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We study a degenerate evolution system containing the 𝑝-curl system in a bounded domain with initial and boundary conditions
for the magnetic field H under the influence of a system force F. This is concerned with an approximation of Bean’s critical-state
model for type II superconductors. We will show the existence, uniqueness, and regularity of solutions. Moreover we will get the
properties of the limit solution as 𝑝 → ∞.

1. Introduction

TheBean critical-statemodel describes the hysteretic magne-
tization of type II superconductors under a varying external
magnetic field (cf. Prigozhin [1] and de Gennes [2]). For the
description of the classical Bean critical-state model, Yin et
al. [3] proposed the following degenerate evolution system:

H
𝑡
+ curl [|curlH|𝑝−2 curlH] = F (𝑥, 𝑡) in 𝑄

𝑇
, (1)

divH = 0 in 𝑄
𝑇
, (2)

^ ×H = 0 on 𝜕Ω × [0, 𝑇] , (3)

H (𝑥, 0) = H
0
(𝑥) in Ω, (4)

where Ω is a bounded domain with 𝐶1,1 boundary 𝜕Ω and
has no holes in R3, 𝑄

𝑇
= Ω × (0, 𝑇] (𝑇 > 0), and ^ denotes

the outward normal unit vector field to 𝜕Ω, and 𝑝 ≥ 2. In the
Bean model, the electric field E and the current density J are
characterized as follows.There exists a critical current 𝐽

𝑐
such

that |J| ≤ 𝐽
𝑐
inΩ and

|E| =
{

{

{

0 if |J| < 𝐽
𝑐
,

[0,∞) if |J| = 𝐽
𝑐
.

(5)

Thus if |J| reaches 𝐽
𝑐
, then |E| takes the value in [0,∞). By

scaling, we may assume that 𝐽
𝑐
= 1. The relation between |E|

and |J| is followed from the Ampere law:

E = |curlH|𝑝−2 curlH (6)

as 𝑝 → ∞. HereH is the magnetic field and 𝜌 = |curlH|𝑝−2.
Thus model (1) provides a good approximation for the Bean
model. For large 𝑝, the resistivity 𝜌 is small in a region

𝑆
𝜀
= {(𝑥, 𝑡) ; |curlH (𝑥, 𝑡)| ≤ 1 − 𝜀} for 𝜀 > 0. (7)

That is to say, 𝑆
𝜀
becomes the superconductivity region as

𝑝 → ∞. For more details, see Bean [3, 4] and references
therein. Though the authors in [3] considered system (1)–
(4), there are many mistakes and mistypes; for example,
in Definition 2.1 (page 786), the differentiability of H with
respect to the time variable 𝑡 is not assumed, and theymistake
the notion of the subdifferential (pages 788, 791–793) and so
forth.

In this paper, we will extend the results of [3] to more
general resistivity term of the form 𝜌 = 𝑔(𝑥, |curlH|) for
some function 𝑔. Since the resistivity 𝜌 = 𝑔(𝑥, |curlH|) may
be of the form not only 𝑔(𝑥, |curlH|) = |curlH|𝑝−2 but also
𝑔(𝑥, |curlH|) = 𝑎(𝑥)|curlH|𝑝−2 or more general type, we are
convinced that the extension is meaningful.
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This paper is organized as follows. In Section 2, we
introduce some spaces of vector fields and describe the setting
of the problem. In Section 3, we consider the existence,
uniqueness, and regularity of the solution for the problem.
Finally, in Section 4, we examine the properties of the limit
solution H(∞)(𝑥, 𝑡) as 𝑝 → ∞. The result shows that the
resistivity 𝜌 vanishes in the region 𝑆 = {(𝑥, 𝑡); |curlH(∞)(𝑥,
𝑡)| < 1}.

2. Preliminaries and the Setting
of the Problem

In this section, we introduce some spaces of vector fields
which are used in this paper and set the problem.

Let Ω ⊂ R3 be a bounded domain with 𝐶1,1 boundary.
Throughout this paper, we assume that Ω has no holes. That
is to say, the second Betti number of Ω is equal to zero. This
means that

{G ∈ 𝐿𝑝 (Ω,R3) ; curlG = 0, divG = 0 in Ω, ^ × G

= 0 on 𝜕Ω} = {0} .
(8)

But we allow Ω to be not simply connected. For these
notations, see Dautray and Lions [5] or Amrouche and
Seloula [6]. Let 𝑝 ≥ 2 and define some spaces of vector fields
defined in Ω with values in R3. One has

𝐻
𝑝
(curl, Ω)

= {G ∈ 𝐿𝑝 (Ω,R3) ; curlG ∈ 𝐿𝑝 (Ω,R3)} .
(9)

We note that, for G ∈ 𝐻𝑝(curl, Ω), the tangential trace ^ × G
is well defined in 𝑊−1/𝑝,𝑝(𝜕Ω,R3) (cf. [6]). And moreover,
define

𝐻
𝑝

0
(curl, Ω)

= {G ∈ 𝐻𝑝 (curl, Ω) ; ^ × G = 0 on 𝜕Ω} ,

𝐻
𝑝

0
(curl, div, Ω)

= {G ∈ 𝐻𝑝
0
(curl, Ω) ; divG ∈ 𝐿𝑝 (Ω)} ,

𝐻
𝑝

0
(curl, div0, Ω)

= {G ∈ 𝐻𝑝
0
(curl, Ω) ; divG = 0 in Ω} .

(10)

The following lemma follows from [6], Aramaki [7], and
Pan [8].

Lemma 1. If Ω has no holes, then

𝐻
𝑝

0
(curl, div0, Ω) ⊂ 𝐻𝑝

0
(curl, div, Ω) ⊂ 𝑊1,𝑝 (Ω,R3) (11)

and the norm in𝐻𝑝
0
(curl, div0, Ω) given by

‖curlG‖
𝐿
𝑝
(Ω)
, G ∈ 𝐻𝑝

0
(curl, div, Ω) (12)

is equivalent to the norm in 𝑊
1,𝑝
(Ω,R3). In particu-

lar, 𝐻𝑝
0
(curl, div0, Ω) is a Banach space with the norm

‖curlG‖
𝐿
𝑝
(Ω)

.

By the Sobolev embedding theorem, we can get the fol-
lowing.

Lemma 2. Assume that Ω is bounded domain in R3 without
holes and with 𝐶1,1 boundary. If G ∈ 𝐻𝑝

0
(curl, div, Ω), then

‖G‖
𝐿
3𝑝/(3−𝑝)
(Ω)
≤ 𝐶 (‖curlG‖

𝐿
𝑝
(Ω)
+ ‖divG‖

𝐿
𝑝
(Ω)
)

if 𝑝 ∈ (1, 3) ,

‖G‖
𝐿
𝑞
(Ω)
≤ 𝐶 (‖curlG‖

𝐿
𝑝
(Ω)
+ ‖divG‖

𝐿
𝑝
(Ω)
)

for any 1 < 𝑞 < ∞ if 𝑝 = 3,

‖G‖
𝐶
𝛼
(Ω)
≤ 𝐶 (‖curlG‖

𝐿
𝑝
(Ω)
+ ‖divG‖

𝐿
𝑝
(Ω)
)

if 𝑝 > 3,

(13)

where 𝛼 = 1 − 3/𝑝.

Throughout this paper we denote the norm of vector field
G in 𝐿𝑝(Ω,R3) or 𝑊1,𝑝(Ω,R3) by ‖G‖

𝐿
𝑝
(Ω)

or ‖G‖
𝑊
1,𝑝
(Ω)

,
respectively.

Let 𝑝 ≥ 2. We assume that the function Ω × [0, 𝑇] ∋
(𝑥, 𝑠) → 𝑓

𝑝
(𝑥, 𝑠) satisfies the following.

(H.1) 𝑓
𝑝
(𝑥, 𝑠) ∈ 𝐶

1
(Ω × [0, 𝑇]) ∩ 𝐶

2
(Ω × (0, 𝑇]) with

𝑓
𝑝
(𝑥, 0) = 0 satisfies that there exist 𝜆, Λ > 0

independent of 𝑥, 𝑠, and 𝑝 such that

𝜆𝑠
(𝑝−2)/2

≤ 𝑓
󸀠

𝑝
(𝑥, 𝑠) ≤ Λ𝑠

(𝑝−2)/2 for 𝑠 ≥ 0,

0 ≤ 𝑓
󸀠󸀠

𝑝
(𝑥, 𝑠) ≤ Λ𝑠

(𝑝−4)/2 for 𝑠 > 0,
(14)

where 𝑓󸀠
𝑝
(𝑥, 𝑠) = (𝜕𝑓

𝑝
/𝜕𝑠)(𝑥, 𝑠) and 𝑓󸀠󸀠

𝑝
(𝑥, 𝑠) = (𝜕

2
𝑓
𝑝
/𝜕𝑠
2
)(𝑥,

𝑠). Then it is clear that 𝑓 satisfies
2

𝑝
𝜆𝑠
𝑝/2
≤ 𝑓
𝑝
(𝑥, 𝑠) ≤

2

𝑝
Λ𝑠
𝑝/2 (15)

and 𝑓
𝑝
(𝑥, 𝑠) is convex with respect to 𝑠 variable.

We consider the initial and boundary value problem:

H
𝑡
+ curl [𝑓󸀠

𝑝
(𝑥, |curlH|2) curlH] = F (𝑥, 𝑡)

in 𝑄
𝑇
,

(16)

divH = 0 in 𝑄
𝑇
, (17)

^ ×H = 0

on 𝜕Ω × [0, 𝑇] ,
(18)

H (𝑥, 0) = H
0
(𝑥) in Ω, (19)

where F andH
0
are given vector fields.We assume the follow-

ing.

(H.2) F = F(𝑥, 𝑡) ∈ 𝐿2(0, 𝑇; 𝐿2(Ω)) satisfies divF = 0 in
𝑄
𝑇
and F ⋅ ^ = 0 on 𝜕Ω for a.e. 𝑡 ∈ (0, 𝑇], and

H
0
= H
0
(𝑥) satisfies that H

0
∈ 𝐻
𝑝

0
(curl, div0, Ω) and

curl[𝑓󸀠
𝑠
(𝑥, |curlH

0
|
2
) curlH

0
] ∈ 𝐿
2
(Ω,R3).

We note that hypothesis (H.2) contains the compatibility
conditions: divF = 0 in 𝑄

𝑇
and ^ ×H

0
= 0 on 𝜕Ω.
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Example 3. 𝑓
𝑝
(𝑥, 𝑠) = (2/𝑝)𝑎(𝑥)𝑠

𝑝/2 where 𝑎 ∈ 𝐶2(Ω) with
0 < 𝑐

1
≤ 𝑎(𝑥) ≤ 𝑐

2
< ∞ satisfying (H.1). In particular, if

𝑎(𝑥) ≡ 1, system (16)–(19) becomes (1)–(4).

The following definition of solution of system (16)–(19) is
based on Brezis [9, Definition 3.1].

Definition 4. One calls a vector field H = H(𝑥, 𝑡), a solution
of system (16)–(19), if the following hold:

(i) H ∈ 𝐶([0, 𝑇]; 𝐿
2
(Ω)) and is absolutely continuous

with respect to 𝑡 in all compact subset of (0, 𝑇), and
for a.e. 𝑡 ∈ (0, 𝑇), H

𝑡
∈ 𝐿
2
(Ω,R3) (therefore for a.e.

𝑡 ∈ (0, 𝑇),H is differentiable with respect to 𝑡);
(ii) H(𝑥, 𝑡) ∈ 𝐻𝑝

0
(curl, div0, Ω) for a.e. 𝑡 ∈ (0, 𝑇);

(iii) curl[𝑓󸀠
𝑝
(𝑥, |curlH|2) curlH] ∈ 𝐿2(Ω,R3) for a.e. 𝑡 ∈

(0, 𝑇);
(iv) (16) holds in𝐿2(Ω,R3) for a.e. 𝑡 ∈ (0, 𝑇) andH(𝑥, 0) =

H
0
(𝑥) in Ω.

(One notes that, for a.e. 𝑡 ∈ (0, 𝑇),H is differentiable with
respect to 𝑡.)

Here we give Green’s formula which will be used fre-
quently later (cf. [6]).

Lemma 5. For A ∈ 𝐻𝑝(curl, Ω) and B ∈ 𝑊1,𝑝
󸀠

(Ω,R3) where
𝑝
󸀠 is the conjugate exponent for 𝑝, that is to say, 𝑝󸀠 = 𝑝/(𝑝−1),

then one has

∫
Ω

curlA ⋅ B 𝑑𝑥 − ∫
Ω

A ⋅ curlB 𝑑𝑥 = ⟨^ × A,B⟩
𝜕Ω
, (20)

where a ⋅ b denotes the usual inner product for vectors a and
b in R3 and ⟨⋅, ⋅⟩

𝜕Ω
denotes the duality between𝑊−1/𝑝,𝑝(𝜕Ω)

and𝑊1−1/𝑝
󸀠
,𝑝
󸀠

(𝜕Ω).

3. Existence, Uniqueness, and
Regularity of Solution

In this section, we will consider the existence and uniqueness
for system (16)–(19) and also regularity undermore restrictive
hypotheses on F.

Theorem 6. Let 𝑝 ≥ 2. Assume that Ω is a bounded domain
inR3 without holes and with𝐶1,1 boundary. Under hypotheses
(H.1) and (H.2), system (16)–(19) has a unique solution in the
sense of Definition 4. Moreover, one hasH

𝑡
∈ 𝐿
2
(𝑄
𝑇
) andH ∈

𝐿
∞
(0, 𝑇;𝐻

𝑝

0
(curl, div0, Ω)).

The proof will be achieved by applying theorems due to
Brezis [9, Theorems 3.4 and 3.6]. In order to do so, define a
Hilbert space 𝑋 = 𝐿2(Ω,R3) and a functional 𝐼

𝑝
[V] for V ∈

𝑋 by

𝐼
𝑝
[V]

=
{

{

{

1

2
∫
Ω

𝑓
𝑝
(𝑥, |curlV|2) 𝑑𝑥 if V ∈ 𝐻𝑝

0
(curl, div0, Ω) ,

+∞ otherwise.

(21)

It is clear that the effective domain 𝐷(𝐼
𝑝
) = 𝐻

𝑝

0
(curl, div0,

Ω) ̸= 0.

Lemma 7. Under hypothesis (H.1), 𝐼
𝑝
is a proper lower semi-

continuous and convex functional.

Proof. First we show that 𝐼
𝑝
is lower semicontinuous; that

is, if V
𝑛
→ V in 𝐿2(Ω,R3) as 𝑛 → ∞, then 𝐼

𝑝
[V] ≤

lim inf
𝑛→∞

𝐼
𝑝
[V
𝑛
].This is equivalent to show that ifV

𝑛
→ V

in 𝐿2(Ω,R3) as 𝑛 → ∞ and lim
𝑛→∞

𝐼
𝑝
[V
𝑛
] = 𝐼, then

𝐼
𝑝
[V] ≤ 𝐼. In fact, it is clear from the fact that if V

𝑛
→ V

in 𝐿2(Ω,R3), there exists a subsequence {V
𝑛𝑘
} of {V

𝑛
} such

that

lim inf
𝑛→∞

𝐼
𝑝
[V
𝑛
] = lim
𝑘→∞

𝐼
𝑝
[V
𝑛𝑘
] . (22)

Thus we assume that V
𝑛

→ V in 𝐿
2
(Ω,R3) and

lim
𝑛→∞

𝐼
𝑝
[V
𝑛
] = 𝐼. We show that 𝐼

𝑝
[V] ≤ 𝐼. If 𝐼 = +∞,

it is trivial, so we may assume that 𝐼 < ∞. Choosing a
subsequence, if necessary, we may assume that 𝐼

𝑝
[V
𝑛
] < ∞

and

1

2
∫
Ω

𝑓
𝑝
(𝑥,
󵄨󵄨󵄨󵄨curlV𝑛

󵄨󵄨󵄨󵄨
2

) 𝑑𝑥 = 𝐼 + 𝑜 (1) , (23)

as 𝑛 → ∞. Thus we have V
𝑛
∈ 𝐻
𝑝

0
(curl, div0, Ω) and it

follows from (H.1) that

𝜆

𝑝
∫
Ω

󵄨󵄨󵄨󵄨curlV𝑛
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 ≤
1

2
∫
Ω

𝑓
𝑝
(𝑥,
󵄨󵄨󵄨󵄨curlV𝑛

󵄨󵄨󵄨󵄨
2

) 𝑑𝑥

= 𝐼 + 𝑜 (1) ≤ 𝐼 + 1 < ∞.

(24)

Since Ω has no holes, it follows from Lemma 1 that {V
𝑛
} is

bounded in𝑊1,𝑝(Ω,R3). Passing to a subsequence, we may
assume that V

𝑛
→ Ṽ weakly in 𝑊1,𝑝(Ω,R3) and from the

compactness of embedding from𝑊1,𝑝(Ω,R3) to 𝐿𝑝(Ω,R3),
V
𝑛
→ Ṽ strongly in 𝐿𝑝(Ω,R3). Since 𝑝 ≥ 2, we have Ṽ = V.

Since 𝑓󸀠󸀠
𝑝
(𝑥, 𝑠) ≥ 0 for all 𝑠 > 0 and 𝑓󸀠

𝑝
(𝑥, 𝑠) ≥ 0 for all 𝑠 ≥ 0,

taking the Taylor theorem into consideration, we have

∫
Ω

𝑓
𝑝
(𝑥,
󵄨󵄨󵄨󵄨curlV𝑛

󵄨󵄨󵄨󵄨
2

) 𝑑𝑥 − ∫
Ω

𝑓
𝑝
(𝑥, |curlV|2) 𝑑𝑥

= ∫
Ω

𝑓
𝑝
(𝑥,
󵄨󵄨󵄨󵄨curlV + curlV𝑛 − curlV

󵄨󵄨󵄨󵄨
2

) 𝑑𝑥

− ∫
Ω

𝑓
𝑝
(𝑥, |curlV|2) 𝑑𝑥 = ∫

Ω

𝑓
𝑝
(𝑥, |curlV|2

+ 2 curlV ⋅ (curlV
𝑛
− curlV)

+
󵄨󵄨󵄨󵄨curlV𝑛 − curlV

󵄨󵄨󵄨󵄨
2

) 𝑑𝑥

− ∫
Ω

𝑓
𝑝
(𝑥, |curlV|2) 𝑑𝑥 ≥ ∫

Ω

𝑓
󸀠

𝑝
(𝑥, |curlV|2)

⋅ {2 curlV ⋅ (curlV
𝑛
− curlV)

+
󵄨󵄨󵄨󵄨curlV𝑛 − curlV

󵄨󵄨󵄨󵄨
2

} 𝑑𝑥
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≥ 2∫
Ω

𝑓
󸀠

𝑝
(𝑥, |curlV|2) curlV ⋅ (curlV

𝑛

− curlV) 𝑑𝑥.
(25)

Since

∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

𝑝
(𝑥, |curlV|2) curlV󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

𝑑𝑥

≤ Λ
𝑝
󸀠

∫
Ω

|curlV|𝑝 𝑑𝑥 < ∞
(26)

and curlV
𝑛
→ curlV weakly in 𝐿𝑝(Ω,R3), it follows from

the Hölder inequality that the last term of (25) tends to zero
as 𝑛 → ∞. Thus

𝐼 = lim inf
𝑛→∞

1

2
∫
Ω

𝑓
𝑝
(𝑥,
󵄨󵄨󵄨󵄨curlV𝑛

󵄨󵄨󵄨󵄨
2

) 𝑑𝑥

≥
1

2
∫
Ω

𝑓
𝑝
(𝑥, |curlV|2) 𝑑𝑥 = 𝐼

𝑝
[V] .

(27)

Next we show that 𝐼
𝑝
is convex; that is, for any V andW

in 𝐿2(Ω,R3) and any 0 < 𝜇 < 1,

𝐼
𝑝
[𝜇V + (1 − 𝜇)W] ≤ 𝜇𝐼

𝑝
[V] + (1 − 𝜇) 𝐼

𝑝
[W] . (28)

When V orW does not belong to𝐻𝑝
0
(curl, div0, Ω), 𝐼

𝑝
[V] =

+∞, or 𝐼
𝑝
[W] = +∞, the inequality is trivial. Thus let V and

W be in𝐻𝑝
0
(curl, div0, Ω). Since a function [0,∞) ∋ 𝑠 󳨃→ 𝑠

2

is convex and for each 𝑥 ∈ Ω, the function 𝑠 → 𝑓
𝑝
(𝑥, 𝑠) is

an increasing function and convex with respect to 𝑠, for any
𝑠
1
, 𝑠
2
≥ 0,

𝑓
𝑝
(𝑥, (𝜇𝑠

1
+ (1 − 𝜇) 𝑠

2
)
2

) ≤ 𝑓
𝑝
(𝑥, 𝜇𝑠

2

1
+ (1 − 𝜇) 𝑠

2

2
)

≤ 𝜇𝑓
𝑝
(𝑥, 𝑠
2

1
) + (1 − 𝜇) 𝑓

𝑝
(𝑥, 𝑠
2

2
) .

(29)

Therefore it is easily shown that 𝐼
𝑝
is convex.

Now we consider the subdifferential of the functional 𝐼
𝑝

(cf. Struwe [10, page 58]). The domain of the subdifferential
𝜕𝐼
𝑝
is defined by

𝐷(𝜕𝐼
𝑝
) = {H ∈ 𝐷 (𝐼

𝑝
) ; there exists U

∈ 𝐿
2
(Ω,R

3
) such that 𝐼

𝑝
[V] − 𝐼

𝑝
[H]

≥ (U,V −H) ∀V ∈ 𝐿2 (Ω,R3)} ,

(30)

where (U,V) = ∫
Ω
U⋅V 𝑑𝑥 is the usual inner product ofU and

V in 𝐿2(Ω,R3). If V ∉ 𝐻𝑝
0
(curl, div0, Ω), then 𝐼

𝑝
[V] = +∞,

so we can rewrite

𝐷(𝜕𝐼
𝑝
) = {H ∈ 𝐷 (𝐼

𝑝
) ; there exists U

∈ 𝐿
2
(Ω,R

3
) such that 𝐼

𝑝
[V] − 𝐼

𝑝
[H]

≥ (U,V −H) ∀V ∈ 𝐻𝑝
0
(curl, div0, Ω)} .

(31)

Then the multivalued subdifferential 𝜕𝐼
𝑝
at H ∈ 𝐷(𝐼

𝑝
) is

defined by

𝜕𝐼
𝑝
[H] = {U ∈ 𝐿2 (Ω,R3) ; 𝐼

𝑝
[V] − 𝐼

𝑝
[H]

≥ (U,V −H) ∀V ∈ 𝐻𝑝
0
(curl, div0, Ω)} .

(32)

Here we note that we have

𝐼
𝑝
[V] − 𝐼

𝑝
[H] = 1

2

⋅ ∫
Ω

{𝑓
𝑝
(𝑥, |curlH + curl (V −H)|2)

− 𝑓
𝑝
(𝑥, |curlH|2)} 𝑑𝑥

≥ ∫
Ω

𝑓
󸀠

𝑝
(𝑥, |curlH|2) curlH ⋅ curl (V −H) 𝑑𝑥.

(33)

Next we will show that 𝜕𝐼
𝑝
[H] for H ∈ 𝐷(𝜕𝐼

𝑝
) is single-

valued. In order to do so, define an operator 𝐴
𝑝
by

𝐷(𝐴
𝑝
) = {H ∈ 𝐻𝑝

0
(curl, div0, Ω) ;

curl [𝑓󸀠
𝑝
(𝑥, |curlH|2) curlH] ∈ 𝐿2 (Ω,R3)} ,

𝐴
𝑝
[H] = curl [𝑓󸀠

𝑝
(𝑥, |curlH|2) curlH]

for H ∈ 𝐷 (𝐴
𝑝
) .

(34)

Since ^ × (V − H) = 0 on 𝜕Ω, it follows from Lemma 5 and
(33) that

𝐼
𝑝
[V] − 𝐼

𝑝
[H] ≥ (𝐴

𝑝
[H] ,V −H)

∀V ∈ 𝐻𝑝
0
(curl, div0, Ω) .

(35)

This implies that 𝐴
𝑝
⊂ 𝜕𝐼
𝑝
; that is, 𝐷(𝐴

𝑝
) ⊂ 𝐷(𝜕𝐼

𝑝
) and

𝐴
𝑝
[H] ∈ 𝜕𝐼

𝑝
[H] forH ∈ 𝐷(𝐴

𝑝
).

Lemma8. Under the hypothesis (H.1), 𝜕𝐼
𝑝
is single-valued and

𝜕𝐼
𝑝
[H] = {𝐴

𝑝
[H]}.

Proof. We follow the arguments in Evans [11, page 571]. For
any given G ∈ 𝐿2(Ω,R3), define a functional

𝐽
𝑝
[V]

= ∫
Ω

(
1

2
𝑓
𝑝
(𝑥, |curlV|2) + 1

2
|V|2 − G ⋅ V)𝑑𝑥

(36)

on 𝐻𝑝
0
(curl, div0, Ω). We note that 𝐻𝑝

0
(curl, div0, Ω) ⊂

𝑊
1,𝑝
(Ω,R3) and 𝐻𝑝

0
(curl, div0, Ω) is a Banach space with

respect to the norm ‖curlV‖
𝐿
𝑝
(Ω)

which is equivalent to
𝑊
1,𝑝
(Ω,R3) norm according to the fact that Ω has no holes.
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We claim that 𝐽
𝑝
has aminimizer in𝐻𝑝

0
(curl, div0, Ω). In fact,

for any 𝜀 > 0, there exists a constant 𝐶(𝜀, 𝑝) > 0 such that

𝐽
𝑝
[V] ≥ 𝜆

𝑝
∫
Ω

|curlV|𝑝 𝑑𝑥

− {∫
Ω

|G|2 𝑑𝑥}
1/2

{∫
Ω

|V|2 𝑑𝑥}
1/2

≥
𝜆

𝑝
∫
Ω

|curlV|𝑝 𝑑𝑥

− ‖G‖
𝐿
2
(Ω)
‖V‖
𝐿
𝑝
(Ω)
|Ω|
(𝑝−2)/2𝑝

≥
𝜆

𝑝
∫
Ω

|curlV|𝑝 𝑑𝑥 − 𝜀 ‖V‖𝑝
𝐿
𝑝
(Ω)

− 𝐶 (𝜀, 𝑝) ‖G‖𝑝/(𝑝−1)
𝐿
2
(Ω)

.

(37)

Throughout this paper, |Ω| denotes the volume of Ω. There-
fore if we choose 𝜀 > 0 small enough, we can see that 𝐽

𝑝

is coercive. Since 𝐾 = 𝐻𝑝
0
(curl, div0, Ω) is a closed convex

subset of𝑊1,𝑝(Ω,R3), if we show that 𝐽
𝑝
: 𝐾 → R is lower

semicontinuous and convex, it follows that 𝐽
𝑝
is weakly lower

semicontinuous (cf. Takahashi [12, Lemma 1.3.9]). Since the
convexity follows as before, we will show that 𝐽

𝑝
is lower

semicontinuous. Let V
𝑗
→ V in𝑊1,𝑝(Ω,R3) and 𝐽

𝑝
[V
𝑗
] →

𝐽 as 𝑗 → ∞. Then curlV
𝑗
→ curlV in 𝐿𝑝(Ω,R3). Passing

to a subsequence, we may assume that curlV
𝑗
→ curlV a.e.

in Ω. Since 𝑓
𝑝
is a continuous function, 𝑓

𝑝
(𝑥, |curlV

𝑗
|
2
) →

𝑓
𝑝
(𝑥, |curlV|2) a.e. in Ω. Since 𝑓

𝑝
≥ 0, it follows from the

Fatou lemma that

𝐼
𝑝
[V] = 1

2
∫
Ω

𝑓
𝑝
(𝑥, |curlV|2) 𝑑𝑥

≤ lim inf
𝑗→∞

1

2
∫
Ω

𝑓
𝑝
(𝑥,
󵄨󵄨󵄨󵄨󵄨
curlV

𝑗

󵄨󵄨󵄨󵄨󵄨

2

) 𝑑𝑥

= lim inf
𝑗→∞

𝐼
𝑝
[V
𝑗
] = 𝐼.

(38)

From this fact and the fact that V
𝑗
→ V in 𝐿2(Ω,R3) since

𝑝 ≥ 2, we have 𝐽
𝑝
[V] ≤ 𝐽, so 𝐽

𝑝
is weakly lower semicontinu-

ous. Let {V
𝑛
} ⊂ 𝐻

𝑝

0
(curl, div0, Ω) be a minimizing sequence

of 𝐽
𝑝
. Then

𝐽
𝑝
[V
𝑛
] = inf

V∈𝐻𝑝
0
(curl,div0,Ω)

𝐽
𝑝
[V] + 𝑜 (1) as 𝑛 󳨀→ ∞. (39)

Since 𝐽
𝑝
is coercive, {V

𝑛
} is bounded in𝑊1,𝑝(Ω,R3). Passing

to a subsequence, we may assume that V
𝑛
→ V

0
weakly

in𝑊1,𝑝(Ω,R3) and strongly in 𝐿𝑝(Ω,R3) by compactness of
embedding from 𝑊1,𝑝(Ω,R3) to 𝐿𝑝(Ω,R3) as above. Since
divV
𝑛
= 0 inΩ, we have divV

0
= 0 inΩ, and since ^×V

𝑛
= 0

on 𝜕Ω, we have ^ × V
0
= 0 on 𝜕Ω. Thus we have V

0
∈

𝐻
𝑝

0
(curl, div0, Ω), and

𝐽
𝑝
[V
0
] ≤ lim inf
𝑛→∞

𝐽
𝑝
[V
𝑛
] = inf

V∈𝐻𝑝
0
(curl,div0,Ω)

𝐽
𝑝
[V] . (40)

Thus a minimizer exists. So let H ∈ 𝐻
𝑝

0
(curl, div0, Ω) be a

minimizer of 𝐽
𝑝
.ThenH satisfies the Euler-Lagrange equation

weakly:

H + curl [𝑓󸀠
𝑝
(𝑥, |curlH|2) curlH] = G. (41)

SinceH,G ∈ 𝐿2(Ω,R3), we have

curl [𝑓󸀠
𝑝
(𝑥, |curlH|2) curlH] ∈ 𝐿2 (Ω,R3) , (42)

and soH ∈ 𝐷(𝐴
𝑝
) andH+𝐴

𝑝
[H] = G. SinceG ∈ 𝐿2(Ω,R3)

is arbitrary, we have

𝑅 (𝐼 + 𝐴
𝑝
) = 𝐿
2
(Ω,R

3
) , (43)

where 𝑅(𝐼 + 𝐴
𝑝
) denotes the range of 𝐼 + 𝐴

𝑝
.

We show that 𝐴
𝑝
= 𝜕𝐼
𝑝
. For any V ∈ 𝐷(𝜕𝐼

𝑝
) and W ∈

𝜕𝐼
𝑝
[V], there exists H ∈ 𝐷(𝐴

𝑝
) such that H + 𝐴

𝑝
[H] = V +

W. Since 𝐴
𝑝
[H] ∈ 𝜕𝐼

𝑝
[H], we see that H + 𝜕𝐼

𝑝
[H] ∋ V +

W. On the other hand, V + 𝜕𝐼
𝑝
[V] ∋ V +W. According to

[11, Chapter 9, Section 6, Theorem 1(iv)], the equation H +
𝜕𝐼
𝑝
[H] ∋ V +W has a unique solution in 𝐷(𝜕𝐼

𝑝
). Thus we

have V = H ∈ 𝐷(𝜕𝐼
𝑝
) and 𝐴

𝑝
[H] = W. Hence 𝜕𝐼

𝑝
is single-

valued and 𝜕𝐼
𝑝
[H] = {𝐴

𝑝
[H]}. This completes the proof.

If F = F(𝑥, 𝑡) and H
0
= H
0
(𝑥) satisfy (H.2), it follows

from [9, Theorems 3.6 and 3.4] that the system

H
𝑡
+ 𝜕𝐼
𝑝
[H] ∋ F in 𝑄

𝑇
,

H (𝑥, 0) = H
0
(𝑥) 𝑥 ∈ Ω

(44)

has a unique solution H in the sense of Definition 4. Taking
Lemma 8 into consideration, we can see that H is a unique
solution of system (16)–(19).

Proof of Theorem 6. Let H be a solution of (16)–(19). Taking
the inner product of (16) and H and then integrating over
𝑄
𝑡
= Ω × [0, 𝑡], we have

∬
𝑄𝑡

H
𝜏
⋅H𝑑𝑥 𝑑𝜏

+∬
𝑄𝑡

curl [𝑓󸀠
𝑝
(𝑥, |curlH|2) curlH] ⋅H𝑑𝑥 𝑑𝜏

= ∬
𝑄𝑡

F ⋅H 𝑑𝑥 𝑑𝜏.

(45)

The first term of left hand side of (45) is equal to

1

2
∬
𝑄𝑡

𝑑

𝑑𝜏
|H (𝑥, 𝜏)|2 𝑑𝑥 𝑑𝜏

=
1

2
∫
Ω

|H (𝑥, 𝑡)|2 𝑑𝑥 − 1
2
∫
Ω

󵄨󵄨󵄨󵄨H0 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥.

(46)
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Since ^×H(𝑥, 𝑡) = 0 on 𝜕Ω×[0, 𝑡], using Lemma 5 and (H.1),
the second term of left hand side of (45) satisfies

∬
𝑄𝑡

curl [𝑓󸀠
𝑝
(𝑥, |curlH|2) curlH] ⋅H 𝑑𝑥 𝑑𝜏

= ∬
𝑄𝑡

𝑓
󸀠

𝑝
(𝑥, |curlH|2) |curlH|2 𝑑𝑥 𝑑𝜏

≥ 𝜆∬
𝑄𝑡

|curlH|𝑝 𝑑𝑥 𝑑𝜏.

(47)

Applying the Schwarz inequality, the right hand side of (45)
satisfies that, for any 𝜀 > 0, there exists a constant 𝐶(𝜀),

∬
𝑄𝑡

F ⋅H 𝑑𝑥 𝑑𝜏 ≤ 𝜀∬
𝑄𝑡

|H|2 𝑑𝑥 𝑑𝜏

+ 𝐶 (𝜀)∬
𝑄𝑡

|F|2 𝑑𝑥 𝑑𝜏

≤ 𝜀𝑇 sup
𝑡∈[0,𝑇]

∫
Ω

|H (𝑥, 𝑡)|2 𝑑𝑥

+ 𝐶 (𝜀)∬
𝑄𝑇

|F|2 𝑑𝑥 𝑑𝑡.

(48)

Thus we have

1

2
∫
Ω

|H (𝑥, 𝑡)|2 𝑑𝑥 + 𝜆∬
𝑄𝑡

|curlH|2 𝑑𝑥 𝑑𝜏

≤
1

2
∫
Ω

󵄨󵄨󵄨󵄨H0 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 + 𝜀𝑇 sup
𝑡∈[0,𝑇]

∫
Ω

|H (𝑥, 𝑡)|2 𝑑𝑥

+ 𝐶 (𝜀)∬
𝑄𝑇

|F|2 𝑑𝑥 𝑑𝑡

(49)

for any 𝑡 ∈ [0, 𝑇]. Taking the supremum on [0, 𝑇] and then
choosing 𝜀 > 0 small enough, there exists a constant 𝐶
depending on 𝑇, but independent of 𝑝 such that

sup
𝑡∈[0,𝑇]

∫
Ω

|H (𝑥, 𝑡)|2 𝑑𝑥 +∬
𝑄𝑇

|curlH|𝑝 𝑑𝑥 𝑑𝑡

≤ 𝐶[∫
Ω

󵄨󵄨󵄨󵄨H0 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 +∬
𝑄𝑇

|F (𝑥, 𝑡)|2 𝑑𝑥 𝑑𝑡] .
(50)

Next, taking the inner product of (16) and H
𝑡
and

integrating over 𝑄
𝑡
, we have, using Lemma 5,

∬
𝑄𝑡

󵄨󵄨󵄨󵄨H𝜏
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝜏

+∬
𝑄𝑡

𝑓
󸀠

𝑝
(𝑥, |curlH|2) curlH ⋅ curlH

𝜏
𝑑𝑥 𝑑𝜏

= ∬
𝑄𝑡

F ⋅H
𝜏
𝑑𝑥 𝑑𝜏.

(51)

If we note that

𝑑

𝑑𝜏
𝑓
𝑝
(𝑥, |curlH (𝑥, 𝜏)|2)

= 2𝑓
󸀠

𝑠
(𝑥, |curlH (𝑥, 𝜏)|2) curlH (𝑥, 𝜏)

⋅ curlH
𝜏
(𝑥, 𝜏) ,

(52)

it is shown that

∬
𝑄𝑡

𝑓
󸀠

𝑝
(𝑥, |curlH|2) curlH ⋅ curlH

𝜏
𝑑𝑥 𝑑𝜏

=
1

2
∬
𝑄𝑡

𝑑

𝑑𝜏
𝑓
𝑝
(𝑥, |curlH (𝑥, 𝜏)|2) 𝑑𝑥 𝑑𝜏

=
1

2
∫
Ω

𝑓
𝑝
(𝑥, |curlH (𝑥, 𝑡)|2) 𝑑𝑥

−
1

2
∫
Ω

𝑓
𝑝
(𝑥,
󵄨󵄨󵄨󵄨curlH0 (𝑥)

󵄨󵄨󵄨󵄨
2

) 𝑑𝑥.

(53)

It follows from (H.1) that

∬
𝑄𝑡

󵄨󵄨󵄨󵄨H𝜏
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝜏 +
𝜆

𝑝
∫
Ω

|curlH (𝑥, 𝑡)|𝑝 𝑑𝑥

≤
Λ

𝑝
∫
Ω

󵄨󵄨󵄨󵄨curlH0 (𝑥)
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 +∬
𝑄𝑡

F ⋅H
𝜏
𝑑𝑥 𝑑𝜏

≤
Λ

𝑝
∫
Ω

󵄨󵄨󵄨󵄨curlH0 (𝑥)
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 +
1

2
∬
𝑄𝑡

󵄨󵄨󵄨󵄨H𝜏
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝜏

+ 4∬
𝑄𝑡

|F|2 𝑑𝑥 𝑑𝜏.

(54)

Thus we have

1

2
∬
𝑄𝑡

󵄨󵄨󵄨󵄨H𝜏
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝜏 +
𝜆

𝑝
∫
Ω

|curlH (𝑥, 𝑡)|𝑝 𝑑𝑥

≤
Λ

𝑝
∫
Ω

󵄨󵄨󵄨󵄨curlH0 (𝑥)
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 + 4∬
𝑄𝑇

|F|2 𝑑𝑥 𝑑𝑡.
(55)

Taking the supremum of the left hand side, there exists a con-
stant 𝐶 independent of 𝑝 such that

1

2
∬
𝑄𝑇

󵄨󵄨󵄨󵄨H𝑡
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑡 +
𝜆

𝑝
sup
𝑡∈[0,𝑇]

∫
Ω

|curlH (𝑥, 𝑡)|𝑝 𝑑𝑥

≤ 𝐶[
1

𝑝
∫
Ω

󵄨󵄨󵄨󵄨curlH0 (𝑥)
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 +∬
𝑄𝑇

|F|2 𝑑𝑥 𝑑𝑡] ,
(56)

where the constant 𝐶 is independent of 𝑝. It follows from
this inequality that we can see that H

𝑡
∈ 𝐿
2
(𝑄
𝑇
) and

H ∈ 𝐿∞(0, 𝑇;𝐻𝑝
0
(curl, div0, Ω)). This completes the proof of

Theorem 6.

For more regularity of solution, we assume the following.

(H.3) F ∈ 𝐿
∞
(0, 𝑇; 𝐿

2
(Ω)), curlF ∈ 𝐿

∞
(0, 𝑇; 𝐿

𝑝
(Ω)),

curlF
𝑡
∈ 𝐿
𝑝
(𝑄
𝑇
), and F has a compact support in Ω

for every 𝑡 ∈ [0, 𝑇].
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Then we have the following.

Theorem 9. Under (H.1)–(H.3), the solution H = H(𝑥, 𝑡) of
(16)–(19) satisfiesH

𝑡
∈ 𝐿
∞
(0, 𝑇; 𝐿

2
(Ω)) and

curl [𝑓󸀠
𝑝
(𝑥, |curlH|2) curlH] ∈ 𝐿2 (0, 𝑇; 𝐿2 (Ω)) . (57)

Moreover, the following estimates hold:

sup
𝑡∈[0,𝑇]

∫
Ω

|curlH|𝑝 𝑑𝑥

+∬
𝑄𝑇

󵄨󵄨󵄨󵄨󵄨
curl [𝑓󸀠

𝑝
(𝑥, |curlH|2) curlH]󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡

≤ 𝐶[∫
Ω

󵄨󵄨󵄨󵄨curlH0
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 +∬
𝑄𝑇

|curlF|𝑝 𝑑𝑥 𝑑𝑡] ,

(58)

∬
𝑄𝑇

{|curlH|𝑝−2 󵄨󵄨󵄨󵄨curlH𝑡
󵄨󵄨󵄨󵄨
2

+ 𝑓
󸀠󸀠

𝑝
(𝑥, |curlH|2)

⋅ (curlH ⋅ curlH
𝑡
)
2

} 𝑑𝑥 𝑑𝑡

+ sup
𝑡∈[0,𝑇]

∫
Ω

󵄨󵄨󵄨󵄨󵄨
curl [𝑓󸀠

𝑝
(𝑥, |curlH|2) curlH]󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ sup
𝑡∈[0,𝑇]

∫
Ω

󵄨󵄨󵄨󵄨H𝑡
󵄨󵄨󵄨󵄨
2

𝑑𝑥

≤ 𝐶[∫
Ω

󵄨󵄨󵄨󵄨󵄨
curl [𝑓󸀠

𝑝
(𝑥,
󵄨󵄨󵄨󵄨curlH0

󵄨󵄨󵄨󵄨
2

) curlH
0
]
󵄨󵄨󵄨󵄨󵄨

2

+∬
𝑄𝑇

󵄨󵄨󵄨󵄨curlF𝑡
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 𝑑𝑡 + ∫
Ω

󵄨󵄨󵄨󵄨curlH0
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥

+ sup
𝑡∈[0,𝑇]

∫
Ω

|curlF|𝑝 𝑑𝑥 + sup
𝑡∈[0,𝑇]

∫
Ω

|F|2 𝑑𝑥] ,

(59)

where the constant 𝐶 depends on 𝑇 and 𝑝.

Proof. For the brevity of notation, we write V = curlH. Tak-
ing curl of (16), we have

V
𝑡
+ curl2 [𝑓󸀠

𝑝
(𝑥, |V|2)V] = curlF. (60)

Since ^ ×H(𝑥, 𝑡) = 0 on 𝜕Ω × [0, 𝑇], we have ^ ×H
𝑡
(𝑥, 𝑡) = 0

on 𝜕Ω × [0, 𝑇]. Since F = 0 near 𝜕Ω for every 𝑡 ∈ [0, 𝑇], it
follows from (16) that

^ × curl [𝑓󸀠
𝑝
(𝑥, |V|2)V] = 0 on 𝜕Ω × [0, 𝑇] . (61)

Moreover we have

V
𝑡
⋅ 𝑓
󸀠

𝑝
(𝑥, |V|2)V = 1

2
𝑓
󸀠

𝑝
(𝑥, |V|2) 𝑑

𝑑𝑡
|V|2

=
1

2

𝑑

𝑑𝑡
𝑓
𝑝
(𝑥, |V|2) .

(62)

Taking the inner product of (60) and 𝑓󸀠
𝑝
(𝑥, |V|2)V and then

integrating over 𝑄
𝑡
(0 ≤ 𝑡 ≤ 𝑇), it follows from (61) and (62)

that

1

2
∬
𝑄𝑡

𝑑

𝑑𝜏
𝑓
𝑝
(𝑥, |V|2) 𝑑𝑥 𝑑𝜏

+∬
𝑄𝑡

󵄨󵄨󵄨󵄨󵄨
curl [𝑓󸀠

𝑝
(𝑥, |V|2)V]󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝜏

= ∬
𝑄𝑡

curlF ⋅ 𝑓󸀠
𝑝
(𝑥, |V|2)V 𝑑𝑥 𝑑𝜏.

(63)

Therefore using the Hölder inequality, for any 𝜀 > 0, there
exists 𝐶(𝜀) > 0 such that

1

2
∫
Ω

𝑓
𝑝
(𝑥, |V (𝑥, 𝑡)|2) 𝑑𝑥

−
1

2
∫
Ω

𝑓
𝑝
(𝑥, |V (𝑥, 0)|2) 𝑑𝑥

+∬
𝑄𝑡

󵄨󵄨󵄨󵄨󵄨
curl [𝑓󸀠

𝑝
(𝑥, |V|2)V]󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝜏

≤ 𝜀∬
𝑄𝑡

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

𝑝
(𝑥, |V|2)V󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

𝑑𝑥 𝑑𝜏

+ 𝐶 (𝜀)∬
𝑄𝑡

|curlF|𝑝 𝑑𝑥 𝑑𝜏.

(64)

Since (𝑓󸀠
𝑝
(𝑥, 𝑠
2
)𝑠)
𝑝
󸀠

≤ (Λ𝑠
𝑝−1
)
𝑝
󸀠

≤ Λ
𝑝
󸀠

𝑠
𝑝
≤ Λ
𝑝
󸀠

(𝑝/2𝜆)𝑓
𝑝
(𝑥,

𝑠
2
) for 𝑠 ≥ 0, the first term of the right hand side of (64) is

estimated by

𝜀Λ
𝑝
󸀠 𝑝

2𝜆
∬
𝑄𝑡

𝑓
𝑝
(𝑥, |V|2) 𝑑𝑥 𝑑𝜏. (65)

Thus we have

1

2
∫
Ω

𝑓
𝑝
(𝑥, |V (𝑥, 𝑡)|2) 𝑑𝑥

+∬
𝑄𝑡

󵄨󵄨󵄨󵄨󵄨
curl [𝑓󸀠

𝑝
(𝑥, |V|2)V]󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝜏

≤
1

2
∫
Ω

𝑓
𝑝
(𝑥, |V (𝑥, 0)|2) 𝑑𝑥

+ 𝜀Λ
𝑝
󸀠 𝑝

2𝜆
𝑇 sup
𝑡∈[0,𝑇]

∫
Ω

𝑓
𝑝
(𝑥, |V (𝑥, 𝑡)|2) 𝑑𝑥

+ 𝐶 (𝜀)∬
𝑄𝑇

|curlF|𝑝 𝑑𝑥 𝑑𝑡.

(66)

Taking the supremum of the left hand side and then choosing
𝜀 > 0 small enough, we have

sup
𝑡∈[0,𝑇]

∫
Ω

𝑓
𝑝
(𝑥, |V (𝑥, 𝑡)|2) 𝑑𝑥

+∬
𝑄𝑇

󵄨󵄨󵄨󵄨󵄨
curl [𝑓󸀠

𝑝
(𝑥, |V|2)V]󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡
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≤ 𝐶[∫
Ω

𝑓
𝑝
(𝑥, |V (𝑥, 0)|2) 𝑑𝑥

+∬
𝑄𝑇

|curlF|𝑝 𝑑𝑥 𝑑𝑡] ,

(67)
where the constant 𝐶 depends on 𝑝, 𝑇, and 𝜀. Since
(2𝜆/𝑝)𝑠

𝑝
≤ 𝑓
𝑝
(𝑥, 𝑠
2
) ≤ (2Λ/𝑝)𝑠

𝑝 for 𝑠 ≥ 0, we can get the
first estimate (58).

Next we show the second estimate (59). Taking the inner
product of (60) and (𝑓󸀠

𝑝
(𝑥, |V|2)V)

𝑡
and then integrating over

𝑄
𝑡
, we have

∬
𝑄𝑡

V
𝜏
⋅ (𝑓
󸀠

𝑝
(𝑥, |V|2)V)

𝜏
𝑑𝑥 𝑑𝜏

+∬
𝑄𝑡

curl [𝑓󸀠
𝑝
(𝑥, |V|2)V]

⋅ (curl [𝑓󸀠
𝑝
(𝑥, |V|2)V])

𝜏
𝑑𝑥 𝑑𝜏

= ∬
𝑄𝑡

curlF ⋅ (𝑓󸀠
𝑝
(𝑥, |V|2)V)

𝜏
𝑑𝑥 𝑑𝜏.

(68)

The first term of the left hand side of (68) is estimated as
follows:

∬
𝑄𝑡

{
󵄨󵄨󵄨󵄨V𝜏
󵄨󵄨󵄨󵄨
2

𝑓
󸀠

𝑝
(𝑥, |V|2)

+ 2𝑓
󸀠󸀠

𝑝
(𝑥, |V|2) (V ⋅ V

𝜏
)
2

} 𝑑𝑥 𝑑𝜏

≥ ∬
𝑄𝑡

{𝜆 |V|𝑝−2 󵄨󵄨󵄨󵄨V𝜏
󵄨󵄨󵄨󵄨
2

+ 2𝑓
󸀠󸀠

𝑝
(𝑥, |V|2) (V ⋅ V

𝜏
)
2

} 𝑑𝑥 𝑑𝜏.

(69)

Here we note that 𝑓󸀠󸀠
𝑝
≥ 0. The second term of the left hand

side of (68) is equal to
1

2
∬
𝑄𝑡

𝑑

𝑑𝜏

󵄨󵄨󵄨󵄨󵄨
curl [𝑓󸀠

𝑝
(𝑥, |V|2)V]󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝜏

=
1

2
∫
Ω

󵄨󵄨󵄨󵄨󵄨
curl [𝑓󸀠

𝑝
(𝑥, |V (𝑥, 𝑡)|2)V (𝑥, 𝑡)]󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
1

2
∫
Ω

󵄨󵄨󵄨󵄨󵄨
curl [𝑓󸀠

𝑝
(𝑥, |V (𝑥, 0)|2)V (𝑥, 0)]󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥.

(70)

For the estimate of the right hand side of (68), using the
integration by parts and taking (H.1) into consideration, we
have

∬
𝑄𝑡

curlF ⋅ (𝑓󸀠
𝑝
(𝑥, |V|2)V)

𝜏
𝑑𝑥 𝑑𝜏

= −∬
𝑄𝑡

curlF
𝜏
⋅ 𝑓
󸀠

𝑝
(𝑥, |V|2)V 𝑑𝑥 𝑑𝜏

+ [∫
Ω

curlF ⋅ 𝑓󸀠
𝑝
(𝑥, |V|2)V 𝑑𝑥]

𝜏=𝑡

𝜏=0

≤ 𝐶∬
𝑄𝑡

󵄨󵄨󵄨󵄨curlF𝜏
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 𝑑𝜏

+ 𝐶∬
𝑄𝑡

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

𝑝
(𝑥, |V|2)V󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

𝑑𝑥 𝑑𝜏

+ 𝐶 sup
𝑡∈[0,𝑇]

∫
Ω

|curlF|𝑝 𝑑𝑥

+ 𝐶 sup
𝑡∈[0,𝑇]

∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

𝑝
(𝑥, |V|2)V󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

𝑑𝑥

≤ 𝐶∬
𝑄𝑡

󵄨󵄨󵄨󵄨curlF𝜏
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 𝑑𝜏 + 𝐶 sup
𝑡∈[0,𝑇]

∫
Ω

|curlF|𝑝 𝑑𝑥

+ 𝐶 sup
𝑡∈[0,𝑇]

∫
Ω

|V|𝑝 𝑑𝑥.

(71)

Here the constant 𝐶 depends on 𝑇 and 𝑝. By the first
inequality (58), there exists a constant𝐶 depending on 𝑇 and
𝑝 such that

sup
𝑡∈[0,𝑇]

∫
Ω

|V|𝑝 𝑑𝑥

≤ 𝐶[∫
Ω

󵄨󵄨󵄨󵄨curlH0
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥 + 𝑇 sup
𝑡∈[0,𝑇]

∫
Ω

|curlF|𝑝 𝑑𝑥] .
(72)

Adding the above inequalities, we get second inequality (59)
without the term

sup
𝑡∈[0,𝑇]

∫
Ω

󵄨󵄨󵄨󵄨H𝑡
󵄨󵄨󵄨󵄨
2

𝑑𝑥 (73)

which we now estimate the term (73). From (16), we get

sup
𝑡∈[0,𝑇]

∫
Ω

󵄨󵄨󵄨󵄨H𝑡
󵄨󵄨󵄨󵄨
2

𝑑𝑥

≤ 2 sup
𝑡∈[0,𝑇]

∫
Ω

󵄨󵄨󵄨󵄨󵄨
curl [𝑓󸀠

𝑝
(𝑥, |curlH|2) curlH]󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ 2 sup
𝑡∈[0,𝑇]

∫
Ω

|F|2 𝑑𝑥.

(74)

The first term of the right hand side of this inequality
is already estimated in (58). This completes the proof of
Theorem 9.

By Lemma 2, we have the following.

Theorem 10. Under (H.1)–(H.3), letH = H(𝑥, 𝑡) be a solution
of (16)–(19). Then the following hold.

(i) H ∈ 𝐿∞(0, 𝑇; 𝐿3𝑝/(3−𝑝)(Ω)) if 2 ≤ 𝑝 < 3.
(ii) H ∈ 𝐿∞(0, 𝑇; 𝐿𝑞(Ω)) for any 1 < 𝑞 < ∞ if 𝑝 = 3.
(iii) H ∈ 𝐶

𝛼,𝛽
(𝑄
𝑇
) if 𝑝 > 3 where 𝛼 = 1 − 3/𝑝 and 𝛽 =

min{𝛼/2, 1/4}.

Proof. By Theorem 6, H ∈ 𝐿
∞
(0, 𝑇;𝑊

1,𝑝
(Ω)). Using the

Sobolev embedding theorem, (i) and (ii) are clear. Similarly
if 𝑝 > 3, H(𝑥, 𝑡) is Hölder continuous with respect to 𝑥
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with the Hölder exponent 𝛼 = 1 − 3/𝑝. We will show that
H(𝑥, 𝑡) is Hölder continuouswith respect to 𝑡with theHölder
exponent 𝛽. Let 𝑡

1
, 𝑡
2
∈ [0, 𝑇], 0 < 𝑡

2
− 𝑡
1
small and 𝑥

0
∈ Ω,

and define 𝐵
𝑟
= 𝐵
𝑟
(𝑥
0
) a ball in Ω centered at 𝑥

0
with radius

𝑟 = (𝑡
2
−𝑡
1
)
1/2. If 𝐵

𝑟
̸⊂ Ω, we consider 𝐵

𝑟
∩Ω in the following.

From Schwarz’s inequality, we have

∫
𝐵𝑟

󵄨󵄨󵄨󵄨H (𝑥, 𝑡2) −H (𝑥, 𝑡1)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

= ∫
𝐵𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡2

𝑡1

H
𝑡
(𝑥, 𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ ∫
𝐵𝑟

∫

𝑡2

𝑡1

󵄨󵄨󵄨󵄨H𝑡 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡 𝑑𝑥 (𝑡
2
− 𝑡
1
)

≤
󵄩󵄩󵄩󵄩H𝑡
󵄩󵄩󵄩󵄩
2

𝐿
∞
(0,𝑇;𝐿

2
(Ω))
(𝑡
2
− 𝑡
1
)
2

= 𝐶 (𝑡
2
− 𝑡
1
)
2

,

(75)

where the constant 𝐶 is independent of 𝑥. By the mean value
theorem for integral, there exists 𝑥∗ ∈ 𝐵

𝑟
such that

󵄨󵄨󵄨󵄨H (𝑥
∗
, 𝑡
2
) −H (𝑥∗, 𝑡

1
)
󵄨󵄨󵄨󵄨
2 󵄨󵄨󵄨󵄨𝐵𝑟

󵄨󵄨󵄨󵄨

= ∫
𝐵𝑟

󵄨󵄨󵄨󵄨H (𝑥, 𝑡2) −H (𝑥, 𝑡1)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 ≤ 𝐶 (𝑡
2
− 𝑡
1
)
2

.

(76)

Therefore we have
󵄨󵄨󵄨󵄨H (𝑥
∗
, 𝑡
2
) −H (𝑥∗, 𝑡

1
)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝑟

−3/2
(𝑡
2
− 𝑡
1
)

≤ 𝐶 (𝑡
2
− 𝑡
1
)
1/4

.

(77)

Thus for any 𝑥 ∈ 𝐵
𝑟
,

󵄨󵄨󵄨󵄨H (𝑥, 𝑡2) −H (𝑥, 𝑡1)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨H (𝑥, 𝑡2) −H (𝑥

∗
, 𝑡
2
)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨H (𝑥
∗
, 𝑡
2
) −H (𝑥∗, 𝑡

1
)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨H (𝑥
∗
, 𝑡
1
) −H (𝑥, 𝑡

1
)
󵄨󵄨󵄨󵄨

≤ 𝐶
󵄨󵄨󵄨󵄨𝑥 − 𝑥

∗󵄨󵄨󵄨󵄨
𝛼

+ 𝐶 (𝑡
2
− 𝑡
1
)
1/4

≤ 𝐶 (𝑡
2
− 𝑡
1
)
𝛼/2

+ 𝐶 (𝑡
2
− 𝑡
1
)
1/4

≤ 𝐶 (𝑡
2
− 𝑡
1
)
𝛽

.

(78)

4. Limit Solution as 𝑝 → ∞

In this section, we consider the asymptotic behavior of the
solution H = H(𝑥, 𝑡) (depending on 𝑝) as 𝑝 → ∞. We
assume the following.

(H.4) One has ‖curlH
0
‖
𝐿
∞
(Ω)
≤ 1.

Define a subspace 𝐾 = 𝐻
2

0
(curl, div0, Ω) of 𝐿2(Ω,R3).

For V ∈ 𝐿2(Ω,R3), define a functional

𝐼
∞
[V] =

{

{

{

0 if V ∈ 𝐾, |curlV| ≤ 1 a.e. in Ω,

+∞ otherwise.
(79)

It is clear that 𝐼
∞

is proper convex functional. We will show
that 𝐼

∞
is lower semicontinuous. Let V

𝑛
,V ∈ 𝐿

2
(Ω,R3),

V
𝑛
→ V in 𝐿2(Ω,R3), and lim

𝑛→∞
𝐼
∞
[V
𝑛
] = 𝐼. Then it

suffices to show that 𝐼
∞
[V] ≤ 𝐼. If 𝐼 = ∞, then it is trivial,

so we may assume that 𝐼 < ∞, and passing to a subsequence,
we may assume that 𝐼

∞
[V
𝑛
] < ∞. Thus 𝐼

∞
[V
𝑛
] = 0, and

|curlV
𝑛
| ≤ 1. SinceΩ has no holes, it follows from [7] that

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩𝑊1,2(Ω) ≤ 𝐶 (

󵄩󵄩󵄩󵄩divV𝑛
󵄩󵄩󵄩󵄩𝐿2(Ω) +

󵄩󵄩󵄩󵄩curlV𝑛
󵄩󵄩󵄩󵄩𝐿2(Ω)

+
󵄩󵄩󵄩󵄩^ × V𝑛

󵄩󵄩󵄩󵄩𝑊1/2,2(𝜕Ω)) ≤ 𝐶
󵄩󵄩󵄩󵄩curlV𝑛

󵄩󵄩󵄩󵄩𝐿2(Ω) ≤ 𝐶 |Ω| .

(80)

Therefore {V
𝑛
} is bounded in 𝑊1,2(Ω,R3). Passing to a

subsequence, wemay assume thatV → Ṽweakly in𝑊1,2(Ω,
R3) and strongly in 𝐿2(Ω,R3). Thus we see that Ṽ = V. Since
it is clear that divV = 0 inΩ and ^×V = 0 on 𝜕Ω, it suffices to
prove |curlV| ≤ 1 a.e. inΩ, in order to show thatV ∈ 𝐷(𝐼

∞
).

For any 𝛿 > 0, define a set

𝐴
𝛿
= {𝑥 ∈ Ω; |curlV (𝑥)| ≥ 1 + 𝛿} . (81)

Since curlV
𝑛
→ curlV weakly in 𝐿2(𝐴

𝛿
,R3), we have

(1 + 𝛿)
2 󵄨󵄨󵄨󵄨𝐴𝛿

󵄨󵄨󵄨󵄨 ≤ ∫
𝐴𝛿

|curlV|2 𝑑𝑥

≤ lim inf
𝑛→∞

∫
𝐴𝛿

󵄨󵄨󵄨󵄨curlV𝑛
󵄨󵄨󵄨󵄨
2

𝑑𝑥 ≤
󵄨󵄨󵄨󵄨𝐴𝛿
󵄨󵄨󵄨󵄨 .

(82)

Thus |𝐴
𝛿
| = 0. Since 𝛿 > 0 is arbitrary, we see that

|curlV(𝑥)| ≤ 1 a.e. in Ω. From this we can also see that
{V ∈ 𝐾; |curlV| ≤ 1} is a closed convex subset in 𝐿2(Ω,R3).

Now we have the following theorem.

Theorem 11. Under (H.1), (H.2), and (H.4), H(𝑝)(𝑥, 𝑡) has a
unique limitH(∞)(𝑥, 𝑡) as 𝑝 → ∞ such that

F −H(∞)
𝑡
∈ 𝜕𝐼
∞
[H(∞)] a.e. 𝑡 ∈ [0, 𝑇] ,

H(∞) (𝑥, 0) = H
0
(𝑥) ;

(83)

that is to say,

𝐼
∞
[V] − 𝐼

∞
[H(∞)]

≥ ∫
Ω

(F −H(∞)
𝑡
) ⋅ (V −H(∞)) 𝑑𝑥

(84)

for a.e. 𝑡 ∈ [0, 𝑇] for all V ∈ 𝐾 and

∫
Ω

󵄨󵄨󵄨󵄨H (𝑥, 𝑡) −H0 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 󳨀→ 0 as 𝑡 󳨀→ +0. (85)
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Proof.

Step 1 (the uniqueness of the solution of (83)). We follow Yin
[13]. Let H(∞)

1
and H(∞)

2
be two solutions of (83). Then we

have

0 = 𝐼
∞
[H(∞)
2
] − 𝐼
∞
[H(∞)
1
]

≥ ∫
Ω

(F −H(∞)
1,𝑡
) ⋅ (H(∞)

2
−H(∞)
1
) 𝑑𝑥,

0 = 𝐼
∞
[H(∞)
1
] − 𝐼
∞
[H(∞)
2
]

≥ ∫
Ω

(F −H(∞)
2,𝑡
) ⋅ (H(∞)

1
−H(∞)
2
) 𝑑𝑥.

(86)

Adding these inequalities, we have

∫
Ω

(H(∞)
2,𝑡
−H(∞)
1,𝑡
) ⋅ (H(∞)

2
−H(∞)
1
) 𝑑𝑥 ≤ 0. (87)

Therefore

𝑑

𝑑𝑡
∫
Ω

󵄨󵄨󵄨󵄨󵄨
H(∞)
2
−H(∞)
1

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 0, (88)

and so we have

∫
Ω

󵄨󵄨󵄨󵄨󵄨
H(∞)
2
(𝑥, 𝑡) −H(∞)

1
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ ∫
Ω

󵄨󵄨󵄨󵄨󵄨
H(∞)
2
(𝑥, 0) −H(∞)

1
(𝑥, 0)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 = 0

(89)

for a.e. 𝑡 ∈ [0, 𝑇]. HenceH(∞)
1
(𝑥, 𝑡) = H(∞)

2
(𝑥, 𝑡) in 𝑄

𝑇
.

Step 2 (existence of the limit solution). (1) Since (H.4) implies
that

1

𝑝
∫
Ω

󵄨󵄨󵄨󵄨curlH0
󵄨󵄨󵄨󵄨
2

𝑑𝑥 ≤
1

2
|Ω| (90)

for any 𝑝 ≥ 2, we notice that the right hand sides of (50) and
(56) are independent of 𝑝 ≥ 2. Therefore we have

sup
𝑡∈[0,𝑇]

∫
Ω

󵄨󵄨󵄨󵄨󵄨
H(𝑝)󵄨󵄨󵄨󵄨󵄨
2

𝑑𝑥 +∬
𝑄𝑇

󵄨󵄨󵄨󵄨󵄨
curlH(𝑝)󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 𝑑𝑡 ≤ 𝐶
1
, (91)

∬
𝑄𝑡

󵄨󵄨󵄨󵄨󵄨
H(𝑝)
𝑡

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡 +
1

𝑝
sup
𝑡∈[0,𝑇]

∫
Ω

󵄨󵄨󵄨󵄨󵄨
curlH(𝑝)󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 ≤ 𝐶
2
, (92)

where 𝐶
1
and 𝐶

2
are independent of 𝑝. Therefore for any

subsequence {H(𝑝
󸀠
)
}, there exists a subsequence {H(𝑝

󸀠󸀠
)
} such

that

H(𝑝
󸀠󸀠
)
󳨀→ H(∞)

strongly in 𝐿2 (𝑄
𝑇
) , weakly in 𝐿2 (0, 𝑇;𝑊1,𝑝 (Ω)) ,

(93)

H(𝑝
󸀠󸀠
)
󳨀→ H(∞) a.e. in 𝑄

𝑇
, (94)

curlH(𝑝
󸀠󸀠
)
󳨀→ curlH(∞),

H(𝑝
󸀠󸀠
)

𝑡
󳨀→ H(∞)

𝑡

weakly in 𝐿2 (𝑄
𝑇
) ,

(95)

divH(∞) = 0 in Ω, (96)

^ ×H(∞) (𝑥, 𝑡) = 0 on 𝜕Ω × [0, 𝑇] . (97)

(2) We claim that ess sup
(𝑥,𝑡)∈𝑄𝑇

|curlH(∞)(𝑥, 𝑡)| ≤ 1.
In fact, from (91), we have

∬
𝑄𝑇

󵄨󵄨󵄨󵄨󵄨
curlH(𝑝)󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 𝑑𝑡 ≤ 𝐶
1
, (98)

where 𝐶
1
is independent of 𝑝. For any 𝛿 > 0, put

𝐵
𝛿
= {(𝑥, 𝑡) ∈ 𝑄

𝑇
;
󵄨󵄨󵄨󵄨󵄨
curlH(∞) (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨 ≥ 1 + 𝛿} . (99)

Then it follows from the Hölder inequality and (98) that

(1 + 𝛿)
2 󵄨󵄨󵄨󵄨𝐵𝛿

󵄨󵄨󵄨󵄨 ≤ ∬
𝐵𝛿

󵄨󵄨󵄨󵄨󵄨
curlH(∞)󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡

≤ lim inf
𝑝
󸀠󸀠
→∞

{∬
𝐵𝛿

󵄨󵄨󵄨󵄨󵄨󵄨
curlH(𝑝

󸀠󸀠
)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠󸀠

𝑑𝑥 𝑑𝑡}

1/𝑝
󸀠󸀠

󵄨󵄨󵄨󵄨𝐵𝛿
󵄨󵄨󵄨󵄨
1−1/𝑝

󸀠󸀠

≤ lim
𝑝
󸀠󸀠
→∞

𝐶
1/𝑝
󸀠󸀠

1

󵄨󵄨󵄨󵄨𝐵𝛿
󵄨󵄨󵄨󵄨
1−1/𝑝

󸀠󸀠

=
󵄨󵄨󵄨󵄨𝐵𝛿
󵄨󵄨󵄨󵄨 .

(100)

Thus we see that |𝐵
𝛿
| = 0. Since 𝛿 > 0 is arbitrary, we see that

(2) holds.
(3) Clearly the first equation of (83) is equivalent to

∫
Ω

(F −H(∞)
𝑡
) ⋅ (V −H(∞)) 𝑑𝑥 ≤ 0 a.e. 𝑡 ∈ [0, 𝑇] (101)

for any V ∈ 𝐻2
0
(curl, div0, Ω) with |curlV| ≤ 1. Since H(𝑝

󸀠󸀠
)

is a unique solution of

F −H
𝑡
∈ 𝜕𝐼
𝑝
󸀠󸀠 [H] a.e. 𝑡 ∈ [0, 𝑇] ,

H (𝑥, 0) = H
0
(𝑥) ,

(102)

for any V ∈ 𝐻2
0
(curl, div0, Ω) with | curlV| ≤ 1,

𝐼
𝑝
󸀠󸀠 [V] − 𝐼

𝑝
󸀠󸀠 [H𝑝

󸀠󸀠

]

≥ ∫
Ω

(F −H(𝑝
󸀠󸀠
)

𝑡
) ⋅ (V −H(𝑝

󸀠󸀠
)
) 𝑑𝑥.

(103)

Here we note that by hypothesis

𝐼
𝑝
󸀠󸀠 [V] = ∫

Ω

𝑓
𝑝
󸀠󸀠 (𝑥, |curlV|2) 𝑑𝑥

≤
2Λ

𝑝󸀠󸀠
∫
Ω

|curlV|𝑝
󸀠󸀠

𝑑𝑥 ≤
2Λ

𝑝󸀠󸀠
|Ω| 󳨀→ 0

(104)
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as 𝑝󸀠󸀠 → ∞. Since H(𝑝
󸀠󸀠
)
→ H(∞) strongly in 𝐿2(𝑄

𝑇
) and

H(𝑝
󸀠󸀠
)

𝑡
→ H(∞)
𝑡

weakly in 𝐿2(𝑄
𝑇
), we see that, for a.e. 𝑡 ∈ [0,

𝑇],

∫
Ω

(F −H(𝑝
󸀠󸀠
)

𝑡
) ⋅ (V −H(𝑝

󸀠󸀠
)
) 𝑑𝑥

󳨀→ ∫
Ω

(F −H(∞)
𝑡
) ⋅ (V −H(∞)) 𝑑𝑥.

(105)

Letting𝑝󸀠󸀠 → ∞ in (103) and using the fact that 𝐼
𝑝
󸀠󸀠[H(𝑝

󸀠󸀠
)
] ≥

0, we see that

∫
Ω

(F −H(∞)
𝑡
) ⋅ (V −H(∞)) 𝑑𝑥 ≤ 0. (106)

Thus we can see thatH(∞) satisfies the first equation of (83).
(4) For the initial condition, it follows from

∫
Ω

󵄨󵄨󵄨󵄨󵄨
H(∞) (𝑥, 𝑡) −H

0
(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= lim
𝑝
󸀠󸀠
→∞

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨
H(𝑝
󸀠󸀠
)
(𝑥, 𝑡) −H

0

󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ lim sup
𝑝
󸀠󸀠
→∞

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

H(𝑝
󸀠󸀠
)

𝜏
(𝑥, 𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝑡lim sup
𝑝
󸀠󸀠
→∞

∫
Ω

∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨󵄨
H(𝑝
󸀠󸀠
)

𝜏
(𝑥, 𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜏 𝑑𝑥

≤ 𝑡lim sup
𝑝
󸀠󸀠
→∞

󵄩󵄩󵄩󵄩󵄩󵄩
H(𝑝
󸀠󸀠
)

𝑡

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑄𝑇)

󳨀→ 0

(107)

as 𝑡 → +0. Hence H(∞) is a solution of (83). Since the
solution of (83) is unique, we can replace 𝑝󸀠󸀠 in Step 2 by any
𝑝.

Now we show the Hölder continuity of the limit solution.

Theorem 12. The above limit solution H(∞) of (83) is Hölder
continuous in 𝑄

𝑇
.

Proof. WeputK(𝑥, 𝑡) = H(∞)(𝑥, 𝑡) for brevity. Since divK = 0
inΩ for a.e. 𝑡 ∈ [0, 𝑇], we have

−ΔK = curl (curlK) (108)

in the sense of distribution. Since H(∞) ∈ 𝑊
1,𝑝
(Ω) for

a.e. 𝑡 ∈ [0, 𝑇], the tangent trace is well defined, and
since ^ × H(𝑝)(𝑥, 𝑡) = 0 on 𝜕Ω × [0, 𝑇], H(𝑝)(𝑥, 𝑡) →

H(∞)(𝑥, 𝑡) weakly in 𝑊1,𝑝(Ω) for a.e. 𝑡 ∈ [0, 𝑇], we have
^ × H(∞)(𝑥, 𝑡) = 0 on 𝜕Ω for a.e. 𝑡 ∈ [0, 𝑇]. Moreover, by
Step 2 in the proof of Theorem 11, for any 𝑞 > 1, curlH(∞) ∈

𝐿
𝑞
(Ω) for a.e. 𝑡 ∈ [0, 𝑇]. Thus K satisfies that, for a.e.

𝑡 ∈ [0, 𝑇],

−ΔK = curl (curlK) in Ω,

divK = 0 in Ω,

^ × K = 0 on 𝜕Ω.

(109)

Since curlK ∈ 𝐿
𝑞
(Ω) for any 𝑞 > 1, it follows from [6,

Proposition 5.1 and Remark 5.1(ii)] that K ∈ 𝑊
1,𝑞
(Ω,R3)

and

‖K‖
𝑊
1,𝑞
(Ω)
≤ 𝐶 ‖curlK‖

𝐿
𝑞
(Ω)
≤ 𝐶 (𝑞) , (110)

where 𝐶(𝑞) is independent of 𝑡. By the Sobolev embedding
theorem, for a.e. 𝑡 ∈ [0, 𝑇], K(𝑥, 𝑡) = H(∞)(𝑥, 𝑡) ∈ 𝐶𝛼(Ω) for
any 0 < 𝛼 < 1.TheHölder continuity with respect to 𝑡 follows
from the similar argument of the proof of Theorem 10.

Finally we assume that the function 𝑓
𝑝
satisfies the fol-

lowing.

(H.5) (𝑓󸀠
𝑝
(𝑥, 𝑠
2
)𝑠)
𝑝/(𝑝−1)

≤ 𝑓
󸀠

𝑝
(𝑥, 𝑠
2
)𝑠
2 for 𝑠 ≥ 0.

Remark 13. When 𝑓
𝑝
(𝑥, 𝑠) = (2/𝑝)𝑎(𝑥)𝑠

𝑝/2 and 𝑎(𝑥) ≤ 1, it is
easily shown that 𝑓

𝑝
satisfies (H.4).

Theorem 14. Under conditions (H.1), (H.2), and (H.5), there
exists a nonnegative measurable function 𝑎(𝑥, 𝑡) such that

H(∞)
𝑡
+ curl [𝑎 (𝑥, 𝑡) curlH(∞)] = F 𝑖𝑛 𝑄

𝑇
(111)

in the distribution sense, and

supp 𝑎 ⊂ 𝑁 := {(𝑥, 𝑡) ∈ 𝑄
𝑇
;
󵄨󵄨󵄨󵄨󵄨
curlH(∞) (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨 = 1} . (112)

Proof. Put A
𝑝
= 𝑓
󸀠

𝑝
(𝑥, |curlH(𝑝)|2) curlH(𝑝). Taking the in-

ner product of (16) and V ∈ 𝐿
2
(0, 𝑇;𝐻

𝑝

0
(curl, div0, Ω)), we

have

∬
𝑄𝑇

(H(𝑝)
𝑡
⋅ V + A

𝑝
⋅ curlV) 𝑑𝑥 𝑑𝑡

= ∬
𝑄𝑇

F ⋅ V 𝑑𝑥 𝑑𝑡.
(113)

Since |A
𝑝
| ≤ Λ| curlH(𝑝)|𝑝−1 by hypothesis (H.1), {A

𝑝
} is

bounded in 𝐿2(0, 𝑇; 𝐿𝑝
󸀠

(Ω)). Therefore there exists a subse-
quence {A

𝑝𝑘
} such that A

𝑝𝑘
→ A weakly in 𝐿2(0, 𝑇; 𝐿𝑝

󸀠

(Ω))

as 𝑘 → ∞. SinceH(𝑝)
𝑡
→ H(∞)
𝑡

weakly in 𝐿2(𝑄
𝑇
) from (95),

letting 𝑘 → ∞ in (113) with 𝑝 = 𝑝
𝑘
, we have

∬
𝑄𝑇

(H(∞)
𝑡
⋅ V + A ⋅ curlV) 𝑑𝑥 𝑑𝑡

= ∬
𝑄𝑇

F ⋅ V 𝑑𝑥 𝑑𝑡.
(114)
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On the other hand, from (113) with V = H(𝑝), we have

∬
𝑄𝑇

(
1

2

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
H(𝑝)
𝑡

󵄨󵄨󵄨󵄨󵄨

2

+ A
𝑝
⋅ curlH(𝑝))𝑑𝑥𝑑𝑡

= ∬
𝑄𝑇

F ⋅H(𝑝)𝑑𝑥 𝑑𝑡.
(115)

Hence, using (93) with 𝑝󸀠󸀠 = 𝑝,

1

2
∬
Ω

󵄨󵄨󵄨󵄨󵄨
H(𝑝) (𝑥, 𝑇)󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 −
1

2
∫
Ω

󵄨󵄨󵄨󵄨H0 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

+∬
𝑄𝑇

𝑓
󸀠

𝑝
(𝑥,
󵄨󵄨󵄨󵄨󵄨
curlH(𝑝)󵄨󵄨󵄨󵄨󵄨

2

)
󵄨󵄨󵄨󵄨󵄨
curlH(𝑝)󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡

= ∬
𝑄𝑇

F ⋅H(𝑝)𝑑𝑥 𝑑𝑡 󳨀→ ∬
𝑄𝑇

F ⋅H(∞)𝑑𝑥 𝑑𝑡

(116)

as 𝑝 → ∞. From (114) with V = H(∞), we have

1

2
∬
Ω

󵄨󵄨󵄨󵄨󵄨
H(∞) (𝑥, 𝑇)󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 −
1

2
∫
Ω

󵄨󵄨󵄨󵄨H0 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

+∬
𝑄𝑇

A ⋅ curlH(∞)𝑑𝑥 𝑑𝑡

= ∬
𝑄𝑇

F ⋅H(∞)𝑑𝑥 𝑑𝑡.

(117)

SinceH(𝑝) → H(∞) strongly in 𝐿2(𝑄
𝑇
), we see that

∬
𝑄𝑇

𝑓
󸀠

𝑝
(𝑥,
󵄨󵄨󵄨󵄨󵄨
curlH(𝑝)󵄨󵄨󵄨󵄨󵄨

2

)
󵄨󵄨󵄨󵄨󵄨
curlH(𝑝)󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡

󳨀→∬
𝑄𝑇

A ⋅ curlH(∞)𝑑𝑥 𝑑𝑡
(118)

as 𝑝 → ∞. Since A
𝑝𝑘
→ A weakly in 𝐿1(𝑄

𝑇
), using the

Hölder inequality and (H.5), we have

∬
𝑄𝑇

|A| 𝑑𝑥 𝑑𝑡 ≤ lim inf
𝑘→∞

∬
𝑄𝑇

󵄨󵄨󵄨󵄨󵄨
A
𝑝𝑘

󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 𝑑𝑡 = lim inf

𝑘→∞

∬
𝑄𝑇

𝑓
󸀠

𝑝
(𝑥,
󵄨󵄨󵄨󵄨󵄨
curlH(𝑝𝑘)󵄨󵄨󵄨󵄨󵄨

2

)
󵄨󵄨󵄨󵄨󵄨
curlH(𝑝𝑘)󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑡

≤ lim inf
𝑘→∞

{∬
𝑄𝑇

(𝑓
󸀠

𝑝
(𝑥,
󵄨󵄨󵄨󵄨󵄨
curlH(𝑝𝑘)󵄨󵄨󵄨󵄨󵄨

2

)
󵄨󵄨󵄨󵄨󵄨
curlH(𝑝𝑘)󵄨󵄨󵄨󵄨󵄨)

𝑝𝑘/(𝑝𝑘−1)

𝑑𝑥 𝑑𝑡}

1−1/𝑝𝑘

(𝑇 |Ω|)
1/𝑝𝑘

≤ lim inf
𝑘→∞

{∬
𝑄𝑇

𝑓
󸀠

𝑝
(𝑥,
󵄨󵄨󵄨󵄨󵄨
curlH(𝑝𝑘)󵄨󵄨󵄨󵄨󵄨

2

)
󵄨󵄨󵄨󵄨󵄨
curlH(𝑝𝑘)󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡}

1−1/𝑝𝑘

(𝑇 |Ω|)
1/𝑝𝑘 = ∬

𝑄𝑇

A ⋅ curlH(∞)𝑑𝑥 𝑑𝑡

≤ ∬
𝑄𝑇

|A| 𝑑𝑥 𝑑𝑡.

(119)

Here the last inequality is based on the fact that |curlH(∞)| ≤
1. This implies that |A| = A ⋅ curlH(∞), so A(𝑥, 𝑡) and
H(∞)(𝑥, 𝑡) are linearly dependent.Thus there exists a measur-
able function 𝑎(𝑥, 𝑡) such thatA(𝑥, 𝑡) = 𝑎(𝑥, 𝑡) curlH(∞)(𝑥, 𝑡)
where 𝑎(𝑥, 𝑡) := 0 if H(∞)(𝑥, 𝑡) = 0. Since H(𝑝)

𝑡
+ curlA

𝑝
= F

in 𝑄
𝑇
and H(𝑝𝑘)

𝑡
→ H(∞)

𝑡
weakly in 𝐿2(𝑄

𝑇
) and A

𝑝𝑘
→ A

weakly in 𝐿2(0, 𝑇; 𝐿𝑝
󸀠

(Ω)), we have

H(∞)
𝑡
+ curlA = F (120)

in the distribution sense. Since

0 ≤ |A| = A ⋅ curlH(∞) = 𝑎 (𝑥, 𝑡) 󵄨󵄨󵄨󵄨󵄨curlH
(∞)󵄨󵄨󵄨󵄨󵄨

2

, (121)

the function 𝑎(𝑥, 𝑡) is nonnegative. Moreover, if 0 <

|curlH(∞)(𝑥, 𝑡)| < 1, then

𝑎 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨󵄨
curlH(∞) (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨 = |A (𝑥, 𝑡)|

= 𝑎 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨󵄨
curlH(∞) (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨

2

.

(122)

So we have 𝑎(𝑥, 𝑡) = 0. Hence supp 𝑎 ⊂ 𝑁.This completes the
proof.

Remark 15. For the limit solution H(∞)(𝑥, 𝑡), the resistivity
𝑎(𝑥, 𝑡) vanishes in the region {(𝑥, 𝑡) ∈ 𝑄

𝑇
; |curlH(∞)(𝑥, 𝑡)| <

1}. That is to say, the current is in the superconductivity state
there.
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