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By using data froma voluntary contributionmechanism experimentwith heterogeneous endowments and asymmetric information,
we estimate a quantal response equilibrium (QRE) model to assess the relative importance of efficiency concerns versus
noise in accounting for subjects overcontribution in public good games. In the benchmark specification, homogeneous agents,
overcontribution is mainly explained by error and noise in behavior. Results change when we consider a more general QRE
specificationwith cross-subject heterogeneity in concerns for (group) efficiency. In this case, we find that themajority of the subjects
make contributions that are compatible with the hypothesis of preference for (group) efficiency. A likelihood-ratio test confirms
the superiority of the more general specification of the QRE model over alternative specifications.

1. Introduction

Overcontribution in linear public good games represents
one of the best documented and replicated regularities in
experimental economics. The explanation of this apparently
irrational behaviour, however, is still a debate in the literature.
This paper is aimed at investigating the relative importance of
noise versus preference for efficiency. In this respect, we build
and estimate a quantal response equilibrium (henceforth,
QRE [1]) extension of the model presented by Corazzini et al.
[2]. This boundedly rational model formally incorporates
both preference for efficiency and noise. Moreover, in con-
trast to other studies that investigate the relative importance
of error and other-regarding preferences, the QRE approach
explicitly applies an equilibrium analysis.

To reconcile the experimental evidence with the standard
economic framework, social scientists developed explana-
tions based on refinements of the hypothesis of “other-
regarding preferences”: reciprocity [3–6], altruism and spite-
fulness [7–9], commitment and Kantianism [10, 11], norm
compliance [12], and team-thinking [13–15].

Recently, an additional psychological argument to explain
agents’ attitude to freely engage in prosocial behavior is
gaining increasing interest: the hypothesis of preference for
(group) efficiency. There is evidence showing that exper-
imental subjects often make choices that increase group
efficiency, even at the cost of sacrificing their own payoff
[16, 17]. Corazzini et al. [2] use this behavioral hypothesis
to explain evidence from linear public good experiments
based on prizes (a lottery, a first price all pay auction, and
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a voluntary contribution mechanism used as a benchmark),
characterized by endowment heterogeneity and incomplete
information on the distribution of incomes. In particular,
they present a simple model in which subjects bear psy-
chological costs from contributing less than what is efficient
for the group. The main theoretical prediction of their
model when applied to linear public good experiments is
that the equilibrium contribution of a subject is increasing
in both her endowment and the weight attached to the
psychological costs of (group-) inefficient contributions in
the utility function. The authors show that this model is
capable of accounting for overcontribution as observed in
their experiment, as well as evidence reported by related
studies.

However, as argued by several scholars, rather than being
related to subjects’ kindness, overcontribution may reflect
their natural propensity to make errors. There are several
experimental studies [18–23] that seek to disentangle other-
regarding preferences frompure noise in behavior by running
ad hoc variants of the linear public good game. A general
finding of these papers is that “warm-glow effects and random
error played both important and significant roles” [20, p. 842]
in explaining overcontribution.

There are several alternative theoretical frameworks that
can be used to model noise in behavior (bounded rationality)
and explain experimental evidence in strategic games. Two
examples are the “level-𝑘” model (e.g., [24–26]) and (rein-
forcement) learningmodels (e.g., [27]). In the “level-𝑘”model
of iterated dominance, “level-0” subjects choose an action
randomly and with equal probability over the set of possible
pure strategies while “level-𝑘” subjects choose the action that
represents the best response against level-(𝑘 − 1) subjects.
Level-𝑘 models have been used to account for experimental
results in games in which other-regarding preferences do not
play any role, such as 𝑝-Beauty contests and other constant
sum games. Since in public good games there is a strictly
dominant strategy of no contribution, unless other-regarding
preferences are explicitly assumed, “level-𝑘” models do not
apply. Similar arguments apply to learning models. In the
basic setting, each subject takes her initial choice randomly
and with equal probability over the set of possible strategies.
As repetition takes place, strategies that turn out to be more
profitable are chosen with higher probability. Thus, unless
other-regarding preferences are explicitly incorporated into
the utility function, repetition leads to the Nash equilibrium
of no contribution.

The QRE approach has the advantage that even in the
absence of other-regarding preferences it can account for
overcontribution in equilibrium. Moreover, we can use the
model to assess the relative importance of noise versus
efficiency concerns.

We start from a benchmark model in which the popula-
tion is homogeneous in both concerns for (group) efficiency
and the noise parameter. We then allow for heterogeneity
across subjects by assuming the population to be partitioned
into subgroups with different degrees of efficieny concerns
but with the same value for the noise parameter.

In the QRE model with a homogeneous population, we
find that subjects’ overcontribution is entirely explained by

noise in behavior, with the estimated parameter of concerns
for (group) efficiency being zero. A likelihood-ratio test
strongly rejects the specification not allowing for randomness
in contributions in favor of the more general QRE model. A
different picture emerges when heterogeneity is introduced
in the QRE model. In the model with two subgroups, the
probability of a subject being associated with a strictly
positive degree of preference for (group) efficiency is approx-
imately one-third. This probability increases to 59% when
we add a third subgroup characterized by an even higher
efficiency concern. A formal likelihood-ratio test confirms
the superiority of the QRE model with three subgroups
over the other specifications. These results are robust to
learning processes over repetitions. Indeed, estimates remain
qualitatively unchanged when we replicate our analysis on
the last 25% of the experimental rounds. The rest of this
paper is structured as follows. In Section 2, we describe
the experimental setting. In Section 3, we present the QRE
extension of the model based on the preference for (group)
efficiency hypothesis. Section 4 reports results from our
statistical analysis. Section 5 concludes the paper.

2. The Experiment

We use data from three sessions of a voluntary contribution
mechanism reported by Corazzini et al. [2]. Each session
consisted of 20 rounds and involved 16 subjects. At the
beginning of each session, each subject was randomly and
anonymously assigned, with equal chance, an endowment
of either 120, 160, 200, or 240 tokens. The endowment was
assigned at the beginning of the experiment and was kept
constant throughout the 20 rounds. The experiment was run
in a strangers condition [28] such that, at the beginning
of each round, subjects were randomly and anonymously
rematched in groups of four players.This procedurewas com-
mon knowledge. Thus, in each round, subjects made their
choices under incomplete information on the distribution
of the endowments in their group. In each round, every
subject had to allocate her endowment between an individual
and a group account. The individual account implied a
private benefit such that, for each token a subject allocated
to the individual account, she received two tokens. On the
other hand, tokens in the group account generated monetary
returns to each of the group members. In particular, each
subject received one token for each token allocated by her
or by any other member of her group to the group account.
Thus, the marginal per capita return used in the experiment
was 0.5. At the beginning of each round, the experimenter
exogenously allocated 120 tokens to the group account,
independently of subjects’ choices, thus implying 120 extra
tokens for each group member. At the end of each round,
subjects received information about their payoffs. Tokens
were converted to euros using an exchange rate of 1000

points per euro. Subjects, mainly undergraduate students of
economics, earned 12.25 euros on average for sessions lasting
about 50 minutes. The experiment took place in May 2006
in the Experimental Economics Laboratory of the University
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of Milan Bicocca and was computerized using the z-Tree
software [29].

The features of anonymity and random rematching nar-
row the relevance of some “traditional” behavioral hypothe-
ses used to explain subjects’ overcontribution. For instance,
they preclude subjects’ possibility to reciprocate (un)kind
contributions of group members [30]. Moreover, under these
conditions, subjects with preferences for equality cannot
make compensating contributions to reduce (dis)advan-
tageous inequality [31, 32]. Rather, the hypothesis of prefer-
ence for (group) efficiency as a particular form of warm-glow
[8, 9] appears as a more plausible justification.

3. Theoretical Predictions and
Estimation Procedure

Consider a finite set of subjects 𝑃 = {1, 2, . . . , 𝑝}. In a generic
round, subject 𝑖 ∈ 𝑃, with endowment 𝑤

𝑖
∈ 𝑁
+, contributes

𝑔
𝑖
to the group account, with 𝑔
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∈ 𝑁
+ and 0 ≤ 𝑔
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≤ 𝑤
𝑖
. The

monetary payoff of subject 𝑖 who contributes 𝑔
𝑖
in a round is

given by
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, (1)

where 𝐺
−𝑖
is the sum of the contributions of group members

other than 𝑖 in that round. Given (1), if subjects’ utility only
depends on the monetary payoff, zero contributions are the
unique Nash equilibrium of each round. In order to explain
the positive contributions observed in their experiment,
Corazzini et al. [2] assume that subjects suffer psychological
costs if they contribute less thanwhat is optimal for the group.
In particular, psychological costs are introduced as a convex
quadratic function of the difference between a subject’s
endowment (i.e., the social optimum) and her contribution.
In the VCM, player 𝑖’s (psychological) utility function is given
by

𝑢
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where 𝛼
𝑖
is a nonnegative and finite parameter measuring

the weight attached to the psychological costs, (𝑤
𝑖
− 𝑔
𝑖
)
2
/𝑤
𝑖
,

in the utility function. Notice that psychological costs are
increasing in the difference between a subject’s endowment
and her contribution. Under these assumptions, in each
round, there is a uniqueNash equilibrium inwhich individual
𝑖 contributes:

𝑔
NE
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=
2𝛼
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− 1

2𝛼
𝑖
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. (3)

The higher the value of 𝛼
𝑖
, the higher the equilibrium

contribution of subject 𝑖. The average relative contribution,
𝑔
𝑖
/𝑤
𝑖
, observed in the VCM sessions is 22%, which implies

𝛼 = 0.64.
Following McKelvey and Palfrey [1], we introduce noisy

decision-making and consider a Logit Quantal Response
extension of (2). In particular, we assume subjects choose
their contributions randomly according to a logistic quantal

response function. Namely, for a given endowment, 𝑤
𝑖
,

and contributions of the other group members, 𝐺
−𝑖
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probability that subject 𝑖 contributes 𝑔
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is given by
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where 𝜇 ∈ R
+
is a noise parameter reflecting a subject’s

capacity of noticing differences in expected payoffs.
Therefore each subject 𝑖 is associated with a 𝑤
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.
In equilibrium, the noise parameter 𝜇 reflects the disper-

sion of subjects’ contributions around the Nash prediction
expressed by (3). The higher the 𝜇, the higher the dispersion
of contributions. As 𝜇 tends to infinity, contributions are
randomly drawn from a uniform distribution defined over
[0, 𝑤
𝑖
]. On the other hand, if 𝜇 is equal to 0, the equilibrium

contribution collapses to the Nash equilibrium. (more specif-
ically, for each subject 𝑖 equilibrium contributions converge to
𝑞
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(𝑤
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In this framework, we use data from Corazzini et al. [2]
to estimate 𝛼 and 𝜇, jointly. We proceed as follows. Our
initial analysis is conducted by using all rounds (𝑛 = 20)

and assuming the population to be homogeneous in both
𝛼 and 𝜇. This gives us a benchmark that can be directly
compared with the results reported by Corazzini et al. [2].
In our estimation procedure, we use a likelihood function
that assumes each subject’s contributions to be drawn from
a multinomial distribution. That is,
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(5)

where 𝑛(𝑔
𝑗
) is the number of times that subject 𝑖 contributed

𝑔
𝑗
over the 𝑛 rounds of the experiment, and similarly for

𝑛(𝑔
𝑘
). The contribution of each person to the log-likelihood

is the log of expression (5). The Maximum Likelihood
procedure consists of finding the nonnegative values of 𝜇 and
𝛼 (and corresponding QRE) that maximize the summation
of the log-likelihood function evaluated at the experimental
data. In otherwords, we calculate themultinomial probability
of the observed data by restricting the theoretical probabili-
ties to QRE probabilities only.

We then extend our analysis to allow for cross-subject
heterogeneity. In particular, we generalize the QRE model
above by assuming the population to be partitioned into 𝑆
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Table 1: Homogeneous population (all rounds).

Data CFS (1) 𝜇, 𝛼 (2) 𝜇, 𝛼 (3) 𝜇, 𝛼
𝜇 — — 1 21.83 [19.69; 24.34] 41.59 [39.11; 44.34]
𝛼 — 0.64 0.64 0.64 0 [0; 0.01]
(Predicted) avg. contributions

Overall endowments 37.91 39.38 39.41 60.24 37.91
𝑤
𝑖
= 120 34.02 26.25 26.34 44.84 34.12

𝑤
𝑖
= 160 24.53 35.00 35.03 55.68 37.67

𝑤
𝑖
= 200 47.50 43.75 43.76 65.57 39.48

𝑤
𝑖
= 240 45.57 52.50 52.50 74.86 40.36

log 𝑙𝑙 −8713.95 −3483.79 −3170.69
Obs. 960 960 960 960 960
This table reports average contributions as well as estimates and predictions from various specifications of the model based on the efficiency concerns
assumption using all 20 rounds of the experiment. CFS refers to the specification not accounting for noise in subjects’ contributions while (1), (2), and (3)
are Logit Quantal Response extensions of the model. In (1) 𝛼 and 𝜇 are constrained to 0.64 and 1, respectively. In (2), the value on 𝛼 is set to 0.64, while
𝜇 is estimated through (5). Finally, (3) refers to the unconstrained model in which both 𝛼 and 𝜇 are estimated through (5). The table also reports, for each
specification, the corresponding log-likelihood. Confidence intervals are computed using an inversion of the likelihood-ratio statistic, at the 0.01 level, subject
to parameter constraints.

subgroups that are characterized by the same 𝜇 but different
𝛼. In this case, the likelihood function becomes
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for the 𝑆 subgroups, and the corresponding probabilities,
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1
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. For identification purposes we impose that 𝛼

𝑠
≤

𝛼
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.The introduction of one group at a time accompanied by
a corresponding likelihood-ratio test allows us to determine
the number of 𝛼-groups that can be statistically identified
from the original data. In the following statistical analysis,
estimates account for potential dependency of subject’s con-
tributions across rounds. Confidence intervals at the 0.01

level are provided using the inversion of the likelihood-ratio
statistic, subject to parameter constraints, in line with Cook
and Weisberg [33], Cox and Hinkley [34], and Murphy [35].

4. Results

Using data from the 20 rounds of the experiment, Table 1
reports (i) average contributions (by both endowment type
and overall) observed in the experiment, (ii) average con-
tributions as predicted by the model not accounting for
noise in subjects’ contributions, and (iii) estimates as well as
average contributions from different parameterizations of the
Logit Quantal Response extension of themodel. In particular,
specification (1) refers to a version of the model in which
both 𝛼 and 𝜇 are constrained to be equal to benchmark values

based onCorazzini et al. [2].Under this parameterization,𝛼 is
fixed to the value computed by calibrating (3) on the original
experimental data, 0.64, while 𝜇 is constrained to 1. (Table 4
shows the Maximum Likelihood estimation value of 𝛼 when
we vary 𝜇. It is possible to see that for a large range of values of
𝜇 this value is close to 0.64. We choose 𝜇 = 1 as a sufficiently
low value in which the estimated 𝛼 is close to 0.64 and thus
provide a noisy version of the base model which can be used
for statistical tests.)

As shown by the table, specification (1) closely replicates
predictions of the original model presented by Corazzini
et al. [2] not accounting for noise in subjects’ contributions.
In specification (2), 𝛼 is fixed to 0.64, while 𝜇 is estimated
by using (4). The value of 𝜇 increases substantially with
respect to the benchmark value used in specification (1).
A likelihood-ratio test strongly rejects specification (1) that
imposes restrictions on the values of both 𝛼 and 𝜇 in favor
of specification (2) in which 𝜇 can freely vary on R

+
(LR =

10460.33; Pr{𝜒2(1) > LR} < 0.01). However, if we compare
the predicted average contributions of the two specifications,
we find that specification (1) better approximates the original
experimental data. This is because a higher value of the noise
parameter spread the distributions of contributions around
the mean. Therefore even with mean contributions further
from the data (induced by the fixed value of 𝛼) the spread
induced by the noise parameter in specification (2) produces
a better fit. This highlights the importance of taking into
account not only the average (point) predictions but also the
spread around it. It also suggests that allowing 𝛼 to vary can
improve fit.

In specification (3), 𝛼 and 𝜇 are jointly estimated using
(5), subject to 𝛼 ≥ 0. If both parameters can freely vary
over R

+
, 𝛼 reduces to zero and 𝜇 reaches a value that

is higher than what was obtained in specification (2). As
confirmed by a likelihood-ratio test, specification (3) fits
the experimental data better than both specification (1)
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Table 2: Homogeneous population (last 5 rounds).

Data CFS (1) ̄𝜇, �̄� (2) 𝜇, �̄� (3) 𝜇, 𝛼
𝜇 — 1 11.63 [9.80; 13.95] 26.91 [24.14; 30.17]
𝛼 0.59 0.59 0.59 0 [0; 0.03]
(Predicted) avg. contributions

Overall endowments 25.94 26.39 26.91 44.78 25.94
𝑤
𝑖
= 120 21.13 17.59 18.44 34.55 25.05

𝑤
𝑖
= 160 17.63 23.46 24.04 41.68 26.01

𝑤
𝑖
= 200 35.28 29.32 29.71 48.30 26.30

𝑤
𝑖
= 240 29.70 35.19 35.45 54.60 26.39

log 𝑙𝑙 −1675.03 −987.54 −885.62
Obs. 240 240 240 240 240
This table reports average contributions as well as estimates and predictions from various specifications of the model based on the efficiency concerns
assumption using the last 5 rounds of the experiment only. The same remarks as in Table 1 apply.

Table 3: Heterogeneous subjects (all and last 5 rounds).

𝜇, 𝛼
1
, and 𝛼

2
(𝑛 = 20) 𝜇, 𝛼

1
, and 𝛼

2
(𝑛 = 5) 𝜇, 𝛼

1
, 𝛼
2
, and 𝛼

3
(𝑛 = 20) 𝜇, 𝛼

1
, 𝛼
2
, and 𝛼

3
(𝑛 = 5)

𝜇 28.50 [25.88; 31.26] 15.07 [12.90; 17.64] 22.14 [20.56; 23.95] 14.25 [12.04; 16.85]
𝛼
1

0 [0; 0.01] 0 [0; 0.02] 0 [0; 0.01] 0 [0; 0.02]
𝛼
2

0.53 [0.46; 0.60] 0.54 [0.47; 0.61] 0.43 [0.39; 0.46] 0.48 [0.40; 0.56]
𝛼
3

1.04 [0.92; 1.16] 0.76 [0.53; 1.01]
𝛾
1

0.66 [0.53; 0.78] 0.63 [0.50; 0.75] 0.41 [0.33; 0.46] 0.59 [0.49; 0.64]
𝛾
2

0.50 [0.43; 0.55] 0.34 [0.23; 0.40]
(Predicted) avg. contributions

Overall endowments 37.15 25.57 38.51 25.72
𝑤
𝑖
= 120 32.06 22.17 31.97 22.07

𝑤
𝑖
= 160 36.04 24.63 36.78 24.68

𝑤
𝑖
= 200 39.01 26.77 40.83 26.99

𝑤
𝑖
= 240 41.48 28.73 44.45 29.13

log 𝑙𝑙 −3112.06 −865.75 −3083.35 −865.16
Obs. 960 240 960 240
This table reports estimates and predictions from two specifications of the model with efficiency concerns accounting for cross subject heterogeneity in the
value of 𝛼. The analysis is conducted both by including all experimental rounds and by focusing on the last five repetitions only. Parameters are estimated
through (6). Given the linear restriction∑𝑆

𝑠=1
𝛾𝑠 = 1, we only report estimates of 𝛾1, 𝛾2, . . . , 𝛾𝑆−1. Confidence intervals are computed using an inversion of the

likelihood-ratio statistic, at the 0.01 level, subject to parameter constraints.

(LR = 11086.54; Pr{𝜒2(2) > LR} < 0.01) and specification
(2) (LR = 626.21; Pr{𝜒2(1) > LR} < 0.01). Thus, under the
maintained assumption of homogeneity, our estimates sug-
gest that contributions are better explained by randomness in
subjects’ behavior rather than by concerns for efficiency.

In order to control for learning effects, we replicate our
analysis using the last five rounds only.

Consistent with a learning argument, in both specifi-
cations (2) and (3), the values of 𝜇 are substantially lower
than the corresponding estimates in Table 1. Thus, repetition
reduces randomness in subjects’ contributions. The main
results presented above are confirmed by our analysis on
the last five periods. Looking at specification (3), in the
model with no constraints on the parameters, the estimated
value of 𝛼 again drops to 0. Also, according to a likelihood-
ratio test, specification (3) explains the data better than both

specifications (1) (LR = 1578.83; Pr{𝜒2(2) > LR} < 0.01)

and (2) (LR = 203.85; Pr{𝜒2(1) > LR} < 0.01).
These results seem to reject the preference for (group)

efficiency hypothesis in favor of pure randomness in subjects’
contributions. However, a different picture emerges when
we allow for cross-subject heterogeneity. In Table 3 we drop
the assumed homogeneity. We consider two models with
heterogeneous subjects: the first assumes the population to
be partitioned into two subgroups (𝑆 = 2) and the second
into three subgroups (𝑆 = 3). (We have also estimated a
model with 𝑆 = 4. However, adding a fourth subgroup does
not significantly improve the goodness of fit of the model
compared to the specification with 𝑆 = 3. In particular, with
𝑆 = 4, the point estimates for the model with all periods
are 𝜇 = 21.81, 𝛼

1
= 0, 𝛼

2
= 0.38, 𝛼

3
= 0.61, 𝛼

4
= 1.04,

𝛾
1
= 0.39, 𝛾

2
= 0.42, and 𝛾

3
= 0.09.) As before, we conduct
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Table 4

𝜇 𝛼 Log-likelihood
1000.00 0 −3637.64
500.00 0 −3591.79
333.33 0 −3548.7
250.00 0 −3508.34
200.00 0 −3470.67
166.67 0 −3435.64
142.86 0 −3403.19
125.00 0 −3373.25
111.11 0 −3345.76
100.00 0 −3320.64
90.91 0 −3297.8
83.33 0 −3277.17
76.92 0 −3258.65
71.43 0 −3242.16
66.67 0 −3227.61
62.50 0 −3214.93
58.82 0 −3204.01
55.56 0 −3194.79
52.63 0 −3187.18
50.00 0 −3181.1
40.00 0 −3171.22
30.30 0.14 −3192.52
20.00 0.33 −3247.22
10.00 0.50 −3444.42
9.09 0.52 −3488.26
8.00 0.53 −3555.57
7.04 0.55 −3634.45
5.99 0.56 −3753.67
5.00 0.57 −3916.89
4.00 0.58 −4173.35
3.00 0.59 −4615.92
2.00 0.60 −5547.35
1.00 0.61 −8506.13
0.90 0.61 −9181.67
0.80 0.61 −10032.07
0.70 0.61 −11133.38
0.60 0.61 −12612.63
0.50 0.61 −14699.13
0.40 0.61 −17852.64
This table reports Maximum Likelihood estimates of 𝛼 for selected values of
𝜇 (see (5)). The last column reports the corresponding log-likelihood value.

our analysis both by including all rounds of the experiment
and by focusing on the last five repetitions only.

We find strong evidence in favor of subjects’ heterogene-
ity. Focusing on the analysis over all rounds, according to
the model with two subgroups, a subject is associated with
𝛼
1

= 0 with probability 0.66 and with 𝛼
2

= 0.53 with
probability 0.34. Results are even sharper in the model with
three subgroups: in this case 𝛼

1
= 0 and the two other 𝛼-

parameters are strictly positive: 𝛼
2
= 0.43 and 𝛼

3
= 1.04.

Subjects are associated with these values with probabilities

0.41, 0.50, and 0.09, respectively. Thus, in the more parsi-
monious model, the majority of subjects contribute in a way
that is compatible with the preference for (group) efficiency
hypothesis. These proportions are in line with findings of
previous studies [18, 21, 22] in which, aside from confusion,
social preferences explain the behavior of about half of the
experimental population.

Allowing for heterogeneity across subjects reduces the
estimated randomness in contributions: the value of 𝜇

reduces from 41.59 in specification (3) of the model with
homogeneous population to 28.50 and 22.14 in the model
with two and three subgroups, respectively. According to a
likelihood-ratio test, both the models with 𝑆 = 2 and 𝑆 = 3 fit
the data better than the (unconstrained) specification of the
model with homogeneous subjects (for the model with 𝑆 = 2,
LR = 117.25; Pr{𝜒2(2) > LR} < 0.01, whereas for the model
with 𝑆 = 3, LR = 174.66; Pr{𝜒2(4) > LR} < 0.01). Moreover,
adding an additional subgroup to the model, with 𝑆 = 2,
significantly increases the goodness of fit of the specification
(LR = 57.42; Pr{𝜒2(2) > LR} < 0.01). As before, all these
results remain qualitatively unchanged when we control for
learning processes and we focus on the last 5 experimental
rounds.

In order to check for the robustness of our results in
Table 3, we have also estimated additional specifications
accounting for heterogeneity in both concerns for (group)
efficiency and noise in subjects’ behavior. Although the log-
likelihood of the model with both sources of heterogeneity
significantly improves in statistical terms, the estimated
values of the 𝛼-parameters remain qualitatively the same as
those reported in the third column of Table 3.

5. Conclusions

Is overcontribution in linear public good experiments
explained by subjects’ preference for (group) efficiency or,
rather, does it simply reflect their natural attitude to make
errors? In order to answer this fundamental question, we
estimate a quantal response equilibrium model in which, in
choosing their contributions, subjects are influenced by both
a genuine concern for (group) efficiency and a random noise
in their behavior.

In line with other studies, we find that both concerns
for (group) efficiency and noise in behavior play an impor-
tant role in determining subjects’ contributions. However,
assessing which of these two behavioral hypotheses is more
relevant in explaining contributions strongly depends on
the degree of cross-subject heterogeneity admitted by the
model. Indeed, by estimating a model with homogeneous
subjects, the parameter capturing concerns for (group) effi-
ciency vanishes while noise in behavior entirely accounts
for overcontribution. A different picture emerges when we
allow the subjects to be heterogeneous in their concerns for
efficiency. By estimating a model in which the population
is partitioned into three subgroups that differ in the degree
of concerns for efficiency, we find that most of the subjects
contribute in a way that is compatible with the preference
for (group) efficiency hypothesis. A formal likelihood-ratio
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test confirms the supremacy of the QRE model with three
subgroups over the other specifications.

Previous studies [18–23] tried to disentangle the effects of
noise fromother-regarding preferences bymainlymanipulat-
ing the experimental design. Our approach adds a theoretical
foundation in the form of an equilibrium analysis. In contrast
to studies which focus mostly on (direct) altruism, we follow
Corazzini et al. [2] and allow for preference for efficiency.
Our results are in line with the literature in the sense that we
also conclude that a combination of noise and social concerns
plays a role. Our results, however, are directly supported by a
sound theoretical framework proven valid in similar settings
(e.g., [36]).

Recent studies [37, 38] have emphasized the importance
of admitting heterogeneity in social preferences in order to
better explain experimental evidence. In this paper we show
that neglecting heterogeneity in subjects’ social preferences
may lead to erroneous conclusions on the relative importance
of the love for (group) efficiency hypothesis with respect to
the confusion argument. Indeed, as revealed by our analysis,
the coupling of cross-subject heterogeneity in concerns for
(group) efficiency with noise in the decision process seems
to be the relevant connection to better explain subjects’
contributions.

Appendix

Table 4 shows the Maximum Likelihood value of 𝛼 and the
log-likelihood according to (5) as 𝜇 decreases from 1000 to
0.4. As shown by the table, for high values of 𝜇, the estimated
value of 𝛼 is 0. When 𝜇 is equal to 10, the estimated value of
alpha is 0.50. Moreover, for 𝜇 lower than 2.00, the estimated
value of 𝛼 is 0.61. For the specification tests presented in
Section 4, we set 𝜇 = 1. This is a sufficiently low value of 𝜇
in order to generate a noisy version of the base model. Two
arguments indicate why this choice is valid. First, for a range
of values including 𝜇 = 1, the estimated 𝛼 is stable. Moreover,
since the log-likelihood of a model with 𝛼 = 0.61 and 𝜇 = 1

is higher than that corresponding to a model with 𝜇 = 0.4

(and similarly for 𝛼 = 0.64), the choice of any 𝜇 lower than
1 for the benchmark value would only reinforce the results
of Section 4. More specifically, both likelihood-ratio statistics
comparing specifications (1)with specifications (2) and (3) of
Tables 1 and 2 would increase.
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