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A smooth curve interpolation scheme for positive, monotone, and convex data is developed. This scheme uses rational cubic Ball
representation with four shape parameters in its description. Conditions of two shape parameters are derived in such a way that
they preserve the shape of the data, whereas the other two parameters remain free to enable the user to modify the shape of the
curve. The degree of smoothness is 𝐶1. The outputs from a number of numerical experiments are presented.

1. Introduction

Interpolation is a fundamental process in scientific visualiza-
tion. Smooth curve representation is significant in visualizing
the scientific data of various areas of scientific research,
including scientific visualization, computer graphics, geo-
metric modeling, numerical analysis, approximation theory,
and other fields [1]. In particular, when the data are obtained
from complex functions or scientific phenomena, incorpo-
rating the inherent features of the data becomes crucial.
Smoothness is also a crucial requirement for a pleasing visual
display [2]. In recent years, interpolation problems by using
splines have attracted growing interest. Inmany interpolation
problems, the solution that preserves some shape properties,
such as positivity, monotonicity, and convexity, is important.
Many physical situations have entities that gainmeaning only
when their values appear in positive, monotonic, or convex
shape. Therefore, discussing shape preserving interpolation
problems is important to provide a computationally econom-
ical and visually pleasing solution to the problems of different
scientific phenomena [3].

Positivity is one of the features of shape. Many physical
situations have entities that gain meaning only when
their values are positive, such as a probability distribution

function, samples of populations, dissemination rate of
drugs in the blood, and half-life of a radioactive substance.
The problem of positivity preserving interpolation has been
addressed by many researchers. Hussain et al. [3] discussed
a local shape preserving interpolation scheme for 2D data
by using a piecewise rational quadratic function. Sarfraz
and Hussain [1] have used a rational cubic interpolant with
two families of shape parameters to obtain 𝐶

1 positivity,
monotonicity, and convexity preserving interpolatory spline
curves. However, no free shape parameters are provided for
the user to adjust the curves further if needed. A𝐶1 piecewise
rational cubic function has been developed by Sarfraz et al.
[4] to preserve the shape of positive data. The interpolant
involves four shape parameters in its construction. Two
of the shape parameters were constrained to preserve the
shape of the data, whereas the other two shape parameters
have to be utilized to modify the shape of the curve to the
user’s liking. Tahat et al. [5] constructed a 𝐶1 rational cubic
Ball interpolant with four shape parameters to preserve the
shape of positive and constrained data. Two of the shape
parameters are constrained to preserve the shape of the data,
whereas the remaining two parameters provide the user with
a degree of freedom to adjust the shape of the generated
curve.
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Monotone data arise in many physical phenomena, engi-
neering problems, and scientific applications [6].The result of
the tensile strength of a material in engineering is an example
of monotone data. The tensile strength of a material can be
defined as the maximum force that a material can withstand
before breaking. The force applied is usually called stress and
is studied alongside the stretch of the material, referred to as
strain.The data from these two entities are always monotone.
Other examples are the erythrocyte sedimentation rate in
cancer patients and the blood uric acid in patients suffering
from gout. The digital-to-analog converter is a good example
of amonotone data generator. If the device is considered to be
monotone, the analog output must also increase as the input
code increases in value [6].

The problem of monotonicity (i.e., when the data set is
monotone, the interpolant should also preserve monotonic-
ity) has been discussed by various authors. Delbourgo and
Gregory [8] developed a piecewise rational cubic interpola-
tion to preserve the monotonicity of monotone data. Hussain
and Sarfraz [7] used rational cubic function with four free
parameters to preserve the shape of monotone data; two
parameters are constrained, whereas the other two remain
free for the user to refine the shape of the curve. Tian [9]
preserved the shape of monotone data by a 𝐶1 piecewise
rational cubic spline. Piah and Unsworth [10] improved the
sufficient conditions derived in [11]. To preserve monotonic-
ity, a rational cubic Ball interpolant was developed by Piah
and Unsworth [12] with two shape parameters that can be
used to generate the desired monotone curves. However, no
flexibility is provided for the user to refine the curves further
if needed, so it is unsuitable for interactive curve design.

Convexity is an important shape property and plays a
major role in different disciplines and applications. Nonlin-
ear programming in engineering and scientific applications
such as design, optimal control, parameter estimation, and
approximation of functions are examples of them [13]. The
problem of preserving convexity has been examined bymany
researchers. Brodlie and Butt [14] developed a 𝐶1 convexity
preserving scheme for 2D data. They divided each interval
where the shape of the data was lost into two subintervals
by inserting an extra knot so that the shape of the data
was preserved. The piecewise cubic interpolant was used to
interpolate the data over each subinterval. Sarfraz [15] used a
rational cubic Hermite interpolant with one shape parameter
to obtain a 𝐶

𝑙 convexity preserving curve method. He
derived data dependent constraints on the shape parameter to
preserve the shape of the data. He also introduced a rational
cubic interpolant with two families of shape parameters to
obtain a 𝐶1 positivity or convexity preserving interpolatory
curve, or both [16]. A local shape preserving interpolation
method for 2D data was discussed by Hussain et al. using
a piecewise rational (quadratic/linear) function [3]. Sarfraz
and Hussain [1] utilized a rational cubic interpolant with two
shape parameters, where the shape constraints are derived on
the shape parameters to guarantee the shape preservation of
the data. Sarfraz et al. [4] presented a 𝐶1 piecewise rational
cubic function to preserve the shape of positive, monotone,
and convex data. The interpolant has four free parameters

in its description. Hussain et al. [17] preserved the shape
of the data by a 𝐶1 piecewise rational cubic function. Data
dependent conditions were derived on the shape parameters
to preserve the shape of the data.

In the present study, a 𝐶1 rational cubic Ball interpolant
with four shape parameters is used to solve the problem of
positivity, monotonicity, and convexity. The rest of this paper
is organized as follows. First, the rational cubic Ball function
is described. Second, a derivative approximation scheme is
determined. Then, we discuss the problem of developing an
interpolating scheme that preserves the shape of positive,
monotone, and convex data, followed by the outputs from
a number of numerical experiments. Finally, conclusions are
presented.

2. Rational Cubic Ball Function

Rational spline interpolation is superior to polynomial spline
interpolation because the former can carry more degrees
of freedom in its description. This freedom can be used to
achieve real-life purposes and objectives in various disci-
plines. In this section, the rational cubic function is intro-
duced with its four shape parameters in its description.These
shape parameters can be used to preserve the shape of the
data. Cubic Ball basis functions were first introduced by Ball
[18] in his lofting surface program CONSURF at the British
Aircraft Corporation. These basis functions are as follows:

𝑠0 (𝑥) = (1− 𝑡)
2
;

𝑠1 (𝑥) = 2𝑡 (1− 𝑡)2 ;

𝑠2 (𝑥) = 2𝑡2 (1− 𝑡) ;

𝑠3 (𝑥) = 𝑡
2
.

(1)

Subsequently, two types of generalized Ball basis functions
and their corresponding curves were derived in higher degree
by Guojin [19] and Said [20], respectively.The shape preserv-
ing properties of the generalized Ball basis were discussed by
Goodman and Said [21, 22]. The rational cubic Ball function
is described as follows.

Let {(𝑥
𝑖
, 𝑓
𝑖
), 𝑖 = 1, 2, . . . , 𝑛} be a given set of data points,

where 𝑥
1
< 𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑛
. Also, let ℎ

𝑖
= 𝑥
𝑖+1 − 𝑥𝑖 and 𝜃 =

(𝑥 − 𝑥
𝑖
)/ℎ
𝑖
, 0 < 𝜃 < 1.

Consider the following interpolating curve 𝑠(𝑥) on the
interval [𝑥

𝑖
, 𝑥
𝑖+1]:

𝑠 (𝑥)

≡ 𝑠
𝑖
(𝑥) =

𝑃
𝑖
(𝜃)

𝑄
𝑖
(𝜃)

=
𝛼
𝑖
𝑓
𝑖
(1 − 𝜃)2 + 𝑉

𝑖
(1 − 𝜃)2 𝜃 +𝑊

𝑖
(1 − 𝜃) 𝜃2 + 𝛽

𝑖
𝑓
𝑖+1𝜃

2

𝛼
𝑖
(1 − 𝜃)2 + 𝑎

𝑖
(1 − 𝜃)2 𝜃 + 𝑏

𝑖
(1 − 𝜃) 𝜃2 + 𝛽

𝑖
𝜃2

,

𝑖 = 1, . . . , 𝑛 − 1,

(2)

with
𝑉
𝑖
= 𝑎
𝑖
𝑓
𝑖
+𝛼
𝑖
ℎ
𝑖
𝑑
𝑖
,

𝑊
𝑖
= 𝑏
𝑖
𝑓
𝑖+1 −𝛽𝑖ℎ𝑖𝑑𝑖+1.

(3)
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The rational function 𝑠(𝑥) has the following interpolation
properties:

𝑠 (𝑥
𝑖
) = 𝑓
𝑖
,

𝑠 (𝑥
𝑖+1) = 𝑓𝑖+1,

𝑠
󸀠
(𝑥
𝑖
) = 𝑑
𝑖
,

𝑠
󸀠
(𝑥
𝑖+1) = 𝑑𝑖+1,

(4)

where 𝑠󸀠(𝑥) denotes the first derivative of 𝑠 with respect to
𝑥 and 𝑑

𝑖
denotes the derivative value (given or estimated) at

knot 𝑥
𝑖
.Thus, the function 𝑠(𝑥) ∈ 𝐶1

[𝑥0, 𝑥𝑛] has 𝛼𝑖, 𝛽𝑖, 𝑎𝑖, and
𝑏
𝑖
as free parameters in the interval [𝑥

𝑖
, 𝑥
𝑖+1].

3. Derivative Determination

In most applications, the derivative parameters 𝑑
𝑖
are not

given, and therefore we have to identify them either from
the given data (𝑥

𝑖
, 𝑓
𝑖
), 𝑖 = 1, 2, . . . , 𝑛, or by other means.

In this study, the derivative parameters are computed from
the given data in such a way that the 𝐶1 smoothness of the
interpolant (2) is maintained by using the arithmetic mean
approximation. Details of this method can be found in [7].

3.1. Arithmetic Mean Method. This is the three-point differ-
ence approximation with

𝑑
𝑖
=

{{{

{{{

{

0, if Δ
𝑖−1 = 0 or Δ

𝑖
= 0,

(ℎ
𝑖
Δ
𝑖−1 + ℎ𝑖−1Δ𝑖)

ℎ
𝑖
+ ℎ
𝑖−1

, 𝑖 = 2, 3, . . . , 𝑛 − 1,
(5)

and the end conditions are given as

𝑑1 =

{{{

{{{

{

0 if Δ 1 = 0 or sgn (𝑑∗1 ) ̸= sgn (Δ 1)

𝑑
∗

1 = Δ 1 + (Δ 1 − Δ 2)
ℎ1

(ℎ1 + ℎ2)
, otherwise,

𝑑
𝑛
=

{{{

{{{

{

0 if Δ
𝑛−1

= 0 or sgn (𝑑∗
𝑛
) ̸= sgn (Δ

𝑛−1
)

𝑑
∗

𝑛
= Δ
𝑛−1

+ (Δ
𝑛−1

− Δ
𝑛−2
)

ℎ
𝑛−1

(ℎ
𝑛−1

+ ℎ
𝑛−2
)
, otherwise.

(6)

4. Shape Preserving Data Interpolation

In general, the rational cubic Ball function in (2) does not
necessarily preserve the shape inherent in the data. Thus,
to attain the shape preserving interpolation, the user may
control, on a trial-and-error basis, the shape by modifying
the shape parameters in the area where it is not preserved.
This method is ineffective and wastes time; thus, sufficient
conditions are required for the shape parameters to preserve
the inherent features of the data. In this section, we deal
with three shape preserving properties, namely, positive,
monotone, and convex data interpolation.

4.1. Positive Data Interpolation. For a given set of positive
data points with 𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥

𝑛
and 𝑓1 > 0, 𝑓2 > 0, . . .,

𝑓
𝑛
> 0, the piecewise rational cubic function (2) preserves

positivity if 𝑠
𝑖
(𝑥) > 0. To preserve positivity of 𝑠(𝑥), we need

to assign suitable values to 𝛼
𝑖
, 𝛽
𝑖
, 𝑎
𝑖
, and 𝑏

𝑖
in each interval

[𝑥
𝑖
, 𝑥
𝑖+1]. Strictly positive denominator 𝑄

𝑖
(𝜃) is guaranteed

when 𝛼
𝑖
> 0, 𝛽

𝑖
> 0, 𝑎

𝑖
> 0, and 𝑏

𝑖
> 0. Thus, the

positivity of the interpolant (2) depends on the positivity of
cubic polynomial 𝑃

𝑖
(𝜃). Thus, the problem reduces to the

determination of appropriate values of 𝑎
𝑖
and 𝑏

𝑖
for which

the polynomial 𝑃
𝑖
(𝜃) is positive. It is clearly seen that 𝑃

𝑖
(𝜃)

is positive when𝑉
𝑖
and𝑊

𝑖
are both positive. From (3) we can

say that

𝑉
𝑖
> 0 when 𝑎

𝑖
>
−𝛼
𝑖
ℎ
𝑖
𝑑
𝑖

𝑓
𝑖

,

𝑊
𝑖
> 0 when 𝑏

𝑖
>
𝛽
𝑖
ℎ
𝑖
𝑑
𝑖+1

𝑓
𝑖+1

.

(7)

The above discussion can be written in the form of the
following theorem.

Theorem 1. The rational cubic polynomial (2) preserves the
shape of positive data if the shape parameters satisfy the
following conditions:

𝛼
𝑖
> 0,

𝛽
𝑖
> 0,

𝑎
𝑖
= 𝑒
𝑖
+max{0,

−𝛼
𝑖
ℎ
𝑖
𝑑
𝑖

𝑓
𝑖

} , 𝑒
𝑖
> 0,

𝑏
𝑖
= 𝜎
𝑖
+max{0,

𝛽
𝑖
ℎ
𝑖
𝑑
𝑖+1

𝑓
𝑖+1

} , 𝜎
𝑖
> 0.

(8)
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4.2.MonotoneData Interpolation. Let {(𝑥
𝑖
, 𝑓
𝑖
), 𝑖 = 1, 2, . . . , 𝑛}

be monotone data defined over the interval [𝑎, 𝑏] such that

𝑓
𝑖
< 𝑓
𝑖+1,

Δ
𝑖
=
𝑓
𝑖+1 − 𝑓𝑖
ℎ
𝑖

> 0,

𝑑
𝑖
> 0,

𝑖 = 1, 2, . . . , 𝑛.

(9)

The rational cubic function (2) preserves monotonicity of the
data set if the following condition is satisfied:

𝑠
󸀠

𝑖
(𝑥) > 0, ∀𝑖 = 1, . . . , 𝑛, (10)

where

𝑠
󸀠

𝑖
(𝑥) =

∑
5
𝑖=0 𝑉𝑖 (1 − 𝜃)

5−𝑖
𝜃

[𝑄
𝑖
(𝜃)]

2 (11)

with

𝑉0 = 𝛼𝑖
2
𝑑
𝑖
,

𝑉1 = 𝐴0 + 2𝛼𝑖𝑏𝑖Δ 𝑖 − 2𝛼𝑖𝛽𝑖 (𝑑𝑖+1 −Δ 𝑖) ,

𝑉2 =
3 (𝐴1 − 𝐴0)

2
+
𝐴4 − 𝐴5

2
+ 𝑏
𝑖
(𝑎
𝑖
Δ
𝑖
−𝛼
𝑖
𝑑
𝑖
)

− 𝛽
𝑖
𝑎
𝑖
𝑑
𝑖+1 + 2𝛼𝑖𝛽𝑖Δ 𝑖,

𝑉3 =
𝐴1 − 𝐴0

2
+
3 (𝐴4 − 𝐴5)

2
+ 𝑏
𝑖
(𝑎
𝑖
Δ
𝑖
−𝛼
𝑖
𝑑
𝑖
)

− 𝛽
𝑖
𝑎
𝑖
𝑑
𝑖+1 + 2𝛼𝑖𝛽𝑖Δ 𝑖,

𝑉4 = 𝐴5 + 2𝑎𝑖𝛽𝑖Δ 𝑖 − 2𝛽𝑖𝛼𝑖 (𝑑𝑖 −Δ 𝑖) ,

𝑉5 = 𝛽𝑖
2
𝑑
𝑖+1.

(12)

The sufficient conditions for monotonicity on [𝑥
𝑖
, 𝑥
𝑖+1] are

𝑉
𝑖
> 0 for 𝑖 = 0, 1, . . . , 5 because the denominator of 𝑠󸀠

𝑖
(𝑥)

is squared and positive. Now, 𝑉
𝑖
> 0 for 𝑖 = 0, 1, . . . , 5 if the

following conditions are satisfied:

𝑎
𝑖
>
𝛼
𝑖
(𝑑
𝑖
− Δ
𝑖
)

Δ
𝑖

,

𝑏
𝑖
> max{

𝛽
𝑖
(𝑑
𝑖+1 − Δ 𝑖)

Δ
𝑖

,
𝛽
𝑖
𝑎
𝑖
𝑑
𝑖+1

(𝑎
𝑖
Δ
𝑖
− 𝛼
𝑖
𝑑
𝑖
)
} .

(13)

The preceding discussion can be summarized in the following
theorem.

Theorem 2. Let {(𝑥
𝑖
, 𝑓
𝑖
), 𝑖 = 1, 2, . . . , 𝑛} be a monotone data.

The rational cubic polynomial given in (2) preserves the

monotonicity of monotone data if the shape parameters satisfy
the following conditions:

𝛼
𝑖
> 0,

𝛽
𝑖
> 0,

𝑎
𝑖
= 𝑙
𝑖
+
𝛼
𝑖
(𝑑
𝑖
− Δ
𝑖
)

Δ
𝑖

, 𝑙
𝑖
> 0,

𝑏
𝑖
= 𝑚
𝑖
+max{

𝛽
𝑖
(𝑑
𝑖+1 − Δ 𝑖)

Δ
𝑖

,
𝛽
𝑖
𝑎
𝑖
𝑑
𝑖+1

(𝑎
𝑖
Δ
𝑖
− 𝛼
𝑖
𝑑
𝑖
)
} ,

𝑚
𝑖
> 0.

(14)

4.3. Convex Data Interpolation. Let {(𝑥
𝑖
, 𝑓
𝑖
), 𝑖 = 1, 2, . . . , 𝑛}

be a convex set of data defined over the interval [𝑎, 𝑏] such
that

Δ 1 < Δ 2 < ⋅ ⋅ ⋅ < Δ 𝑛−1. (15)

The necessary condition for a convex interpolant 𝑠(𝑥) is

𝑑
1
< Δ
1
< ⋅ ⋅ ⋅ < Δ

𝑖−1
< 𝑑
𝑖
< Δ
𝑖
< ⋅ ⋅ ⋅ < Δ

𝑛−1
< 𝑑
𝑛
. (16)

Now, the rational cubic function (2) preserves the convexity
if the following condition is satisfied:

𝑠
󸀠󸀠

𝑖
(𝑥) ≥ 0, ∀𝑖 = 1, . . . , 𝑛, (17)

where

𝑠
󸀠󸀠

𝑖
(𝑥) =

∑
7
𝑖=0 𝑉𝑖 (1 − 𝜃)

7−𝑖
𝜃

ℎ
𝑖
[𝑄
𝑖
(𝜃)]

3 . (18)

The denominator of 𝑠󸀠󸀠
𝑖
(𝑥) is positive if the shape parameters

𝛼
𝑖
, 𝑎
𝑖
, 𝑏
𝑖
, and 𝛽

𝑖
are positive. The sufficient conditions for

convexity on [𝑥
𝑖
, 𝑥
𝑖+1] are 𝑉𝑖 > 0 for 𝑖 = 0, 1, . . . , 7 and after

some simplification, we obtain the following:

𝑉0 = 2𝛼
𝑖

2
(𝑏
𝑖
Δ
𝑖
− (𝛽
𝑖
𝑑
𝑖+1 + 𝑎𝑖𝑑𝑖) + 𝛽𝑖Δ 𝑖) ,

𝑉1 = 𝑉0 + 6𝛼𝑖
2
(𝑏
𝑖
(Δ
𝑖
−𝑑
𝑖
) + 𝛽
𝑖
(Δ
𝑖
−𝑑
𝑖
)

− 𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖)) ,

𝑉2 = 2 (𝑉1 −𝑉0) + 6𝛼𝑖 (−𝑏𝑖
2
Δ
𝑖
+ 𝑏
𝑖
𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖)

+ 𝑎
𝑖
𝑏
𝑖
Δ
𝑖
− 𝑏
𝑖
𝛽
𝑖
Δ
𝑖
+𝛽
𝑖

2
(𝑑
𝑖+1 −Δ 𝑖)

− 𝑎
𝑖
𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖) + 𝑎𝑖𝛽𝑖Δ 𝑖 + 2𝛼𝑖𝛽𝑖 (Δ 𝑖 −𝑑𝑖)) ,
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𝑉3 = (𝑉2 +𝑉0 −𝑉1) + 2𝑎𝑖
2
𝛽
𝑖
Δ
𝑖
− 2𝑎
𝑖
𝛼
𝑖
𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖)

+ 2𝛽
𝑖

2
𝑎
𝑖
(𝑑
𝑖+1 −Δ 𝑖) − 2𝛽𝑖

2
𝛼
𝑖
(Δ
𝑖
−𝑑
𝑖
) − 2𝑏
𝑖

2
𝛼
𝑖
Δ
𝑖

+ 2𝛽
𝑖

2
𝛼
𝑖
(𝑑
𝑖+1 −Δ 𝑖) + 2𝑏𝑖𝑎𝑖𝛽𝑖 (𝑑𝑖+1 −Δ 𝑖)

− 2𝑏
𝑖
𝛼
𝑖
𝛽
𝑖
(Δ
𝑖
−𝑑
𝑖
) + 2𝑎

𝑖
𝑏
𝑖
𝛼
𝑖
(Δ
𝑖
−𝑑
𝑖
)

− 2𝛼
𝑖

2
𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖) − 2𝑎𝑖𝛼𝑖𝛽𝑖 (𝑑𝑖+1 −Δ 𝑖)

− 2𝑏
𝑖

2
𝑎
𝑖
Δ
𝑖
+ 2𝛼
𝑖

2
𝑏
𝑖
(Δ
𝑖
−𝑑
𝑖
) − 2𝑏
𝑖
𝛼
𝑖
𝛽
𝑖
(Δ
𝑖
−𝑑
𝑖
)

+ 2𝑎
𝑖
𝛼
𝑖
𝛽
𝑖
(Δ
𝑖
−𝑑
𝑖
) − 16𝑏

𝑖
𝛼
𝑖
𝛽
𝑖
Δ
𝑖
+ 16𝑎
𝑖
𝛼
𝑖
𝛽
𝑖
Δ
𝑖

− 16𝛼
𝑖

2
𝛽
𝑖
(Δ
𝑖
−𝑑
𝑖
) + 2𝑏
𝑖
𝑎
𝑖
𝛽
𝑖
Δ
𝑖
+ 16𝛽

𝑖

2
𝛼
𝑖
(𝑑
𝑖+1

−Δ
𝑖
) + 2𝛼

𝑖

2
𝛽
𝑖
(Δ
𝑖
−𝑑
𝑖
) + 2𝑎

𝑖
𝑏
𝑖
𝛼
𝑖
Δ
𝑖
+ 2𝑎
𝑖

2
𝑏
𝑖
Δ
𝑖

− 2𝑎
𝑖

2
𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖) + 2𝑏𝑖𝛼𝑖𝛽𝑖 (𝑑𝑖+1 −Δ 𝑖)

+ 2𝑏
𝑖
𝛼
𝑖
𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖) − 2𝑏𝑖

2
𝛼
𝑖
(Δ
𝑖
−𝑑
𝑖
)

+ 2𝑎
𝑖
𝛼
𝑖
𝛽
𝑖
(Δ
𝑖
−𝑑
𝑖
) ,

𝑉4 = (𝑉5 +𝑉7 −𝑉6) + 2𝑎𝑖
2
𝛽
𝑖
Δ
𝑖
− 2𝑎
𝑖
𝛼
𝑖
𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖)

+ 2𝛽
𝑖

2
𝑎
𝑖
(𝑑
𝑖+1 −Δ 𝑖) − 2𝛽𝑖

2
𝛼
𝑖
(Δ
𝑖
−𝑑
𝑖
)

+ 2𝑎
𝑖
𝛼
𝑖
𝛽
𝑖
(Δ
𝑖
−𝑑
𝑖
) + 2𝛽

𝑖

2
𝛼
𝑖
(𝑑
𝑖+1 −Δ 𝑖)

+ 2𝑏
𝑖
𝑎
𝑖
𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖) − 2𝑏𝑖𝛼𝑖𝛽𝑖 (Δ 𝑖 −𝑑𝑖)

+ 2𝑎
𝑖
𝑏
𝑖
𝛼
𝑖
(Δ
𝑖
−𝑑
𝑖
) + 2𝑎

𝑖

2
𝑏
𝑖
Δ
𝑖
− 2𝑏
𝑖

2
𝛼
𝑖
(Δ
𝑖
−𝑑
𝑖
)

− 2𝑎
𝑖
𝛼
𝑖
𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖) − 2𝑏𝑖

2
𝑎
𝑖
Δ
𝑖
+ 2𝛼
𝑖

2
𝑏
𝑖
(Δ
𝑖
−𝑑
𝑖
)

− 2𝛼
𝑖

2
𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖) + 16𝑎𝑖𝛼𝑖𝛽𝑖Δ 𝑖 + 2𝑏𝑖𝛼𝑖𝛽𝑖 (𝑑𝑖+1

−Δ
𝑖
) − 16𝛼

𝑖

2
𝛽
𝑖
(Δ
𝑖
−𝑑
𝑖
) + 2𝑏
𝑖
𝑎
𝑖
𝛽
𝑖
Δ
𝑖

− 2𝑏
𝑖
𝛼
𝑖
𝛽
𝑖
(Δ
𝑖
−𝑑
𝑖
) + 2𝑎

𝑖
𝛼
𝑖
𝛽
𝑖
(Δ
𝑖
−𝑑
𝑖
)

− 2𝑎
𝑖

2
𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖) + 2𝑏𝑖

2
𝛼
𝑖
Δ
𝑖
− 16𝑏
𝑖
𝛼
𝑖
𝛽
𝑖
Δ
𝑖

+ 16𝛽
𝑖

2
𝛼
𝑖
(𝑑
𝑖+1 −Δ 𝑖) + 2𝛼𝑖

2
𝛽
𝑖
(Δ
𝑖
−𝑑
𝑖
)

+ 2𝑎
𝑖
𝑏
𝑖
𝛼
𝑖
Δ
𝑖
+ 2𝑏
𝑖
𝛼
𝑖
𝛽
𝑖
(𝑑
𝑖+1 −Δ 𝑖) ,

𝑉5 = 2 (𝑉6 −𝑉7) + 6𝛽𝑖 (𝑎𝑖
2
Δ
𝑖
+ 𝑎
𝑖
𝛼
𝑖
(Δ
𝑖
−𝑑
𝑖
)

− 𝑏
𝑖
𝑎
𝑖
Δ
𝑖
− 𝑏
𝑖
𝛼
𝑖
(Δ
𝑖
−𝑑
𝑖
) − 𝑏
𝑖
𝛼
𝑖
Δ
𝑖
𝛼
𝑖

2
(Δ
𝑖
−𝑑
𝑖
)

+ 𝑎
𝑖
𝛼
𝑖
Δ
𝑖
+ 2𝛽
𝑖
𝛼
𝑖
(𝑑
𝑖+1 −Δ 𝑖)) ,

𝑉6 = 𝑉7 + 6𝛽𝑖
2
(𝛼
𝑖
(𝑑
𝑖+1 −Δ 𝑖) + 𝑎𝑖 (𝑑𝑖+1 −Δ 𝑖)

− 𝛼
𝑖
(Δ
𝑖
−𝑑
𝑖
)) ,

𝑉7 = 2𝛽
𝑖

2
(𝑏
𝑖
𝑑
𝑖+1 −Δ 𝑖 (𝑎𝑖 +𝛼𝑖) + 𝛼𝑖𝑑𝑖) .

(19)

Table 1: Positive data from Sarfraz et al. [4].

𝑖 1 2 3 4 5 6 7
𝑥
𝑖

1 2 4 5 7 8 9
𝑓
𝑖

24.6162 2.4616 41.0270 4.1027 57.4378 5.7438 6

Table 2: Numerical results for Figure 1(b).

𝑖 1 2 3 4 5 6 7
𝑑
𝑖
−35.97 −8.34 −18.19 −15.72 −25.57 −25.72 26.23

𝑎
𝑖

0.74 3.4 0.23 3.84 0.23 2.25 —
𝑏
𝑖

0.05 0.05 0.05 0.05 0.05 2.24 —

From (5), (Δ
𝑖
− 𝑑
𝑖
) > 0, and (𝑑

𝑖+1 − Δ 𝑖) > 0 the following
conditions are sufficient for the rational cubic function (2) to
preserve convexity:

𝑎
𝑖
> max{0,

𝛼
𝑖
(𝑑
𝑖
− Δ
𝑖
)

(𝑑
𝑖+1 − Δ 𝑖)

,
𝛼
𝑖
(𝑑
𝑖+1 − Δ 𝑖)

Δ
𝑖

} ,

𝑏
𝑖
> max{0,

𝛽
𝑖
(𝑑
𝑖+1 − Δ 𝑖)

(𝑑
𝑖
− Δ
𝑖
)

,
Δ
𝑖
(𝑎
𝑖
+ 𝛼
𝑖
)

𝑑
𝑖+1

,

(𝛽
𝑖
𝑑
𝑖+1 + 𝑎𝑖𝑑𝑖)

Δ
𝑖

} .

(20)

The following theorem summarizes the previous discussion.

Theorem 3. Let {(𝑥
𝑖
, 𝑓
𝑖
), 𝑖 = 1, 2, . . . , 𝑛} be convex data. The

rational cubic function given in (2) preserves convexity if the
following sufficient conditions are satisfied:

𝛼
𝑖
> 0,

𝛽
𝑖
> 0,

𝑎
𝑖
= 𝛾
𝑖
+{0,

𝛼
𝑖
(𝑑
𝑖
− Δ
𝑖
)

(𝑑
𝑖+1 − Δ 𝑖)

,
𝛼
𝑖
(𝑑
𝑖+1 − Δ 𝑖)

Δ
𝑖

} , 𝛾
𝑖
> 0,

𝑏
𝑖

= 𝜖
𝑖

+{0,
𝛽
𝑖
(𝑑
𝑖+1 − Δ 𝑖)

(𝑑
𝑖
− Δ
𝑖
)

,
Δ
𝑖
(𝑎
𝑖
+ 𝛼
𝑖
)

𝑑
𝑖+1

,
(𝛽
𝑖
𝑑
𝑖+1 + 𝑎𝑖𝑑𝑖)

Δ
𝑖

} ,

𝜖
𝑖
> 0.

(21)

5. Numerical Examples

In this section, some numerical examples are illustrated to
visualize the results in the previous section.

Example 1. The positive data set in Table 1 is taken from
Sarfraz et al. [4].The curve in Figure 1(a) is produced by using
a rational cubic Ball function that does not preserve positivity,
whereas Figure 1(b) shows a positive curve that is produced
by the positive data interpolation scheme developed in the
previous section. Figure 1(c) is generated by using rational
cubic spline scheme proposed in [1]. One can note that
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Table 3: Monotone data set taken from [7].

𝑖 1 2 3 4 5 6 7 8 9 10 11
𝑥
𝑖

0 2 3 5 6 8 9 11 12 14 15
𝑓
𝑖

10.0 10.0 10.0 10.0 10.0 10.0 10.50 15.00 50.00 60.00 85.00
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Figure 1: (a) Rational cubic Ball curve. (b) Positivity preserving interpolation curve with 𝛼
𝑖
= 0.5, 𝛽

𝑖
= 0.5. (c) Positive curve using rational

cubic spline [1] for data in Table 1.

the curve in Figure 1(b) developed by using positive data
interpolation scheme in the previous section is smoother as
compared to the curve in Figure 1(c). Table 2 presents some
numerical results for Figure 1(b).

Example 2. The monotone data set in Table 3 is presented in
Figure 2(a), which shows the plotted curve using a rational
cubic Ball function without any constraint. The curve is
not monotone, whereas the curve in Figure 2(b), which is
produced using the proposed scheme with the same set
of data, preserved monotonicity. The monotone curve in
Figure 2(c) produced using the rational cubic spline scheme
developed in [1]. It is seen that the monotonicity preserving
scheme described in the previous section gives a better and
smoother curve compared with rational cubic spline scheme

Table 4: Numerical results for Figure 3(b).

𝑖 1 2 3 4 5 6 7 8 9 10 11
𝑑
𝑖
0.0 0.0 0.0 0.0 0.0 0.33 1.08 24 25 18.3 31.7

𝑎
𝑖
0.0 0.0 0.0 0.0 0.0 0.78 0.77 0.78 1.0 0.79 —

𝑏
𝑖
0.0 0.0 0.0 0.0 0.0 19.2 4.3 0.37 2.5 0.48 —

in [1]. Some numerical results for the curve in Figure 2(b) are
presented in Table 4.

Example 3. We consider the convex data set in Table 5.
The curve in Figure 3(b) is produced by the proposed
rational cubic Ball function scheme and shows a convex
curve, whereas the curve in Figure 3(a) is produced by the
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Figure 2: (a) Rational cubic Ball curve. (b) Monotonicity preserving interpolation curve with 𝛼
𝑖
= 0.05, 𝛽

𝑖
= 0.5. (c) Monotone curve using

rational cubic spline [1] for data in Table 3.

Table 5: Convex data set.

𝑖 1 2 3 4 5 6 7
𝑥
𝑖

0 2 4 10 28 30 32
𝑓
𝑖

20.8 8.8 4.2 0.5 3.9 6.2 9.6

rational cubic Ball function described in (2), which does
not preserve the shape of the convex data. Figure 3(c) is
produced by the rational cubic spline scheme developed in
[1]. It can be observed that the curve in Figure 3(b) produced
by convexity preserving scheme described in the previous
section is better and smoother than the curve in Figure 3(c).
The shape parameter and the derivative values for the curve
in Figure 3(b) are listed in Table 6.

6. Conclusion

In this study, a rational cubic Ball interpolant with four
free parameters is used to construct a 𝐶1 interpolant that
preserves the shape of positive, monotone, and convex data.
Data dependent shape constraints are derived on two of the

Table 6: Numerical results for Figure 3(b).

𝑖 1 2 3 4 5 6 7
𝑑
𝑖

−7.85 −4.15 −1.88 −0.42 1.05 1.43 1.98
𝑎
𝑖

8.50 13.59 16.40 13.86 7.52 8.50 —
𝑏
𝑖

7.34 15.30 31.99 4.50 4.63 5.58 —

shape parameters to ensure the preservation of the positivity,
monotonicity, and convexity of the data, whereas the other
two can assume any positive value, which provides an extra
degree of freedom for designers to refine the curve. The
three-point difference formula (arithmetic mean) has been
used to compute the values of the derivatives. The scheme
has been implemented successfully on a number of data sets
and a comparison against one rational cubic spline scheme
was carried out. The results show that the developed scheme
works well for the tested data sets and obtains better and
smoother curve. The proposed scheme can be generalized to
the surface case, which is under process investigation by the
authors.
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Figure 3: (a) Rational cubic Ball curve. (b) Convexity preserving interpolation curve with 𝛼
𝑖
= 1.5, 𝛽

𝑖
= 0.5. (c) Convex curve using rational

cubic spline [1] for data in Table 5.
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