑚, are continuous functions and are subject

to other conditions that will be specified below.
Similar forms of this system arise, for instance, in Neural

Network Theory [1–28] (see also the “Applications” section
below).There, the functions𝑓

𝑖𝑗
(𝑡) and𝑔

𝑗
(𝑡) aremuch simpler.

Usually, 𝑓
𝑖𝑗
(𝑡) are equal to the identity and 𝑔

𝑗
(𝑡) (called the

activation functions) are assumed to be Lipschitz continuous.
The integral terms represent the distributed delays.When the
kernels are replaced by the delta distribution we recover the
well-known discrete delays. The functions 𝑐

𝑖
(𝑡) account for

the input functions. The first terms in the right hand side of
(1) may be looked at as dissipative terms.

Different methods have been used by many authors to
study the well-posedness and the asymptotic behavior of

solutions of these systems [1–3, 6, 9–17, 19–21, 25, 27]. In par-
ticular, a lot of efforts are devoted to improving the conditions
on the different coefficients involved in the system as well
as on the class of activation functions. Regarding the latter
issue, the early assumptions of boundedness, monotonicity,
and differentiability have been all relaxed to merely a global
Lipschitz condition. Since then, it seems that this assumption
has not been weakened further considerably. It has been
pointed out that there are many activation functions which
are continuous but not necessarily Lipschitz continuous in
applications [29]. A slightly weaker condition: 𝑥

𝑖
𝑔
𝑖
(𝑥
𝑖
) > 0,

𝑥
𝑖

̸= 0, and there exist 𝜆
𝑖

> 0 such that 𝜆
𝑖

=

sup
𝑥𝑖 ̸=0(𝑔𝑖(𝑥𝑖)/𝑥𝑖), where 𝑔𝑖(𝑥𝑖) = 𝑓

𝑖
(𝑥
𝑖
) − 𝑓
𝑖
(𝑥
∗

𝑖
) and 𝑥

∗

𝑖
is

the equilibrium, which has been used in [4, 19, 26, 28] (see
also [22–24]). Finally, we cite [5] where the authors consider
non-Lipschitz continuous but bounded activation functions.
There are also many works on discontinuous activation
functions.

Here we assume that the functions 𝑓
𝑖𝑗

and 𝑔
𝑗
are

continuous monotone nondecreasing functions that are not
necessarily Lipschitz continuous and theymay be unbounded
(like power type functions with powers bigger than one). We
prove that, for sufficiently small initial data, solutions decay
to zero exponentially.

We could not find similar interesting works on (contin-
uous but) non-Lipschitz continuous activation functions to
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compare our results with. Our treatment is in fact concerned
with a doubly non-Lipschitz continuous system.

Using standard techniques and the Gronwall-type lemma
below we may prove local existence of solutions. The global
existence follows from the estimation in our theorem below.
The uniqueness, however, is delicate and does not hold in
general.

In the next section we present and prove our result and
illustrate it by an example.

2. Exponential Convergence

In this section we state and prove our exponential conver-
gence result. Before that we need to present a lemma due to
Bainov and Simeonov [30].

Let 𝐼 ⊂ R, and let 𝑔1, 𝑔2 : 𝐼 → R \ {0}. We write 𝑔1 ∝ 𝑔2
if 𝑔2/𝑔1 is nondecreasing in 𝐼.

Lemma 1. Let 𝑎(𝑡) be a positive continuous function in 𝐽 :=

[𝛼, 𝛽). Assume that 𝑘
𝑗
(𝑡, 𝑠), 𝑗 = 1, . . . , 𝑛, are nonnegative

continuous functions for 𝛼 ≤ 𝑠 ≤ 𝑡 < 𝛽 which are
nondecreasing in 𝑡 for any fixed 𝑠, 𝑔

𝑗
(𝑢), 𝑗 = 1, . . . , 𝑛, are

nondecreasing continuous functions in R
+
, with 𝑔

𝑗
(𝑢) > 0 for

𝑢 > 0, and 𝑢(𝑡) is a nonnegative continuous function in 𝐽. If
𝑔1 ∝ 𝑔2 ∝ ⋅ ⋅ ⋅ ∝ 𝑔

𝑛
in (0,∞), then the inequality

𝑢 (𝑡) ≤ 𝑎 (𝑡) +

𝑛

∑

𝑗=1
∫

𝑡

𝛼

𝑘
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐽, (2)

implies that

𝑢 (𝑡) ≤ 𝜔
𝑛
(𝑡) , 𝛼 ≤ 𝑡 < 𝛽0, (3)

where 𝜔0(𝑡) := sup0≤𝑠≤𝑡𝑎(𝑠),

𝜔
𝑗
(𝑡) := 𝐺

−1
𝑗
[𝐺
𝑗
(𝜔
𝑗−1 (𝑡)) +∫

𝑡

𝛼

𝑘
𝑗
(𝑡, 𝑠) 𝑑𝑠] ,

𝑗 = 1, . . . , 𝑛,

𝐺
𝑗
(𝑢) := ∫

𝑢

𝑢𝑗

𝑑𝑥

𝑔
𝑗
(𝑥)

, 𝑢 > 0 (𝑢
𝑗
> 0, 𝑗 = 1, . . . , 𝑛) ,

(4)

and 𝛽0 is chosen so that the functions 𝜔
𝑗
(𝑡), 𝑗 = 1, . . . , 𝑛, are

defined for 𝛼 ≤ 𝑡 < 𝛽0.

In order to shorten the statement of our result we define,
for 𝑖, 𝑗 = 1, . . . , 𝑚,

̃
𝑏
𝑖𝑗
(𝑡) := exp [∫

𝑡

0
𝑎 (𝜎) 𝑑𝜎]

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑐 :=

𝑚

∑

𝑖=1
∫

∞

0
exp [∫

𝑠

0
𝑎 (𝜎) 𝑑𝜎]

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠,

𝑥 (𝑡) =

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
, 𝑡 > 0,

𝑥0 (𝑡) =
𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥0𝑗 (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
, 𝑡 ≤ 0,

𝜔0 (𝑡)

= 𝑥0 (0) + 𝑐

+

𝑚

∑

𝑖,𝑗=1
∫

0

−∞

𝐾
𝑖𝑗
(−𝜎) 𝑔

𝑗
(𝑥0 (𝜎)) 𝑑𝜎 (= const) ,

𝜔̃0 (𝑡)

= 𝜔0 (0) + 𝑐

+

𝑚

∑

𝑖,𝑗=1
∫

∞

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
󸀠

𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
∫

0

−𝑠

𝑔
𝑗
(𝑥0 (𝜎)) 𝑑𝜎 𝑑𝑠,

𝐻
𝑗
(𝑢) := ∫

𝑢

𝑢𝑗

𝑑𝑥

ℎ
𝑗
(𝑥)

,

𝑢 > 0 (𝑢
𝑗
> 0, 𝑗 = 1, . . . , 𝑛 = 𝑚

2
+ 𝑚) ,

𝜔
𝑗
(𝑡) := 𝐻

−1
𝑗

[𝐻
𝑗
(𝜔
𝑗−1 (𝑡)) +∫

𝑡

𝛼

𝜆
𝑗
(𝑠) 𝑑𝑠]

(5)

for some 𝜆
𝑗
(𝑠) to be determined.

Theorem 2. Assume that 𝑓
𝑖𝑗
and 𝑔

𝑗
are continuous monotone

nondecreasing functions 𝑖, 𝑗 = 1, . . . , 𝑚, in R
+
that can be

relabelled as ℎ
𝑘
, 𝑘 = 1, . . . , 𝑛 = 𝑚

2
+ 𝑚, with ℎ1 ∝

ℎ2 ∝ ⋅ ⋅ ⋅ ∝ ℎ
𝑛
, and their corresponding coefficients ̃𝑏

𝑖𝑗
(𝑡) and

∑
𝑚

𝑖=1 𝐾𝑖𝑗(0) are relabelled as𝜆𝑘(𝑡).Assume further that𝑓
𝑖𝑗
(𝑢) >

0, 𝑔
𝑗
(𝑢) > 0 for 𝑢 > 0, 𝑎

𝑖
(𝑡) ≥ 0, 𝑏

𝑖𝑗
(𝑡), 𝑐
𝑖
(𝑡), 𝑖, 𝑗 =

1, . . . , 𝑚, are continuous functions on R
+
,𝐾
𝑖𝑗
are continuously

differentiable functions, and ∫

∞

0 exp[∫𝑠0 𝑎(𝜎)𝑑𝜎]|𝑐𝑖(𝑠)|𝑑𝑠 <

∞ (𝑎(𝑡) := min1≤𝑖≤𝑚{𝑎𝑖(𝑡)}) ∫
0
−∞

𝐾
𝑖𝑗
(−𝜎)𝑔

𝑗
(𝑥0(𝜎))𝑑𝜎 < ∞, 𝑖,

𝑗 = 1, . . . , 𝑚, 𝑐 < ∞. Then, there exists a positive constant 𝛽0
such that

(a) if 𝐾󸀠
𝑖𝑗
≤ 0, 𝑖, 𝑗 = 1, . . . , 𝑚, we have

𝑥 (𝑡) ≤ 𝜔
𝑛
(𝑡) exp [−∫

𝑡

0
𝑎 (𝑠) 𝑑𝑠] , 0 ≤ 𝑡 < 𝛽0, (6)

(b) if in addition 𝑙 := ∑
𝑚

𝑖,𝑗=1 ∫
∞

0 |𝐾
󸀠

𝑖𝑗
(𝑠)| ⋅

(∫

0
−𝑠
𝑔
𝑗
(𝑥0(𝜎))𝑑𝜎)𝑑𝑠 < ∞ and 𝐾

󸀠

𝑖𝑗
(𝑡) and 𝑡𝐾

󸀠

𝑖𝑗
(𝑡)
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are summable and of arbitrary signs, then the
conclusion in (a) holds with 𝜔̃0(𝑡) = 𝜔0(𝑡) + 𝑙,
𝐾
𝑖𝑗
(0) + ∫

∞

0 |𝐾
󸀠

𝑖𝑗
(𝜎)|𝑑𝜎 instead of 𝐾

𝑖𝑗
(0) in the new ̃

𝜆
𝑘

and the corresponding 𝜔̃
𝑛
(𝑡).

Proof. From (1) we entail that for 𝑡 > 0 and 𝑖 = 1, . . . , 𝑚

𝐷
+ 󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

≤ − 𝑎
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑖𝑗
(∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) 𝑔

𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠)

+ 𝑐
𝑖
(𝑡) ,

(7)

or, by summation, we get

𝐷
+
𝑥 (𝑡)

≤ − min
1≤𝑖≤𝑚

{𝑎
𝑖
(𝑡)} 𝑥 (𝑡)

+

𝑚

∑

𝑖,𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑖𝑗
(∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) 𝑔

𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠)

+

𝑚

∑

𝑖=1
𝑐
𝑖
(𝑡) , 𝑡 > 0,

(8)

where𝐷+ denotes the right Dini derivative. Therefore,

𝐷
+
𝑥 (𝑡)

≤ − 𝑎 (𝑡) 𝑥 (𝑡)

+

𝑚

∑

𝑖,𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑖𝑗
(∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) 𝑔

𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠)

+

𝑚

∑

𝑖=1
𝑐
𝑖
(𝑡) , 𝑡 > 0

(9)

and clearly

𝐷
+
{𝑥 (𝑡) exp [∫

𝑡

0
𝑎 (𝑠) 𝑑𝑠]} ≤ exp [∫

𝑡

0
𝑎 (𝑠) 𝑑𝑠]

⋅

𝑚

∑

𝑖,𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑖𝑗
(∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) 𝑔

𝑗
(𝑥 (𝑠)) 𝑑𝑠)

+ exp [∫
𝑡

0
𝑎 (𝑠) 𝑑𝑠]

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
, 𝑡 > 0.

(10)

It follows that (see [29])

𝑥 (𝑡) ≤ 𝑥 (0) + 𝑐

+

𝑚

∑

𝑗=1
∫

𝑡

0
{

𝑚

∑

𝑖=1

̃
𝑏
𝑖𝑗
(𝑠) 𝑓
𝑖𝑗
(∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝜎) 𝑔

𝑗
(𝑥 (𝜎)) 𝑑𝜎)}𝑑𝑠,

(11)

where

𝑥 (𝑡) := 𝑥 (𝑡) exp [∫
𝑡

0
𝑎 (𝑠) 𝑑𝑠] , (12)

and ̃𝑏
𝑖𝑗
(𝑠) and 𝑐 are as defined before the theorem. Set

𝐹
𝑖𝑗
(𝑡) := ∫

𝑡

0
̃
𝑏
𝑖𝑗
(𝑠) 𝑓
𝑖𝑗
(𝐺
𝑖𝑗
(𝑠)) 𝑑𝑠, 𝑡 > 0, (13)

where

𝐺
𝑖,𝑗
(𝑠) := ∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝜎) 𝑔

𝑗
(𝑥 (𝜎)) 𝑑𝜎,

𝑠 ≥ 0, 𝑖, 𝑗 = 1, . . . , 𝑚.

(14)

Define

𝐿1 (𝑡) := 𝑥 (0) + 𝑐 +
𝑚

∑

𝑖,𝑗=1
(𝐹
𝑖𝑗
(𝑡) +𝐺

𝑖,𝑗
(𝑡)) , 𝑡 > 0. (15)

Clearly, from (11) and (15) we have 𝑥(𝑡) ≤ 𝐿1(𝑡), 𝑡 > 0, and

𝐿
󸀠

1 (𝑡) =
𝑚

∑

𝑖,𝑗=1
[
̃
𝑏
𝑖𝑗
(𝑡) 𝑓
𝑖𝑗
(𝐺
𝑖,𝑗
(𝑡)) +𝐾

𝑖𝑗
(0) 𝑔
𝑗
(𝑥 (𝑡))

+∫

𝑡

−∞

𝐾
󸀠

𝑖𝑗
(𝑡 − 𝜎) 𝑔

𝑗
(𝑥 (𝜎)) 𝑑𝜎]

≤

𝑚

∑

𝑖,𝑗=1
[
̃
𝑏
𝑖𝑗
(𝑡) 𝑓
𝑖𝑗
(𝐿1 (𝑡)) +𝐾𝑖𝑗 (0) 𝑔𝑗 (𝐿1 (𝑡))] ,

𝑡 > 0.

(16)

(a) 𝐾󸀠
𝑖𝑗
≤ 0, 𝑖, 𝑗 = 1, . . . , 𝑚. By integration we see that

𝐿1 (𝑡) ≤ 𝐿1 (0) +
𝑚

∑

𝑖,𝑗=1
∫

𝑡

0
[
̃
𝑏
𝑖𝑗
(𝑠) 𝑓
𝑖𝑗
(𝐿1 (𝑠))

+𝐾
𝑖𝑗
(0) 𝑔
𝑗
(𝐿1 (𝑠))] 𝑑𝑠, 𝑡 > 0

(17)

with

𝐿1 (0) = 𝑥 (0) + 𝑐 +
𝑚

∑

𝑖,𝑗=1
∫

0

−∞

𝐾
𝑖𝑗
(−𝜎) 𝑔

𝑗
(𝑥0 (𝜎)) 𝑑𝜎. (18)

According to our hypotheses we can relabel the terms in (17)
so that it may be written as

𝐿1 (𝑡) ≤ 𝐿1 (0) +
𝑛

∑

𝑘=1
∫

𝑡

0
𝜆
𝑘
(𝑠) ℎ
𝑘
(𝐿1 (𝑠)) 𝑑𝑠, 𝑡 > 0 (19)

with ℎ1 ∝ ℎ2 ∝ ⋅ ⋅ ⋅ ∝ ℎ
𝑛
.

Applying Lemma 1 we obtain

𝐿1 (𝑡) ≤ 𝜔
𝑛
(𝑡) , 0 ≤ 𝑡 < 𝛽0 (20)

and hence

𝑥 (𝑡) ≤ 𝜔
𝑛
(𝑡) , 0 ≤ 𝑡 < 𝛽0, (21)
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where 𝜔0(𝑡) := 𝐿1(0) and

𝜔
𝑗
(𝑡) := 𝐻

−1
𝑗

[𝐻
𝑗
(𝜔
𝑗−1 (𝑡)) +∫

𝑡

0
𝜆
𝑗
(𝑠) 𝑑𝑠] ,

𝑗 = 1, . . . , 𝑛,

𝐻
𝑗
(𝑢) := ∫

𝑢

𝑢𝑗

𝑑𝑥

ℎ
𝑗
(𝑥)

, 𝑢 > 0 (𝑢
𝑗
> 0, 𝑗 = 1, . . . , 𝑛) ,

(22)

and 𝛽0 is chosen so that the functions 𝜔
𝑗
(𝑡), 𝑗 = 1, . . . , 𝑛, are

defined for 0 ≤ 𝑡 < 𝛽0.

(b) 𝐾󸀠
𝑖𝑗
of Arbitrary Signs. Define, for 𝑡 > 0,

𝐿2 (𝑡) := 𝑥 (0) + 𝑐 +
𝑚

∑

𝑖,𝑗=1
(𝐹
𝑖𝑗
(𝑡) +𝐺

𝑖,𝑗
(𝑡))

+

𝑚

∑

𝑖,𝑗=1
∫

∞

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
󸀠

𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
(∫

𝑡

𝑡−𝑠

𝑔
𝑗
(𝑥 (𝜎)) 𝑑𝜎)𝑑𝑠.

(23)

That is,

𝐿2 (𝑡) = 𝐿1 (𝑡)

+

𝑚

∑

𝑖,𝑗=1
∫

∞

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
󸀠

𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
(∫

𝑡

𝑡−𝑠

𝑔
𝑗
(𝑥 (𝜎)) 𝑑𝜎)𝑑𝑠,

𝑡 > 0.

(24)

We have from (16) and (24) that

𝐿
󸀠

2 (𝑡) = 𝐿
󸀠

1 (𝑡)

+

𝑚

∑

𝑖,𝑗=1
∫

∞

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
󸀠

𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
[𝑔
𝑗
(𝑥 (𝑡)) − 𝑔

𝑗
(𝑥 (𝑡 − 𝑠))] 𝑑𝑠

≤

𝑚

∑

𝑖,𝑗=1
[
̃
𝑏
𝑖𝑗
(𝑡) 𝑓
𝑖𝑗
(𝐿2 (𝑡)) +𝐾𝑖𝑗 (0) 𝑔𝑗 (𝐿2 (𝑡))]

+

𝑚

∑

𝑖,𝑗=1
𝑔
𝑗
(𝐿2 (𝑡)) ∫

∞

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
󸀠

𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤

𝑚

∑

𝑖,𝑗=1
{
̃
𝑏
𝑖𝑗
(𝑡) 𝑓
𝑖𝑗
(𝐿2 (𝑡))

+ [𝐾
𝑖𝑗
(0) +∫

∞

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
󸀠

𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠] 𝑔
𝑗
(𝐿2 (𝑡))} , 𝑡 > 0

(25)

and by integration we find, for 𝑡 > 0,

𝐿2 (𝑡) ≤ 𝐿2 (0) +
𝑚

∑

𝑖,𝑗=1
∫

𝑡

0
{
̃
𝑏
𝑖𝑗
(𝑠) 𝑓
𝑖𝑗
(𝐿2 (𝑠))

+ [𝐾
𝑖𝑗
(0) +∫

∞

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
󸀠

𝑖𝑗
(𝜎)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜎] 𝑔

𝑗
(𝐿2 (𝑠))} 𝑑𝑠,

(26)

with

𝐿2 (0) = 𝑥 (0) + 𝑐 +
𝑚

∑

𝑖,𝑗=1
[∫

0

−∞

𝐾
𝑖𝑗
(−𝜎) 𝑔

𝑗
(𝑥0 (𝜎)) 𝑑𝜎

+∫

∞

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
󸀠

𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
(∫

0

−𝑠

𝑔
𝑗
(𝑥0 (𝜎)) 𝑑𝜎)𝑑𝑠] .

(27)

Next, we proceed as in Case (a) with the new functional
𝐿2(𝑡) (24), the constant 𝐿2(0) (27), and𝐾𝑖𝑗(0)+∫

∞

0 |𝐾
󸀠

𝑖𝑗
(𝜎)|𝑑𝜎

instead of𝐾
𝑖𝑗
(0) in the new ̃

𝜆
𝑘
. The proof is complete.

Corollary 3. If ∫∞0 𝜆
𝑘
(𝑠)𝑑𝑠 ≤ ∫

∞

𝜔𝑘−1
(𝑑𝑧/ℎ

𝑘
(𝑧)), 𝑘 = 1, . . . , 𝑛

(in (a) and ̃𝜆
𝑘
, 𝜔̃
𝑘
in (b)), then solutions of (1) are global in time.

Moreover, if ∫𝑡0 𝑎(𝑠)𝑑𝑠 → ∞ and 𝜔
𝑛
(𝑡) (resp., 𝜔̃

𝑛
(𝑡)) grows up

at most polynomially, then the decay is exponential.

Remark 4. Wehave judged it useful to treat case (a) separately
even though it is covered by case (b) for the simple reason
that this case arises in real applications as it corresponds to
the “fading memory” situation. Same for the case 𝐾

󸀠

𝑖𝑗
(𝑠) ≤

𝑘𝐾
𝑖𝑗
(𝑠), 𝑠 > 0 for some 𝑘 > 0 too looks unnecessary to study

separately as it is covered by the second case in the proof but
in fact it is also quite interesting. Indeed, in this case, from
(16) we have

𝐿
󸀠

1 (𝑡) =
𝑚

∑

𝑖,𝑗=1
[
̃
𝑏
𝑖𝑗
(𝑡) 𝑓
𝑖𝑗
(𝐺
𝑖,𝑗
(𝑡)) +𝐾

𝑖𝑗
(0) 𝑔
𝑗
(𝑥 (𝑡))

+∫

𝑡

−∞

𝐾
󸀠

𝑖𝑗
(𝑡 − 𝜎) 𝑔

𝑗
(𝑥 (𝜎)) 𝑑𝜎]

≤

𝑚

∑

𝑖,𝑗=1
[
̃
𝑏
𝑖𝑗
(𝑡) 𝑓
𝑖𝑗
(𝐺
𝑖,𝑗
(𝑡)) +𝐾

𝑖𝑗
(0) 𝑔
𝑗
(𝑥 (𝑡))

+ 𝑘∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝜎) 𝑔

𝑗
(𝑥 (𝜎)) 𝑑𝜎] ≤ 𝑘𝐿1 (𝑡)

+

𝑚

∑

𝑖,𝑗=1
[
̃
𝑏
𝑖𝑗
(𝑡) 𝑓
𝑖𝑗
(𝐿1 (𝑡)) +𝐾𝑖𝑗 (0) 𝑔𝑗 (𝐿1 (𝑡))] ,

𝑡 > 0.

(28)

Therefore,

(𝐿1 (𝑡) 𝑒
−𝑘𝑡

)

󸀠

≤ 𝑒
−𝑘𝑡

𝑚

∑

𝑖,𝑗=1
[
̃
𝑏
𝑖𝑗
(𝑡) 𝑓
𝑖𝑗
(𝐿1 (𝑡)) +𝐾𝑖𝑗 (0) 𝑔𝑗 (𝐿1 (𝑡))] ,

𝑡 > 0

(29)

and thus

𝐿1 (𝑡) 𝑒
−𝑘𝑡

≤ 𝐿1 (0) +
𝑚

∑

𝑖,𝑗=1
∫

𝑡

0
𝑒
−𝑘𝑠

[
̃
𝑏
𝑖𝑗
(𝑠) 𝑓
𝑖𝑗
(𝐿1 (𝑠))

+𝐾
𝑖𝑗
(0) 𝑔
𝑗
(𝐿1 (𝑠))] 𝑑𝑠.

(30)
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At this point wemust point out that, unlike in the proof of the
theorem, we cannot pass to 𝐿1(𝑠)𝑒

−𝑘𝑠 inside the arguments
of 𝑓
𝑖𝑗
and 𝑔

𝑗
(in (30)). However, if the functions 𝑓

𝑖𝑗
and 𝑔

𝑗

belong to the class 𝐻, that is, there exist 𝜉
𝑖𝑗
and 𝜁
𝑗
such that

𝑓
𝑖𝑗
(𝛼𝑢) ≤ 𝜉

𝑖𝑗
(𝛼)𝑓
𝑖𝑗
(𝑢) and 𝑔

𝑗
(𝛼𝑢) ≤ 𝜁

𝑗
(𝛼)𝑔
𝑗
(𝑢), 𝛼 > 0, 𝑢 ≥ 0,

then for 𝑡 > 0

𝐿1 (𝑡) 𝑒
−𝑘𝑡

≤ 𝐿1 (0)

+

𝑚

∑

𝑖,𝑗=1
∫

𝑡

0
𝑒
−𝑘𝑠

[
̃
𝑏
𝑖𝑗
(𝑠) 𝑓
𝑖𝑗
(𝑒
𝑘𝑠
𝐿1 (𝑠) 𝑒

−𝑘𝑠
)

+𝐾
𝑖𝑗
(0) 𝑔
𝑗
(𝑒
𝑘𝑠
𝐿1 (𝑠) 𝑒

−𝑘𝑠
)] 𝑑𝑠 ≤ 𝐿1 (0)

+

𝑚

∑

𝑖,𝑗=1
∫

𝑡

0
𝑒
−𝑘𝑠

[
̃
𝑏
𝑖𝑗
(𝑠) 𝜉
𝑖𝑗
(𝑒
𝑘𝑠
) 𝑓
𝑖𝑗
(𝐿1 (𝑠) 𝑒

−𝑘𝑠
)

+𝐾
𝑖𝑗
(0) 𝜁
𝑗
(𝑒
𝑘𝑠
) 𝑔
𝑗
(𝐿1 (𝑠) 𝑒

−𝑘𝑠
)] 𝑑𝑠.

(31)

At this stage we may apply Lemma 1 (with the new coef-
ficients ̃𝑏

𝑖𝑗
(𝑠)𝜉
𝑖𝑗
(𝑒
𝑘𝑠
) and 𝐾

𝑖𝑗
(0)𝜁
𝑗
(𝑒
𝑘𝑠
)) to get a bound 𝑄(𝑡)

for the function 𝐿1(𝑡)𝑒
−𝑘𝑡 and thereafter for 𝑥(𝑡)𝑒

−𝑘𝑡
=

𝑥(𝑡) exp[∫𝑡0 (𝑎(𝑠) − 𝑘)𝑑𝑠]. If ∫𝑡0 (𝑎(𝑠) − 𝑘)𝑑𝑠 → ∞ as 𝑡 → ∞

and that bound 𝑄(𝑡) does not grow faster than exp[∫𝑡0 (𝑎(𝑠) −
𝑘)𝑑𝑠]we will get an exponential decay.This decay rate is to be
compared with the general one obtained in the second case of
our result.

3. Applications

This system appears in Neural Network Theory. For a basic
one the reader is referred to [7, 8].

A Neural Network is designed in order to mimic the
human brain. It is formed by a number of “neurons” with
interconnections between them. In general there are an input
layer, some (one or more) hidden layers, and an output layer.
The input neurons feed the neurons in the hidden layers
which perform a transformation of the signal and fires it to
the output neurons (or other neurons). They are widely used
for solving optimization problems, analyzing, classifying,
and evaluating many things. They have the advantage (over
traditional computers) of forecasting, predicting, andmaking
decisions.

There are numerous applications of which we cite the
following: economic indicator, data compression, complex
mapping, biological systems analysis, optimization, process
control, time series analysis, stock market, diagnosis of
hepatitis, engineering design, soil permeability, speech pro-
cessing, pattern recognition, and so on.

Most of the existing papers in this theory deal with
the constant coefficients case. The few papers on variable

coefficients treat mainly the existence of periodic solutions.
In the constant coefficients case the systemwill have the form

𝑥
󸀠

𝑖
(𝑡)

= − 𝑎
𝑖
𝑥
𝑖
(𝑡)

+

𝑚

∑

𝑗=1
𝑏
𝑖𝑗
𝑓
𝑖𝑗
(∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) 𝑔

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠) + 𝑐

𝑖
(𝑡) ,

(32)

where 𝑎
𝑖
and 𝑏
𝑖𝑗
are constants. Our theorem gives the estimate

𝑥 (𝑡) ≤ 𝜔
𝑛
(𝑡) 𝑒
−𝑎𝑡

, 0 ≤ 𝑡 < 𝛽0 (33)

for some 𝛽0 > 0, where 𝑎 := min1≤𝑖≤𝑚{𝑎𝑖} in case (a) and a
similar estimation with 𝜔̃

𝑛
(𝑡) in case (b). The corollary pro-

vides sufficient conditions ensuring global existence. In this
case we have exponential decay provided that 𝜔

𝑛
(𝑡)(𝜔̃
𝑛
(𝑡))

does not grow too fast.

Example 5. Consider the functions 𝑔
𝑗
(𝑥) = 𝑥

𝛼𝑗 , 𝑓
𝑖𝑗
(𝑦) = 𝑦

𝛽𝑖𝑗 ,
𝛼
𝑗
, 𝛽
𝑖𝑗
> 1, 𝑖, 𝑗 = 1, . . . , 𝑚. The order ℎ1 ∝ ℎ2 ∝ ⋅ ⋅ ⋅ ∝ ℎ

𝑘

means ordering 𝛼
𝑗
and 𝛽

𝑖𝑗
in a nondecreasing manner 𝑛1 ≤

𝑛2 ≤ ⋅ ⋅ ⋅ ≤ 𝑛
𝑘
.Therefore,𝐻

𝑗
(𝑥) = 𝑥

1−𝑛𝑗
/(1−𝑛

𝑗
)−𝑥

1−𝑛𝑗
0 /(1−𝑛

𝑗
),

𝐻
−1
𝑗
(𝑧) = [𝑥

1−𝑛𝑗
0 − (𝑛

𝑗
− 1)𝑧]−1/(𝑛𝑗−1), and

𝜔
𝑗
(𝑡) = {𝜔

1−𝑛𝑗
𝑗−1 (𝑡) − (𝑛

𝑗
− 1)∫

𝑡

0
𝜆
𝑗
(𝑠) 𝑑𝑠}

−1/(𝑛𝑗−1)
,

𝑗 = 1, . . . , 𝑘, 0 < 𝑡 < 𝑇
∗
.

(34)

The value 𝑇∗ will be the largest value of 𝑡 for which

𝜔

𝑛𝑗−1
𝑗−1 (𝑡) ∫

𝑡

0
𝜆
𝑗
(𝑠) 𝑑𝑠 <

1
(𝑛
𝑗
− 1)

(35)

for all 𝑗 = 1, . . . , 𝑘. For the asymptotic behavior we need this
𝑇
∗ to be infinity. In particular we need a smallness condition

on 𝜔0(𝑡).
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